binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

Größe: px
Ab Seite anzeigen:

Download "binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:"

Transkript

1 Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme, dass de Daten dynamsch verändert werden, durch Löschoperatonen Enfügeoperatonen Wr haben de Frage zurückgestellt, we dese Operatonen auf Bäumen durchzuführen snd. Zur Ernnerung: / 4 / 4 Stchwortsuche Gegeben: en Lexkon mt n Stchworten. Frage: st en gegebener Begrff m Lexkon enthalten? Durch Enfügen und Löschen von Stchworten kann der Suchbaum we folgt aussehen: a g b Zwe möglch Ansätze: c d verkettete Lsten: O(n) m worst-case d b f h j bnärer Baum als Suchbaum organsert: Wörter m lnken Unterbaum snd alphabetsch größer als das Wort n der Wurzel Wörter m rechten Unterbaum snd alphabetsch klener als das Wort n der Wurzel Folgerung Wr können n O(Höhe(T )) entscheden, ob das gesuchte Wort m Lexkon vorkommt. j a c e Wr werden versuchen, dese Stuaton zu verhndern, und balancerte Bäume verwenden. Wr werden n desem Kaptel de Laufzeten der Operatonen Entferne, Suche und Zugrff auf Suchbäumen untersuchen. Füge_en, / 4 4 / 4

2 Sprechwesen Glederung grundlegende Defntonen Operatonen auf bnären Suchbäumen erwartete Suchzeten n bnären Suchbäumen Se T en Baum mt Wurzel r und Unterbäumen T,..., T k. Ferner se r de Wurzel des Baumes T. r st -ter Sohn von r, r st Vater der r,... r k, r j st Bruder von r, u st Nachfolger von r, falls u m Unterbaum T legt, en Knoten ohne Nachfolger heßt Blatt, Knoten von T, de ncht Blatt snd, heßen nnere Knoten, / 4 6 / 4 Bezechnungen Sprechwesen T T Nveau Se T en Baum mt Wurzel r und Unterbäumen T,..., T k. Wurzel 0 Ferner se r de Wurzel des Baumes T. ene Folge von Knoten v 0, v,..., v k heßt Weg, falls v + Nachfolger von v st für alle 0 k, der Weg v 0, v,..., v k hat de Länge k, lnker Unterbaum von Knoten 8 Kanten Tefe()= Tefe(v, T ) = Länge des Weges von Knoten v zur Wurzel r, Höhe(v, T ) = Länge des längsten Weges von v zu enem Blatt, Höhe(T ) = Höhe (Wurzel, T ). st Vater von st Vater von st lnker Sohn von st rechter Sohn von Blatt 8 4 / 4 8 / 4

3 Bnäre Bäume En Baum, n dem jeder Knoten höchstens Söhne hat, heßt bnär. Darstellung bnärer Bäume durch Felder Leftson und Rghtson dazu ggf. Informatonen über: Inhalt der Knoten, Väter, # Nachfolger n zusätzlchen Feldern symmetrsches Durchmustern von Bnärbäumen () Durchmustere n symmetrscher Ordnung T lnks (falls er exstert) () Durchmustere de Wurzel () Durchmustere n symmetrscher Ordnung T rechts (falls er exstert) De Knoten m lnken Telbaum von r tragen klenere Nummern als r, de m rechten größere. 4 6 R L Folgerung Wr können (auch nach dem Löschen von Knoten) n O(Höhe(T )) entscheden, ob en Knoten mt der Nummer p vorkommt. 9 / 4 0 / 4 bnaäre Suchbäume Datenstruktur zur Unterstützung der folgenden Operatonen auf dynamschen Mengen: suche bestmme das Mnmum bestmme das Maxmum bestmme den Vorgänger ener symmetrschen Durchmusterung bestmme den Nachfolger ener symmetrschen Durchmusterung füge en lösche Wr haben bnäre Bäume schon benutzt (Heapsort, untere Schranke für Sorteren). Wr unterscheden: Suchbäume: alle Knoten enthalten Schlüssel, Blattsuchbäume: de Schlüssel snd n den Blättern gespechert, de nneren Knoten enthalten Wegweser für de Suche wr behandeln n desem Kaptel ausschleßlch Suchbäume / 4 / 4

4 Bnäre Suchbaumegenschaft Für jeden Knoten p des Baums glt: de Schlüssel m lnken Telbaum von p snd klener als der Schlüssel von p de Schlüssel m rechten Telbaum von p snd größer als der Schlüssel von p Glederung grundlegende Defntonen Operatonen auf bnären Suchbäumen erwartete Suchzeten n bnären Suchbäumen / 4 4 / 4 suche(v, k) n Suchbäumen // suche m Baum mt Wurzel v nach Schlüssel k f v.key = k return p f k < v.key then do f leftson(v) then suche(leftson(v), k) else return ncht gefunden end f else f rghtson(v) then suche(rghtson(v), k) else return ncht gefunden end f end f bestmme Mnmum (v) n Suchbäumen // m Baum mt Wurzel v bestmme den mnmalen Schlüssel whle leftson(v) do v = leftson(v) end whle return v Korrekthet: folgt aus der Suchbaumegenschaft, denn n jedem Schrtt glt: alle Schlüssel m rechten Telbaum snd größer als der n der Wurzel alle Schlüssel m lnken Telbaum snd klener als der n der Wurzel d.h., wenn v enen lnken Telbaum bestzt, so befndet sch das Mnmum darn Laufzet:O(Höhe(T (v ))) Laufzet: O(Höhe(T (v ))) / 4 Entsprechend lässt sch das Maxmum bestmmen. 6 / 4

5 Se v en Knoten und u der Knoten mt dem nächstgrößeren Schlüsselwert. hat v enen rechten Sohn, so st u der mnmale Schlüssel m rechten Telbaum von v n engen Anwendungen muss zu enem Knoten v der Knoten u mt dem nächstgrößeren (nächstkleneren) Schlüsselwert bestmmt werden Beobachtung: de symmetrsche Durchmusterung durchläuft offenschtlch de Knoten nach aufstegenden Schlüsselwerten damt st u der nächste Knoten n der symmetrschen Durchmusterung hat v kenen rechten Sohn, so st u der erste Vorfahr von v, dessen lnker Sohn x auch Vorfahr von v st, denn: v hat maxmalen Schlüsselwert m Telbaum T x, danach wrd n symmetrscher Durchmusterung u errecht. x u v / 4 8 / 4 bestmme Nachfolger(p) n Suchbäumen f rghtson(p) then return mnmum(rghtson(p)) else q = father(p) whle father(p) and p = rghtson(q) do p = q q = father(p) end whle f father(p) return q else return ken Nachfolger füge_en(t, k ) fügt enen neuen Knoten mt Schlüssel k n den Suchbaum en. suche nach k st k schon n T enthalten, stop andernfalls endet de Suche n enem Knoten v mt Schlüssel j, und j > k und v hat kenen lnken Sohn, oder j < k und v hat kenen rechten Sohn erzeuge den entsprechenden Sohn von v spechere k n v Laufzet: O(Höhe(T (p))) Laufzet: O(Höhe(T )) Entsprechend lässt sch der Vorgänger n der symmetrschen Durchmusterung bestmmen. 9 / 4 0 / 4

6 Bespel: Enfügen des Schlüssels k = 6 Illustraton zu Entfernung des Knotens v : v u 6 9 successor() = successor() = nsert(6) / 4 / 4 v v u 6 Fall : v hat kene Knder (m Bespel Knoten ) enfach entfernen. u 6 Fall : v hat en Knd (m Bespel Knoten 6) zwe Zeger ändern ( herausschneden ): Vater von v zegt auf Sohn von v / 4 4 / 4

7 v Laufzet für Entfernen: O(Höhe(T )) 6 Aufbau enes bnären Suchbaums 0 erzeuge enen leeren Baum füge de Schlüssel n gegebener Rehenfolge n den Baum en 0 8 m Extremfall kann der Baum zu ener lnearen Lste ausarten, wenn z.b. de Enträge nach aufstegenden Schlüsseln engefügt werden u 6 Fall : v hat zwe Knder (m Bespel Knoten ) se u der Knoten mt dem nächstgrößeren Schlüssel u hat kenen lnken Sohn, da sonst der nächstklenere Schlüssel von u m lnken Telbaum u erfüllt Fall oder wenn wr v durch u ersetzen, blebt de Suchbaumegenschaft erhalten entferne u und ersetze v durch u n desem Fall dauern de Operatonen lneare Zet, da h(t ) = Θ(n). (vollständge bnäre Bäume T haben de Höhe h(t ) = Θ(log n)) wr versuchen zu analyseren, we lange de Operatonen m Erwartungswert dauern / 4 6 / 4 Glederung grundlegende Defntonen Operatonen auf bnären Suchbäumen erwartete Suchzeten n bnären Suchbäumen als Maß für de Güte enes Suchbaums betrachten wr de mttleren Suchzeten Suchzet für Knoten p = Anzahl der Knoten auf dem Pfad von p zur Wurzel = Tefe(p) + Mttelung über: alle Permutaton der n Schlüssel, oder alle Suchbäume mt n Knoten Wr beschränken uns auf den ersten Fall. / 4 8 / 4

8 Annahmen: alle Schlüssel snd paarwese verscheden, obda {,,..., n} en zufällger bnärer Suchbaum entsteht durch Enfügen der Schlüssel hnterenander gemäß ener zufällgen Permutaton jede Permutaton π bestmmt endeutg enen bnären Suchbaum T π, Konventonen: wr schreben v T für v st en Knoten m Baum T T st de Anzahl der Knoten m Baum T falls T > 0, so se T l lnker und T r rechter Telbaum von T de Umkehrung glt jedoch ncht: T π =,, π =,, T π = T π T l T r 9 / 4 0 / 4 Suchpfadlänge enes Baumes T : ϕ(t ) = X v T(Tefe T (v ) + ) Lemma (Rekursve Defnton von ϕ(t )) ϕ(t ) = j 0, falls T = 0 T + ϕ(t l ) + ϕ(t r ), falls T > 0 Bespel: Bewes: ϕ(t ) = X v T(Tefe T (v ) + ) Tefe+ = + X v Tl(Tefe T (v ) + ) + X v T r (Tefe T (v ) + ) φ(τ)=4 = + X v Tl(Tefe Tl (v ) + ) + X v T r (Tefe Tr (v ) + ) = T + X v Tl(Tefe Tl (v ) + ) + X v T r (Tefe Tr (v ) + ) per Def. = T + ϕ(t l ) + ϕ(t r ) / 4 / 4

9 se de durchschnttlche Suchpfadlänge gegeben durch ϕ(t ) = ϕ(t ) T ϕ(t ) st de Anzahl der Knoten, de be ener zufällgen, erfolgrechen Suche n T besucht werden n unserem Bespel für n = : π =,, π =,, T π = T π se S n de Menge aller Permutaton auf {,,..., n} für π S n se T π der Bnärbaum, der entsteht, wenn n der Rehenfolge von π engefügt wrd wr mtteln jetzt de Suchzeten über alle Bäume: E ϕ (n) = X ϕ(t π ) n! π S n E ϕ (n) = X ϕ(t π ) = n! n E ϕ(n) π S n de Permutatonen,, und,, lefern ene Pfadlänge von alle anderen führen zu lnearen Lsten mt Pfadlänge 6 des lefert ene mttlere Pfadlänge von E ϕ () = 4 8 des st fast de mttlere Pfadlänge ener lnearen Lste (= ) wr werden zegen, dass deses Bespel täuscht / 4 4 / 4 Satz E ϕ (n) = ln n + O(). Bewes: wr berechnen zunächst E ϕ (n) se π = π(), π(),..., π(n) S n zufällg gewählt dann st π() Wurzelschlüssel von T π für jedes k {,,..., n} st π() = k mt Wahrschenlchket n se π <k de Enschränkung von π = π(), π(),..., π(n) auf,,..., k Bespel: se π = 4,,,,, 6 dann st π <4 =,, entsprechend se π >k de Enschränkung von π auf k +, k +,..., n Schlüssel,,..., k k Schlüssel k +, k +,..., n π <k und π >k snd Permutaton auf den entsprechenden Telmengen st π S n zufällg, so snd π <k S k und π >k S n k ebenfalls zufällg T π,l T π,r / 4 6 / 4

10 mt Hlfe deser Beobachtung und etwas formalem Aufwand (den wr her ncht treben) ergeben sch daraus Rekursonsformeln für E ϕ (n): 8 < E ϕ (n) = : 0, für n = 0,, für n =, n P n k = (E ϕ(k ) + E ϕ (n k ) + n), für n >. Somt: E ϕ (n) = n (E ϕ (k ) + E ϕ (n k ) + n) k = = n + n (E ϕ (k ) + E ϕ (n k )) k = = n + Xn E ϕ (k ) n k =0 (n + ) E ϕ (n + ) = (n + ) + E ϕ (k ) k =0 Xn n E ϕ (n) = n + E ϕ (k ) k =0 Subtrakton lefert: E ϕ (n + ) = n + n + + n + n + E ϕ(n) / 4 8 / 4 E ϕ (n + ) = n + n + + n + n + E ϕ(n) Ṗer Indukton zegt man: E ϕ (n) = (n + ) P n = n, denn E ϕ (n + ) = n + n + + n + n + E ϕ(n) = n + n + + n + h (n + ) n + = n + n + + (n + ) = (n + ) = (n + ) = = Xn+ = (n + ) = = = n n(n + ) n + + n + n 6n n + + (n + ) (n + ) (n + ) n + (per Indukton) 9 / 4 E ϕ (n) = (n + ) De Abschätzung der Summe lefert: und = n E ϕ (n) n ln n + ln n n E ϕ (n).4 log n + ln n n 40 / 4

11 Unter allen Suchbäumen auf n Knoten hat der vollständge Baum mnmale mttlere Suchpfadlänge. Se beträgt: Zum Verglech: log(n + ) M ϕ (n) = log(n + ) + n = log(n + ) + O() = log(n) + O() E ϕ (n) = ln n + O() = log e log n + O() = log n + O() dese Analyse glt jedoch nur, wenn der Baum ncht durch Enfüge- und Lösch-Operatonen verändert wrd unsere Lösch-Stratege führt dazu, dass größere Schlüssel nach oben wandern der Baum wrd dadurch mehr und mehr lnkslastg ene Analyse ergbt ene mttlere Suchpfadlänge von Θ( n) wr wollen m folgenden versuchen, den Baum balancert zu halten D.h. für große n st de durchschnttlche Suchpfadlänge nur ca. 40% länger als m Idealfall. 4 / 4 4 / 4

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Chair of Software Engineering

Chair of Software Engineering 1 2 Enführung n de Programmerung Bertrand Meyer Vorlesung 13: Contaner-Datenstrukturen Letzte Bearbetung 1. Dezember 2003 Themen für dese Vorlesung 3 Contaner-Datenstrukturen 4 Contaner und Genercty Enthalten

Mehr

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock Hagen.loog@un-rostock.de

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Seminar Netzwerkanalyse. Kapitel 12 Vergleiche von Netzw erken. Sommersemester 2005 Universität Trier

Seminar Netzwerkanalyse. Kapitel 12 Vergleiche von Netzw erken. Sommersemester 2005 Universität Trier Kaptel 2 Vergleche von Netzw erken Sommersemester 2005, 697862 Kaptel 2.0 Allgemenes Allgemenes Graph-Isomorphsmus Problem (GI) besteht darn festzustellen, ob zwe gegebene Graphen somorph snd In der Praxs

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert).

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert). V. Kolluson Im olgopolstschen Wettbewerb treffen mtunter mmer weder de glechen Frmen aufenander. Des eröffnet de Möglchket für stlles Zusammenspel, wel abwechendes Verhalten n späteren Zusammentreffen

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R

Temporäre Stilllegungsentscheidungen mittels stufenweiser E W U F W O R K I N G P A P E R Temporäre Stlllegungsentschedungen mttels stufenweser Grenzkostenrechnung E W U F W O R K I N G P A P E R Mag. Dr. Thomas Wala, FH des bf Wen PD Dr. Leonhard Knoll, Unverstät Würzburg Mag. Dr. Stephane

Mehr

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK Arbetsgruppe Autonome Intellgente Systeme Prof. Dr. Wolfram Burgard Lernen von Lnenmodellen aus Laserscannerdaten für moble Roboter Dplomarbet

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Proof of Knowledge for Factorization & Fair Encryption of ElGamal/RSA Keys

Proof of Knowledge for Factorization & Fair Encryption of ElGamal/RSA Keys R. Fschln/15. Februar 000 Proof of Knowledge for Factorzaton & Far Encrypton of ElGamal/RS Keys G. Poupard und J. Stern [PS99a, PS99b] haben auf dem Lumny-Workshop enen (kurzen) Proof-of-Knowledge für

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft

Aufgabenteil. - wird nicht mit abgegeben - 21.03.2011, 18.00-20.00 Uhr. Fakultät für Wirtschaftswissenschaft Fakultät für Wrtschaftswssenschaft Lehrstuhl für Volkswrtschaftslehre, nsb. Makroökonomk Unv.-Prof. Dr. Helmut Wagner Klausur: Termn: Prüfer: Makroökonome 2.03.20, 8.00-20.00 Uhr Unv.-Prof. Dr. Helmut

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Kapitel 8: Graph-Strukturierte Daten

Kapitel 8: Graph-Strukturierte Daten Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

Spezielle Algorithmen

Spezielle Algorithmen Prof. Jürgen Sauer Spezelle Algorthmen Skrptum zur Vorlesung m SS Inhaltsverzechns Lteraturverzechns... 7. GRUNDLEGENDE KONZEPTE... 9. Datenstruktur und Algorthmus... 9. Algorthmsche Grundkonzepte.....

Mehr

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

Definitorische Konstruktion induktiver Datentypen in Isabelle/HOL

Definitorische Konstruktion induktiver Datentypen in Isabelle/HOL TECHNISCHE UNIVERSITÄT MÜNCHEN INSTITUT FÜR INFORMATIK Defntorsche Konstrukton nduktver Datentypen n Isabelle/HOL Dplomarbet Stefan Berghofer INSTITUT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Defntorsche

Mehr

Innovative Handelssysteme für Finanzmärkte und das Computational Grid

Innovative Handelssysteme für Finanzmärkte und das Computational Grid Innovatve Handelssysteme für Fnanzmärkte und das Computatonal Grd von Dpl.-Kfm. Mchael Grunenberg Dr. Danel Vet & Dpl.-Inform.Wrt. Börn Schnzler Prof. Dr. Chrstof Wenhardt Lehrstuhl für Informatonsbetrebswrtschaftslehre,

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung

IP Kamera 9483 - Konfigurations-Software Gebrauchsanleitung IP Kamera 9483 - Konfguratons-Software Gebrauchsanletung VB 612-3 (06.14) Sehr geehrte Kunden......mt dem Kauf deser IP Kamera haben Se sch für en Qualtätsprodukt aus dem Hause RAEMACHER entscheden. Wr

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

?? RUBRIK?? / 1 / Spezial

?? RUBRIK?? / 1 / Spezial ?? RUBRIK?? / 1 / Spezal carrere & more Semnarprogramm für Dozentnnen und Dozenten / 2 /?? RUBRIK?? Nveau st kene Handcreme! carrere & more Semnarprogramm für Dozentnnen und Dozenten S. 3 Vorwort S. 4

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften Ertragsmanagementmodelle n servceorenterten IT- Landschaften Thomas Setzer, Martn Bchler Lehrstuhl für Internetbaserte Geschäftssysteme (IBIS) Fakultät für Informatk, TU München Boltzmannstr. 3 85748 Garchng

Mehr

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973) 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,

Mehr