Die Geschichte der Taschenrechner

Größe: px
Ab Seite anzeigen:

Download "Die Geschichte der Taschenrechner"

Transkript

1 Kevin 19. März 2009

2 Übersicht Damals Heute Zukunft Anwendung des Taschenrechners in der Schule

3 Inhalt Damals Entwicklung der Zahlensysteme Abakus und Rechenschieber Mechanische Addierer Die Vier-Spezies-Maschine Die Curta Heute Entwicklung Taschenrechner in der Schule verschiedene Modelle

4 Inhalt Zukunft Zukunftsperspektive der Taschenrechner Alternative Rechner von Morgen Anwendungen des Taschenrechners in der Schule HTML Modell eines Taschenrechners Flash- und Java-Taschenrechner

5 Übersicht Damals Heute Zukunft Anwendung des Taschenrechners in der Schule

6 Zahlensysteme

7 Zahlensysteme Kerbholz ca vor Christus Anzahl der Kerben = Anzahl des Viehs, Sklaven, etc.

8 Zahlensysteme Finger und Zehen viele Zahlensysteme basieren auf Anzahl der Finger bzw. Zehen 5er Stufung bei Griechen 10er System... Maya hatten Zahlensystem zur Basis 20 die französische Zahl 80 heißt?

9 Zahlensysteme Das indisch-arabische Zahlensystem arabische Ziffern stammen aus Indien Kennzeichen ist Verwendung von zehn Ziffern einfaches und schnelles Rechnen möglich Bekannt wurden sie durch Adam Riese ( )

10 Zahlensysteme Die Null Die Null wurde dreimal erfunden (Babylonier, Maya, Inder) Fibonacci lernte die Zahl auf seinen Reisen kennen Schwierigkeiten mit Zahl die Nichts beziffert Nichts verzehnfacht eine Zahl?

11 Abakus und Rechenschieber Hinweisfolie Abakus und Rechenschieber wären in der Geschichte der Taschenrechner hier zu behandeln.

12 Mechanische Addierer Scheibenaddierer 1642 entickelt Pascal den ersten Scheibenaddierer (Pascaline) 8-stellige Additionen und Subtraktionen Subtrahieren mit Komplementmethode

13 Mechanische Addierer 1918 wurde der Addometer entwickelt Funktioniert im Prinzip wie Pascaline

14 Mechanische Addierer Stangen- und Kettenaddierer 1920 wurde der Comptator in Deutschland entwickelt Mit einem Stift konnte man die jeweilige Spalte nach unten schieben Subtrahieren mit Komplementmethode

15 Mechanische Addierer Griffel-Addierer aus Blech Griffel-Addierer von Sehr populär, da klein und billig Leicht zu bedienen

16 Mechanische Addierer Addiator

17 Mechanische Addierer Tasten-Addiermaschinen 1916 gebaut Jede Stelle hat Taste von 1-9 Sobald man drückt wird sofort addiert Hebel auf der Seite zum Nullstellen

18 Die Vier-Spezies-Maschine Die Staffelwalze Zitat Gottfried Wilhelm von Leibniz ( ): Denn es ist ausgezeichneter Menschen unwürdig, gleich Sklaven Stunden zu verlieren mit Berechnungen. Mehrfach stellenrichtige Addition Problem war Zehnerübertrag bei mehreren Stellen

19 Die Vier-Spezies-Maschine

20 Die Vier-Spezies-Maschine Die Curta Curt Herzstark ( ) 1937 Idee für komplexe Staffelwalze Entwicklung der Curta im KZ Buchenwald SS wollte die Curta dem Führer als Siegesgeschenk überreichen Bild unten; wie man sieht sehr handlich

21 Die Vier-Spezies-Maschine

22 Übersicht Damals Heute Zukunft Anwendung des Taschenrechners in der Schule

23 Der elektronische Taschenrechner Erster elektronischer Tischrechner Name: Anita Mark-VIII Preis: ca DM (2250 Euro) In Zeitschrift Electronic stand: Ein Elektronenrechner von der Grösse einer Schreibmaschine wird jetzt von einer Londoner Firma angeboten. Er dient zum Addieren, Subtrahieren, Multiplizieren und Dividieren. Zum Überprfen der Ergebnisse ist eine automatische Kontrollvorrichtung eingebaut. Die Antworten werden in kürzester Zeit in Leuchtziffern erteilt. ungefähr 10-mal so schnell wie ein mechanischer Rechner

24 Der elektronische Taschenrechner

25 Der elektronische Taschenrechner Entwicklung 1963 erster elektronischer Taschenrechner mit Transistoren 4 Grundrechnungsarten 12-stellige Genauigkeit Mit 25 Kilo gewicht aber noch zu schwer für den Alltag

26 Der elektronische Taschenrechner Entwicklung 1967 erster wirkliche Taschenrechner Handflächen Groß und 1,5 Kilo schwer Texas Instruments ca. 4 Stunden Batteriebetrieb Ergebnis auf Thermopapierstreifen Kosten: ca DM (14000 ATS bzw Euro)

27 Der elektronische Taschenrechner Compucorp, Canon, Sanyo stellen neue Geräte vor Sharp Hewlett-Packard (HP) HP-35 hat Gewicht von nur 0.25 Kilo Preis: ca DM = 1000 Euro Logarithmen und Funktionswerte auf Knopfdruck

28 Der elektronische Taschenrechner Taschenrechner in der Schule Seit 1977 Taschenrechner in Schulen Ab der 7.Schulstufe Preis für klassischen Rechner (heute): ca. 15 Euro Preis für CAS - Taschenrechner (heute): ca. 200 Euro Taschenrechner sterben im Schulbetrieb langsam aus

29 Der elektronische Taschenrechner Klassische Taschenrechner

30 Der elektronische Taschenrechner

31 Der elektronische Taschenrechner verschiedene Modelle

32 Der elektronische Taschenrechner verschiedene Modelle

33 Der elektronische Taschenrechner

34 Übersicht Damals Heute Zukunft Anwendung des Taschenrechners in der Schule

35 Fortschritt Wie sieht der Taschenrechner der Zukunft aus? PDA (Personal Digital Assistant) Handy Computer Google Armbanduhr

36 Idee für fächerübergreifenden Unterricht Taschenrechner programmieren Wer die Beispiele bzw. Programme haben will, der schickt mir einfach eine an:

37 Ende Danke für eure Aufmerksamkeit!

Vom Kerbholz zur Curta

Vom Kerbholz zur Curta Vom Kerbholz zur Curta Die Geschichte der mechanischen Rechenhilfsmittel Mit Fleiß zusammengetragen und ans Licht gebracht von Jan Meyer. Vom Kerbholz zur Curta DIE ENTWICKLUNG DER ZAHLENSYSTEME 4 Kerbholz

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

FHZ. K01 Geschichte des Computers. Lernziele. Hochschule Technik+Architektur Luzern. Inhalt

FHZ. K01 Geschichte des Computers. Lernziele. Hochschule Technik+Architektur Luzern. Inhalt Inhalt 1. Geschichte Folie 1 Lernziele Sie kennen die wichtigsten Punkte in der Geschichte des Computers Sie sind mit einigen Begriffen vertraut Folie 2 Seite 1 Computer als elektronische Rechenmaschine:

Mehr

Algorithmus, siehe (1)

Algorithmus, siehe (1) Der Computer als elektronische Rechenmaschine entstand in den vierziger Jahren des 20. Jahrhunderts. Die Gedankenwelt der Informatik lässt sich aber bedeutend weiter zurückverfolgen. Mit diesem Kapitel

Mehr

examen.press Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker

examen.press Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker examen.press Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker Bearbeitet von Thomas Huckle, Stefan Schneider Neuausgabe 2006. Taschenbuch. xiii, 385

Mehr

GESCHICHTE DER COMPUTERTECHNIK

GESCHICHTE DER COMPUTERTECHNIK GESCHICHTE DER COMPUTERTECHNIK Rebekka Mönch Projekt ://reisefieber WS 2005/06 Bauhaus-Universität Weimar Ich glaube, dass es auf der Welt einen Bedarf von vielleicht fünf Computern geben wird. Künftige

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Lektion 1: Zahlensysteme und Binärdarstellung. Übersicht Lektion 1

Lektion 1: Zahlensysteme und Binärdarstellung. Übersicht Lektion 1 Lektion 1: Zahlensysteme und Binärdarstellung Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1: Zahlensysteme 1-1 Übersicht

Mehr

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation

Werkstatt Multiplikation Posten: 8-Bit Multiplikation. Informationsblatt für die Lehrkraft. 8-Bit Multiplikation Informationsblatt für die Lehrkraft 8-Bit Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: 8-Bit Multiplikation (im Binärsystem) Mittelschule, technische

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität Carolo Wilhelmina zu Brauschweig Institut für rechnergestützte Modellierung im Bauingenierwesen Prof. Dr.-Ing. habil. Manfred Krafczyk Pockelsstraße 3, 38106 Braunschweig http://www.irmb.tu-bs.de

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Informatik - Lehrgang 2000/2001 GRUNDLAGEN

Informatik - Lehrgang 2000/2001 GRUNDLAGEN Informatik - Lehrgang 2000/2001 GRUNDLAGEN Ein Überblick! Das Werden der Informatik! Daten! Technische Informatik Der von Neumann Computer Versuch einer Entmystifizierung 2 Grundlagen Micheuz Peter Das

Mehr

Frühe elektronische Tischrechner -

Frühe elektronische Tischrechner - Peter Haertel Frühe elektronische Tischrechner - Die Zehnertastatur setzt sich durch Lilienthal, April 2011 1 Inhaltsverzeichnis: Seite 1 Einführung 3 2 Die elektronische Philips-Tischrechner von 1961

Mehr

Seminararbeit zum Thema: Die Rechenmaschine von Gottfried Wilhelm Leibniz

Seminararbeit zum Thema: Die Rechenmaschine von Gottfried Wilhelm Leibniz Seminararbeit zum Thema: Die Rechenmaschine von Gottfried Wilhelm Leibniz Vorgelegt bei: Prof. K.D. Graf Veranstaltung: Hauptseminar Didaktik der Informatik Autor : Torsten Brandes Matrikel Nr.: 151471

Mehr

Computer im Mathematikunterricht

Computer im Mathematikunterricht Computer im Mathematikunterricht Computer im Mathematikunterricht Weigand, H.-G.; Weth, Th. (2002). Computer im Mathematikunterricht. Neue Wege zu alten Zielen. Berlin: Spektrum Barzel, B.; Hußmann, St.;

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung

Mehr

Grundzüge der Informatik Zahlendarstellungen (7)

Grundzüge der Informatik Zahlendarstellungen (7) Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda e0225646@student.tuwien.ac.at Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1

Mehr

Geschichte der Informatik

Geschichte der Informatik Entwicklung von Informationstechnik und Durchdringung des Alltags seit der 2. Hälfte des 20 Jahrhunderts explosionsartig Informationsgesellschaft Zunehmende Bedeutung und Wert von Informationen Schnelle

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

Geschichte des Computers. Die Geschichte des Computers

Geschichte des Computers. Die Geschichte des Computers Die Geschichte des Computers Die Entwicklung macht vor niemandem Halt! Woher kommen die Zahlen? Die ersten primitiven Zahlenzeichen entstanden ca. 30 000 Jahre v. Chr. Die ersten bekannten Schriftsysteme

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

1. Digitale Medien. 2. Webtechnologien. 3. Web 2.0, Semantic Web. 4. Wissensmanagement. 1. Methoden des Wissensmanagements 2.

1. Digitale Medien. 2. Webtechnologien. 3. Web 2.0, Semantic Web. 4. Wissensmanagement. 1. Methoden des Wissensmanagements 2. Überblick GRUNDKURS INFORMATIK 1 EINFÜHRUNG 1. Informatik Grundlagen: Informationsdarstellung, Information und Daten, Algorithmen, Problemlösung. 1. Digitale Medien 2. Webtechnologien 3. Web 2.0, Semantic

Mehr

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

Dipl. Ing. (FH) Ehrenfried Stuhlpfarrer

Dipl. Ing. (FH) Ehrenfried Stuhlpfarrer Dipl. Ing. (FH) Ehrenfried Stuhlpfarrer Die Geschichte der Rechenmaschinen 1100 v. Chr. Abakus Ein Abakus ist ein mehr als 3000 Jahre altes einfaches mechanisches Rechenhilfsmittel. Der Abakus enthält

Mehr

COMPUTER RECHNEN BINÄR

COMPUTER RECHNEN BINÄR COMPUTER RECHNEN BINÄR Können Computer rechnen? Na klar! Sie können nur rechnen. Das Rechensystem nennt sich binäres System oder Dualsystem. Schaut mal rechts zur Abbildung. Diese Armbanduhr zeigt die

Mehr

Die Geschichte des Computers

Die Geschichte des Computers Inhaltsverzeichnis Der Vorbote des Computers... 3 Der Erfinder des ersten Computers... 3 Die Computer... 4 Der erste Computer Z1... 4 Der zweite Computer Z3... 5 Der Mark I... 6 Der ENIAC... 7 Der SSEC...

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Geschichte und Einteilung der Informatik 01101101 01011001 11010011 10011000 00000011 00011100 01111111 11111111 00110100 00101110 11101110 01110010 10011101 00111010 2 Der

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 1 Vom Abakus bis zum Personal Computer... 1-2 1.1 Einleitung... 1-2 1.2 Geschichte der Informatik... 1-3 1.2.1 Rechenhilfsmittel... 1-3 1.2.2 Mechanische Rechenmaschinen... 1-3 1.2.3 0. Generation

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Die Entwicklung der Rechenmaschinen von den Anfängen bis zur Gegenwart

Die Entwicklung der Rechenmaschinen von den Anfängen bis zur Gegenwart Die Entwicklung der Rechenmaschinen von den Anfängen bis zur Gegenwart erstellt von Ronny Krüger im SS 2003 Die Antike Rechnen (Zahlenrechnen) galt in der Antike als unwürdig und wurde den Sklaven überlassen.

Mehr

Lernmodul Bruchrechnen. Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren. Brüche subtrahieren. Brüche multiplizieren

Lernmodul Bruchrechnen. Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren. Brüche subtrahieren. Brüche multiplizieren Lernmodul Bruchrechnen Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren Brüche subtrahieren Brüche multiplizieren Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Grundlagen der Computertechnik

Grundlagen der Computertechnik Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS23 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of

Mehr

Werkstatt Multiplikation Posten: Abakus. Informationsblatt fÿr die Lehrkraft. Abakus

Werkstatt Multiplikation Posten: Abakus. Informationsblatt fÿr die Lehrkraft. Abakus Informationsblatt fÿr die Lehrkraft Abakus Informationsblatt fÿr die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Abakus - Antike Rechenhilfe Mittelschule, technische Berufsschule, Fachhochschule

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Setze = oder ein. a) 6 3... 9 2 b) 8 8 9 7 c) 8 3. 4 6. Berechne im Kopf. a) 10 10 =... b) 20 20 =... c) 30 30 =...

Setze = oder ein. a) 6 3... 9 2 b) 8 8 9 7 c) 8 3. 4 6. Berechne im Kopf. a) 10 10 =... b) 20 20 =... c) 30 30 =... A Grundrechnungsarten 2. Multiplizieren und Dividieren MULTIPLIZIEREN NATÜRLICHER ZAHLEN 1 Multipliziere. Finde das Lösungswort. 1) 3 4 = 9) 3 8 = 2) 8 8 = 10) 9 4 = 3) 6 6 = 11) 2 6 = 4) 5 8 = 12) 4 10

Mehr

Mathematisches. Grundwissen. lea. Diagnostik. Kursleiter/in. R. Kretschmann, P. Wieken Stand

Mathematisches. Grundwissen. lea. Diagnostik. Kursleiter/in. R. Kretschmann, P. Wieken Stand Kann-Beschreibung Mathematisches µ-level 1 Zentrale Anforderung: Prä-Numerik und Mengenoperationen Kann unterschiedliche Zahlen-Bereiche erfassen Kann Mengen im Zehner-Bereich (Z) erfassen Kann Mengen

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Kann ein Computer denken?

Kann ein Computer denken? Kann ein Computer denken? Fachbereich Betriebswirtschaft FH www.fh-koblenz.de/bw/komus www.komus.de www.fh-koblenz.de/bw/komus www.fh-koblenz.de/bw/komus 2 www.fh-koblenz.de/bw/komus 3 www.fh-koblenz.de/bw/komus

Mehr

Lernmodul Addition. Addition von 2 Zahlen. Addition von 3 Zahlen. Additionsgleichungen. Lernmodul Bruchrechnen. Brüche addieren. Brüche subtrahieren

Lernmodul Addition. Addition von 2 Zahlen. Addition von 3 Zahlen. Additionsgleichungen. Lernmodul Bruchrechnen. Brüche addieren. Brüche subtrahieren Lernmodul Addition Addition von 2 Zahlen Addition von 3 Zahlen Additionsgleichungen Lernmodul Bruchrechnen Brüche addieren Brüche subtrahieren Lernmodul Division Division durch 2, 3, 4, 5, 10 Division

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von

Kleines. Kleines MATHE-LEXIKON MATHE-LEXIKON. von. von Kleines Kleines MATHE-LEXIKON MATHE-LEXIKON von von Schriftliche Addition: Schriftliche Addition: Große Zahlen, die man nur schwer im Kopf rechnen kann, rechnest Du schriftlich. Dabei ist es sehr wichtig,

Mehr

DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015)

DEUTSCHE BUNDESBANK Seite 1 Z 10-8. Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) DEUTSCHE BUNDESBANK Seite 1 Z 10-8 Prüfzifferberechnungsmethoden zur Prüfung von Kontonummern auf ihre Richtigkeit (Stand: September 2015) 00 Modulus 10, Gewichtung 2, 1, 2, 1, 2, 1, 2, 1, 2 Die Stellen

Mehr

Gottfried Wilhelm Leibniz und seine Rechenmaschine. Referat von Torsten Brandes

Gottfried Wilhelm Leibniz und seine Rechenmaschine. Referat von Torsten Brandes 1 Gottfried Wilhelm Leibniz und seine Rechenmaschine Referat von Torsten Brandes 2 In Mathematics und Mechanics habe ich einige Dinge erfunden, die in praxi vitae von nicht geringer importanz zu achten,

Mehr

Wir entdecken Rechenvorteile

Wir entdecken Rechenvorteile Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!

Mehr

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1

Leitung 1 Leitung 2 0 0 0 1 1 0 1 1 1 1 Vorbetrachtungen Wie könnte eine Codierung von Zeichen im Computer realisiert werden? Der Computer arbeitet mit elektrischem Strom, d. h. er kann lediglich zwischen den beiden Zuständen Strom an und

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 2. Zehnerschritte bis 1000: Von wo bis wo? 3. Zehnerschritte bis 1000: Wo ist

Mehr

Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert.

Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert. Blatt:4.1 4. RECHENFUNKTIONEN Mit den Rechenfunktionen werden zwei digitale Werte addiert oder subtrahiert. 4.1 ADDITION VON DUALZAHLEN Sollen Dualzahlen addiert werden, so gilt folgende Rechenregel: 0

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen D Rechnen mit natürlichen Zahlen 15. Dividieren natürlicher Zahlen 1 Führe die Divisionen mit den Bohnen durch. (Material: trockene Bohnen Teile 2 Bohnen auf 8 Schülerinnen auf. Teile 20 Bohnen auf 4 Schüler

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik - Kopiervorlagen 1: Mathe zum Ankreuzen 1

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik - Kopiervorlagen 1: Mathe zum Ankreuzen 1 Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Genial! Mathematik - Kopiervorlagen 1: Mathe zum Ankreuzen 1 Das komplette Material finden Sie hier: School-Scout.de Klammerheftung,

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 7. Hunderterschritte bis 10000: Wo ist die Zahl? 2. Zehnerschritte bis 1000: Von wo bis wo? 8. Hunderterschritte bis

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Turmzimmer 1: Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 7. Zehnerzahlen lesen und als Wörter schreiben 2. Mengen erfassen 2 8. Zahlen bis 100 lesen und als Wörter schreiben

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Seite: 1 Zahlensysteme im Selbststudium Inhaltsverzeichnis Vorwort Seite 3 Aufbau des dezimalen Zahlensystems Seite 4 Aufbau des dualen Zahlensystems Seite 4 Aufbau des oktalen Zahlensystems Seite 5 Aufbau

Mehr

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen.

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. E2 Rechnungen verstehen plus minus Verständnisaufbau Geld wechseln Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. Ich bezahle

Mehr

Charles Babbage. Vortrag für das Oberseminar Geschichte der Informatik

Charles Babbage. Vortrag für das Oberseminar Geschichte der Informatik Charles Babbage Vortrag für das Oberseminar Geschichte der Informatik Übersicht Kurzer Überblick über das Leben und Wirken von Charles Babbage Die großen Erfindungen von Charles Babbage: Difference Engine

Mehr

Thema: Einführung des Computers im Unterricht Gegenstand: Sachunterricht Schulstufe/n: 1. 4. Klasse

Thema: Einführung des Computers im Unterricht Gegenstand: Sachunterricht Schulstufe/n: 1. 4. Klasse Thema: Einführung des Computers im Unterricht Gegenstand: Sachunterricht Schulstufe/n: 1. 4. Klasse Lehrplanbezug: Die Möglichkeiten des Computers sollen zum selbstständigen, zielorientierten und individualisierten

Mehr

16. Algorithmus der Woche Multiplikation langer Zahlen... schneller als in der Schule

16. Algorithmus der Woche Multiplikation langer Zahlen... schneller als in der Schule 16. Algorithmus der Woche Multiplikation langer Zahlen... schneller als in der Schule Autor Arno Eigenwillig, Max-Planck-Institut für Informatik, Saarbrücken Kurt Mehlhorn, Max-Planck-Institut für Informatik,

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

Der Zahlen-Hellseher. Der Zahlen-Hellseher. Der Zahlen-Hellseher. Der Zahlen-Hellseher

Der Zahlen-Hellseher. Der Zahlen-Hellseher. Der Zahlen-Hellseher. Der Zahlen-Hellseher Bitte acht Bit für ein Byte oder warum funktioniert der Computer Ich denke mir eine Zahl, die ist abgebildet bild auf Winter, Herbst und Frühling. 1 Es ist die 13 2 Ich denke mir eine Zahl, die ist abgebildet

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I SS 2001 PD Dr. A. Strey Abteilung Neuroinformatik Universität Ulm Inhalt Einführung: Überblick über die historische Entwicklung der Rechnerhardware Teil 1: Digitale Logik kurzer

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

DIGITALTECHNIK 02 ZAHLENSYSTEME

DIGITALTECHNIK 02 ZAHLENSYSTEME Seite 1 von 15 DIGITALTECHNIK 02 ZAHLENSYSTEME Inhalt Seite 2 von 15 1 ALLGEMEINES ZU ZAHLENSYSTEMEN... 3 1.1 ZAHLENSYSTEME... 3 1.2 KENNZEICHEN VON ZAHLENSYSTEMEN... 4 1.3 BILDUNGSGESETZE... 4 1.4 STELLENWERTSYSTEM...

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte: Wie heißt die Zahl? 7. Einerschritte: Wie heißt die Zahl? 2. Zehnerschritte: Wie heißen die Zahlen? 1 8. Einerschritte: Wie heißen die Zahlen? 1 3.

Mehr

BLICKPUNKT Mathematik 1 1. September 2007

BLICKPUNKT Mathematik 1 1. September 2007 V Bekanntes aus der Volksschule Blatt Buch Vorschau Längenmaße: m - cm - mm 1a A 1, 2 13 ab 09.07 Längenmaße: m - cm - mm Lösungen 1a L 1,2 Längenmaße 1 A 12, 13 Längenmaße Lösungen Massenmaße I 2 A 14

Mehr

Voransicht. Grundrechen Führerschein: Aufwärmtraining

Voransicht. Grundrechen Führerschein: Aufwärmtraining Grundrechen Führerschein: Aufwärmtraining Mit dieser Seite kannst du dich auf den Grundrechen Führerschein vorbereiten. 1 Additionspuzzle. Zerschneide das Bild rechts, rechne die Aufgabe links in deinem

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil I Definition, Geschichte und Teilgebiete der Informatik Seite 1 Wer steht da? M. Eng. Robert Maaßen ich@robertmaassen.de www.robertmaassen.de Studium: Informatik Vertiefungsrichtung

Mehr

1. Polyadische Zahlensysteme:

1. Polyadische Zahlensysteme: Wie funktioniert ein Rechner? 1. Polyadische Zahlensysteme: Stellenwertsystem zur Darstellung von natürlichen Zahlen. Basis B Stellenwert b Index i = Stelle B N, B 2 N 0 B 1 b, ( ) i b i Ein nicht polyadisches

Mehr

In diesem Kapitel erfährst du wie alles angefangen hat welche Entwicklungsschritte bis zum heutigen PC notwendig waren wie es weitergehen könnte

In diesem Kapitel erfährst du wie alles angefangen hat welche Entwicklungsschritte bis zum heutigen PC notwendig waren wie es weitergehen könnte Lehrer: Spahr Marcel SCHULE LAUPEN Lehrgang: NMM: Informatik Der Computer Name: C OMPUTERGESCHICHTE Datum: In diesem Kapitel erfährst du wie alles angefangen hat welche Entwicklungsschritte bis zum heutigen

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

Black Box erklärt Zahlensysteme.

Black Box erklärt Zahlensysteme. Black Box erklärt Zahlensysteme. Jeder von uns benutzt aktiv mindestens zwei Zahlenssysteme, oftmals aber so selbstverständlich, dass viele aus dem Stegreif keines mit Namen nennen können. Im europäischen

Mehr

Rechnen ohne Taschenrechner

Rechnen ohne Taschenrechner Helmut Lange Rechnen ohne Taschenrechner Verblüffende Rechentricks Vorwort Rechnen ohne Taschenrechner Vorwort Liebe Leser, es gibt durchaus alternative Strategien, sich Lerninhalte einzuprägen und Matheaufgaben

Mehr

Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen.

Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen. Napier s Rechenbrett Die Bedeutung des Zweiersystems ist im Computer-Zeitalter kein Geheimnis mehr. Verdoppeln und Halbieren sind Tätigkeiten, welche uralt sind. Sie erfordern weder ein Zählen noch Rechnen,

Mehr

Natürliche Zahlen 2. Zahldarstellungen

Natürliche Zahlen 2. Zahldarstellungen Natürliche Zahlen 2 Zahldarstellungen Überblick Ziffernsysteme Stellenwertsysteme o Verschiedene Basen o Umwandeln o Rechnen in verschiedenen Systemen curriculare Vorschriften unterrichtliche Aspekte 2

Mehr

2. ZELLINHALTE UND FORMELN

2. ZELLINHALTE UND FORMELN 2. ZELLINHALTE UND FORMELN Aufgabe: In dem Beispiel Haushaltsbuch entwickeln Sie eine Kostenaufstellung, die alle monatlichen Ausgaben einzelner Sparten enthält. Darauf basierend berechnen Sie mit einfachen

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 1. Klasse Seite 1 Turmzimmer 1: Zählen, Mengen erfassen und Zahlen schreiben 1. Zählen bis 6 1 7. Zählen bis 20 3 2. Zählen bis 6 2 8. Wie viel fehlt bis 10? 3. Zählen bis 10 1 9. Wie viel fehlt bis 20? 4. Zählen

Mehr