Kapitel 9 Suchalgorithmen

Größe: px
Ab Seite anzeigen:

Download "Kapitel 9 Suchalgorithmen"

Transkript

1 Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in Datenbanken, Google-Search, DNA-Tests Suchen nach ähnlichen Mustern: z.b. Viren, Malware Bilderkennungsverfahren: Suchen nach Pattern Ziel: einfache Suchverfahren auf Listen und Bäumen Basis: Elementare Datenstrukturen Effiziente Datenstrukturen: Bäume, Listen und Hashtabellen AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 1

2 Im Folgenden: Suchalgorithmen angepasst an die Anforderungen: 1. Statische, kleine Menge, selten Suchoperation notwendig: Lösung: Feld als Datenstruktur und sequentielles Suchen: O(n) 2. Statische, kleine Menge, häufige Zugriffe/Suchoperationen Lösung: Vorsortiertes O(n log n) Feld, binäres Suchen O(log n) 3. Dynamisch, große Menge von Elementen, z.b. Personaldaten Lösung: Baum als dynamische Datenstruktur (einfügen, löschen), organisiert als binärer Suchbaum O(h), h ist Baumhöhe Worst-Case: h = n, Best-Case: h= log n (balanciert) 4. Dynamisch, große Menge, viele, effiziente Zugriffe notwendig z.b. große Produktdatenbanken, Suchmaschinen, Lösung: Binärer Suchbaum, der eine möglichst geringe Höhe h garantiert: z.b. Rot-Schwarz Baum AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 2

3 Suchalgorithmen analog zum Sortieren: Charakterisierung der gesuchten Objekte durch Such-Schlüssel. Such-Schlüssel können z.b. Attribute der Objekte sein. Beispiel: Versicherungsnummer von Personen 9.1 Lineare Suche Gegeben sei ein Feld A[1.. n] von (ggf. auch unsortierten) Datenelementen und ein Element x mit Such-Schlüssel k. Idee der linearen Suche: sequentielles Durchlaufen des Feldes A und Vergleich der Schlüssel A[i], i=1,, n, mit dem Such-Schlüssel k. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 3

4 Laufzeitanalyse: Best-Case: sofortiger Treffer: T(n) = 1, also T(n) = O(1) Worst-Case: alles durchsuchen: T(n) = n, also T(n) = O(n) Average-Case: erfolgreiche Suche unter der Annahme, dass jede Anordnung der Elemente gleich wahrscheinlich ist: T(n) = also T(n) = O(n) Fazit: sehr einfaches Verfahren, eignet sich auch für einfach verkettete Listen, das Verfahren ist auch für unsortierte Felder geeignet, aber das Verfahren ist nur für kleine Werte von n praktikabel. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 4

5 9.2 Binäre Suche Falls in einer Folge häufig gesucht werden muss, so lohnt es sich, die Feldelemente sortiert zu speichern. Vorgehen: Eingabe: Sortiertes Feld halbieren des Suchbereichs in jedem Schritt, indem der gesuchte Wert mit dem Wert auf der Mittelposition des geordneten Feldes verglichen wird. Gesuchter Wert ist kleiner: weiterarbeiten mit linkem Teilfeld. Gesuchter Wert ist größer: weiterarbeiten mit rechtem Teilfeld. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 5

6 Eingabe: Feld A[1.. n], Schlüssel s Ausgabe: Position von s oder 0, falls s nicht vorhanden BINARY-SEARCH(A, s) 1 l = 1 2 r = n 3 while (s A[m] und l r) 4 m = (l + r) / 2 5 if s < A[m] 6 r = m 1 7 else l = m if s == A[m] 9 return m 10 else return 0 Beispiel: Eingabe: Sortiertes Feld A = (5, 15, 20, 22, 37) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 6

7 Binary Search Algorithm C Code int BinarySearch(int *array, int key, int low, int high) { int middle; if(low > high) /* termination case */ return -1; middle = (low+high)/2; if(array[middle] == key) return middle; else if(array[middle] > key) return BinarySearch(array, key, low, middle-1); /* search left */ return BinarySearch(array, key, middle+1, high); /* search right */ } AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 7

8 Binary Search Algorithm C Code #include <stdbool.h> typedef unsigned long ulong; typedef int (*CompareProc) /* compares an element key against the desired key */ ( ulong Element, void * Arg ); /* result should be -1, 0 or +1, indicating whether given key is less than, equal to or greater than desired key. */ bool Search ( ulong LowBound, ulong HighBound, CompareProc Compare, void * CompareArg, bool ReturnGreater, ulong * Location ) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 8

9 Binary Search Algorithm C Code { ulong MidElement; bool Found; int Comparison; for (;;) { if (LowBound > HighBound) { Found = false; if (ReturnGreater) { *Location = LowBound; } else { *Location = HighBound; } /*if*/ break; } /*if*/ MidElement = (LowBound + HighBound) / 2; Comparison = Compare(MidElement, CompareArg); if (Comparison < 0) { LowBound = MidElement + 1; } else if (Comparison > 0) { HighBound = MidElement - 1; } else { *Location = MidElement; Found = true; break; } /*if*/ } /*for*/ return Found; } /*Search*/ AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 9

10 Laufzeitanalyse: Zählen der Anzahl der Vergleiche Best-Case: sofortiger Treffer: T(n) = 1, also T(n) = O(1) Worst-Case: Suchbereich muss solange halbiert werden, bis er nur noch 1 Element enthält, also im schlechtesten Fall logarithmisch oft : T(n) = T(n/2) 1 = log(n + 1), T(n) = (log n) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 10

11 Laufzeitanalyse: Zählen der Anzahl der Vergleiche Average-Case: es gilt T(n) = = Θ(log n) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 11

12 Fazit: Binäre Suche gut geeignet für große Werte n Beispiel: sei n = 2 Millionen Lineare Suche benötigt im Worst Case 2 Millionen Vergleiche Binäre Suche benötigt: log (2 * 10 6 ) 20 Vergleiche nicht gut geeignet, wenn sich die Daten häufig ändern, dann ist das Suchen in binären Suchbäumen (s.u.) besser geeignet. 9.3 Suchen in binären Suchbäumen Kapitel 7: Entscheidungsbaum für Sortieren ist auch ein Suchbaum Binärer Suchbaum: Datenstruktur, um in einer dynamisch sich ändernden Menge von Daten zu suchen AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 12

13 Repräsentation eines binären Suchbaumes: als eine verkettete Liste. Jeder Knoten des Baumes besitzt mindestens die Attribute: Suchschlüssel, links, rechts, p, das sind Verweise auf das linke und rechte Kind, sowie auf den Vaterknoten (vgl. Kapitel 7) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 13

14 Suchbaum-Eigenschaft Der Baum ist so organisiert, dass die Suchbaum-Eigenschaft gilt: sei x ein Knoten und y ein Knoten im linken Unterbaum von x, dann gilt: schlüssel[y] schlüssel[x]. Ist y ein Knoten im rechten Unterbaum von x, so gilt: schlüssel[x] schlüssel[y]. Eigenschaften binärer Suchbäume Operationen auf dem Baum, wie Suchen, Einfügen, Entnehmen, sind in O(h) Schritten ausführbar, wobei h die Höhe des Baumes ist. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 14

15 Binärer Suchbäume Bem.: Unterschiedliche binäre Suchbäume können die gleiche Menge von Werten repräsentieren. Beispiel: Eingabe: Werte 2, 3, 5, 7, 8 Fall (a) Suchbaum mit 6 Knoten der Höhe h = 2 Fall (b) Suchbaum mit gleichen Schlüssel, der weniger effizient organisiert ist und die Höhe h = 4 besitzt. Fall (a) Fall (b) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 15

16 9.3.1 Suchen in binären Suchbäumen Aufgabe: Suche nach einem Schlüssel k in dem Baum. Rekursive Beschreibung der Suche: durch Rekursion wird ein Pfad von der Wurzel zum gesuchten Knoten beschrieben, d.h. Laufzeit von Tree-Search ist O(h), h ist die Baumhöhe. TREE-SEARCH(x, k) 1 if x == NULL oder k == schlüssel[x] 2 return x 3 if k < schlüssel[x] 4 return TREE-SEARCH(links[x], k) 5 else return TREE SEARCH(rechts[x], k) Beispiel: Suche nach k=13 AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 16

17 Häufig ist eine rekursiv programmierte Suche auf Rechnern nicht so effizient ausführbar wie eine iterativ programmierte Suche. Iterative Beschreibung der Suche: ITERATIVE-TREE-SEARCH(x, k) 1 while x NULL und k schlüssel[x] 2 if k < schlüssel[x] 3 x = links[x] 4 else x = rechts[x] 5 return x AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 17

18 9.3.2 Minimum und Maximum Suche Eine häufig benötigte Operation ist die Suche nach dem kleinsten bzw. größten Element des Baumes. Suche nach kleinstem Element: ist wegen der binären Suchbaum-Eigenschaft sehr einfach: gehe von der Wurzel immer den linken Teilbaum hinunter: Tree-Minimum gibt einen Zeiger auf das Element x mit dem kleinsten Schlüssel zurück. Terminierung, wenn der linke Teilbaum eines Knotens x NULL ist TREE-MINIMUM (x) 1 while links[x] NULL 2 x = links[x] 3 return x Beispiel-Baum auf Folie 14: minimales Element: x = 2 AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 18

19 Suche nach größtem Element: analoges Vorgehen gehe von der Wurzel immer den rechten Teilbaum hinunter: Tree-Maximum gibt einen Zeiger auf das Element x mit dem größten Schlüssel zurück. Terminierung, wenn der rechte Teilbaum eines Knotens x NULL ist Beispiel-Baum auf Folie 14: maximales Element: x = 20 Laufzeit: TREE-MAXIMUM(x) 1 while rechts[x] NULL 2 x = rechts[x] 3 return x Tree-Minimum und Tree-Maximum benötigen für einen Baum mit Höhe h eine Laufzeit von O(h); Berechnung baut einen Pfad von der Wurzel bis zum Blatt entlang linker bzw. rechter Äste auf. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 19

20 9.3.3 Nachfolgerknoten eines Knotens x Seien die Schlüssel der Knoten paarweise verschieden, dann gilt: Nachfolger von x ist der Knoten y mit: schlüssel[x] < schlüssel[y] und für alle Knoten r y, mit schlüssel[x] < schlüssel[r] gilt: schlüssel[y] < schlüssel[r] TREE-SUCCESSOR(x) 1 if rechts[x] NIL 2 return TREE-MINIMUM(rechts[x]) 3 y = p[x] 4 while y NIL und x == rechts[y] 5 x = y 6 y = p[y] 7 return y AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 20

21 9.3.4 Einfügen und Löschen in binärem Suchbaum Ziel: Aufrechterhalten der binären Suchbaum-Eigenschaft! Einfügen Einzufügen sei ein Knoten z, mit schlüssel[z] = v, links[z] = NULL, rechts[z] = NULL Finden der korrekten Position TREE-INSERT(T, z) 1 y = NULL 2 x = wurzel[t] 3 while x NULL 4 y = x 5 if schlüssel[z] < schlüssel[x] 6 x = links[x] 7 else x = rechts[x] 8 p[z] = y 9 if y == NULL 10 wurzel[t] = z 11 else if schlüssel [z] < schlüssel[y] 12 links[y] = z 13 else rechts[y] = z AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 21

22 Beispiel: Einfügen eines Knotens z mit schlüssel[z] = 13 Hell schattierte Knoten in Abb.: Pfad von der Wurzel bis zur korrekten Position Gestrichelte Linie: neue Verbindung, um das Element z einzufügen Tree-Insert startet bei der Wurzel: Zeiger x verfolgt den Pfad, Zeiger y verweist auf den Vater von x, In der while-schleife wandern beide Zeiger im Baum nach unten. Wenn x auf NULL verweist: Position für das Einfügen ist gefunden. Anweisungen in den Zeilen 8-13 fügen Knoten z ein. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 22

23 Einfügen ist somit auch eine einfache Operation auf Suchbäumen. Die Laufzeit von Tree-Insert ist ebenfalls O(h), h ist die Baumhöhe. Löschen Vgl. nächste Folie, dort ist das Vorgehen veranschaulicht. TREE-SUCCESSOR(x) 1 if rechts[x] NIL 2 return TREE-MINIMUM(rechts[x]) 3 y = p[x] 4 while y NIL und x == rechts[y] 5 x = y 6 y = p[y] 7 return y TREE-DELETE(T, z) 1 if links[z] == NULL or rechts[z] == NULL 2 y = z 3 else y = TREE-SUCCESSOR(z) 4 if links[y] NULL 5 x = links[y] 6 else x = rechts[y] 7 if x NULL 8 p[x] = p[y] 9 if p[y] == NULL 10 wurzel[t] = x 11 else if y = links[p[y]] 12 links[p[y]] = x 13 rechts[p[y]] = x 14 if y z 15 schlüssel[z] = schlüssel[y] 16 kopiere die Daten von y in z 17 return y AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 23

24 Beispiel: die drei Fälle des Tree-Delete Fall (a) z hat keine Kinder Fall (b) z hat nur ein Kind Fall (c) z hat 2 Kinder AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 24

25 Bem.: Die Operationen auf binären Suchbäumen haben alle eine Laufzeit, die proportional zu Höhe des Baumes ist. Binäre Suchbäume können aber degeneriert sein, d.h. bei einem Baum mit n Knoten kann im Worst-Case die Laufzeit (n) sein Ziel: Strukturieren von Suchbäumen so, dass Höhe h für gute Performance sorgt! Lösung: Konstruktion von balancierten Suchbäumen, so dass gilt: Der Baum hat eine garantierte kleine Höhe und die Laufzeit ist O(lg n). B-Bäume, AVL-, oder Rot-Schwarz-Bäume sind hierfür geeignet AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 25

26 9.4 Rot-Schwarz-Baum (R. Bayer, 1972) Ein Rot-Schwarz-Baum ist ein Binärer Suchbaum, der näherungsweise balanciert ist. Die Knoten des Baumes besitzen ein zusätzliches Attribut: farbe Das Attribut farbe kann zwei Werte annehmen: rot und schwarz Ein Rot-Schwarz-Baum erfüllt die Rot-Schwarz-Eigenschaft: Jeder Knoten ist entweder rot oder schwarz. Die Wurzel ist schwarz und jedes Blatt ist schwarz. Wenn ein Knoten rot ist, dann sind seine beiden Kinder schwarz. Für jeden Knoten x enthalten alle Pfade mit der Wurzel x und die in einem Blatt des Teilbaums von x enden, die gleiche Anzahl schwarzer Knoten. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 26

27 Rot-Schwarz-Eigenschaft (Wiederholung) 1. Jeder Knoten ist entweder rot oder schwarz. 2. Die Wurzel ist schwarz und jedes Blatt ist schwarz. 3. Wenn ein Knoten rot ist, dann sind seine beiden Kinder schwarz. 4. Für jeden Knoten x enthalten alle Pfade mit der Wurzel x und die in einem Blatt des Teilbaums von x enden, die gleiche Anzahl schwarzer Knoten. Beispiel: AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 27

28 Beispiel für einen Rot-Schwarz-Baum (siehe Cormen) Bei der Darstellung werden aber idr die NIL-Blätter ignoriert und nur die inneren Knoten betrachtet: AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 28

29 Operationen auf Rot-Schwarz-Bäumen AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 29

30 9.4.1 Einfügen auf Rot-Schwarz-Bäumen Zentrale Operation: Rotation, um r/s Eigenschaft zu garantieren Fall 1 AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 30

31 Einfügen auf Rot-Schwarz-Bäumen (Forts.) Fall 2 Fall 3 AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 31

32 Rotationen Verändern der Zeigerstrukturen Rotation: lokale Operation auf einem Suchbaum, die die binäre Suchbaumeigenschaft beibehält Linksrotation auf einem Knoten x: Voraussetzung: rechtes Kind y ist nicht NIL dreht die Verbindung zwischen x und y um y wird neue Wurzel und x das linke Kind von y das vor der Rotation linke Kind von y wird das rechte Kind von x Rechtsrotation analog Aufwand: O(1) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 32

33 Rotationen LEFT-ROTATE(T, x) 1 y = rechts[x] // Setze y 2 rechts[x] = links[x] // Wandle y s linken Teilbaum in x s rechten Teilbaum 3 if links[y] NIL 4 p[links[y]] = x 5 p[y] = p[x] // Verbinde den Vater von x mit y 6 if p[x] = NIL 7 wurzel[t] = y 8 else if x == links[p[x]] 9 links[p[x]] = y 10 else rechts[p[x]] = y 11 links[y] = x // Verschiebe x auf 12 p[x] = y // die linke Seite von y AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 33

34 Einfügen in Rot/Schwarz-Baum Variante der Tree-Insert-Operation, O(lg n) Anschließend wird neuer Knoten rot gefärbt Sicherstellen der r/s-eigenschaft: Aufruf von RB-Insert-Fixup: Knoten werden neu gefärbt und Rotationen durchgeführt RB-INSERT(T, z) 1 y = NIL 2 x = wurzel[t] 3 while x NIL 4 y = x 5 if schlüssel[z] < schlüssel[x] 6 x = links[x] 7 else x = rechts[x] 8 p[z] = y 9 if y == NIL 10 wurzel[t] = z 11 else if schlüssel[z] < schlüssel[y] 12 links[y] = z 13 else rechts[y] = z 14 links[z] = NIL 15 rechts[z] = NIL 16 farbe[z] = ROT 17 RB-INSERT-FIXUP(T, z) RB-INSERT-FIXUP(T, z) 1 while farbe[p[z]] == ROT 2 if p[z] == links[p[p[z]]] 3 y = rechts[p[p[z]]] 4 if farbe[y] == ROT 5 farbe[p[z]] = SCHWARZ 6 farbe[y] = SCHWARZ 7 farbe[p[p[z]]] = ROT 8 z = p[p[z]] 9 else if z == rechts[p[z]] 10 z = p[z] 11 LEFT-ROTATE(T, z) 12 farbe[p[z]] = SCHWARZ 13 farbe[p[p[z]]] = ROT 14 RIGHT-ROTATE(T, p[p[z]]) 15 else (wie der then-zweig, wobei rechts und links vertauscht sind) 16 farbe[wurzel[t]] = SCHWARZ AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 34

35 9.4.2 Entfernen aus Rot/Schwarz-Baum Variante der Tree-Delete-Operation für binäre Suchbäume, O(lg n) Nach Ausschneiden eines Knotens: Aufruf von RB-Delete- Fixup: Knoten werden neu gefärbt und Rotationen durchgeführt RB-DELETE(T, z) 1 if links[z] == NIL oder rechts[z] == NIL 2 y = z 3 else y = TREE-SUCCESSOR(z) 4 if links[y] NIL 5 x = links[y] 6 else x = rechts[y] 7 p[x] = p[y] 8 if p[y] == NIL 9 wurzel[t] = x 10 else if y == links[p[y]] 11 links[p[y]] = x 12 else rechts[p[y]] = x 13 if y z 14 schlüssel[z] = schlüssel[y] 15 kopiere y s Satellitendaten nach z 16 if farbe[y] == SCHWARZ 17 RB-DELETE-FIXUP(T, x) 18 return y RB-DELETE-FIXUP(T, x) 1 while x wurzel[t] und farbe[x] == SCHWARZ 2 if x == links[p[x]] 3 w = rechts[p[x]] 4 if farbe[w] == ROT 5 farbe[w] = SCHWARZ 6 farbe[p[x]] = ROT 7 LEFT-ROTATE(T, p[x]) 8 w = rechts[p[x]] 9 if farbe[links[w]] == SCHWARZ und farbe[rechts[w]] == SCHWARZ 10 farbe[w] = ROT 11 x = p[x] 12 else if farbe[rechts[w]] == SCHWARZ 13 farbe[links[w]] = SCHWARZ 14 farbe[w] = ROT 15 RIGHT-ROTATE(T, w) 16 w = rechts[p[x]] 17 farbe[w] = farbe[p[x]] 18 farbe[p[x]] = SCHWARZ 19 farbe[rechts[w]] = SCHWARZ 20 LEFT-ROTATE(T, p[x]) 21 x = wurzel[t] 22 else (wie then-zweig, wobei rechts und links vertauscht sind) 23 farbe[x] = SCHWARZ AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 35

36 Bezeichnung: Die Anzahl der schwarzen Knoten auf einem Pfad ausgehend von einem Knoten x (aber ohne diesen mitzuzählen) zu einem Blatt heißt die Schwarze Höhe von x: bh(x). Noch einmal Beispiel bh(13) = h(13): längster Pfad = bh(1) = AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 36

37 Rot-Schwarz-Bäume sind sehr gute Suchbäume, denn es gilt: Satz: Ein Rot-Schwarz-Baum mit n inneren Knoten hat höchstens die Höhe 2lg(n + 1), also h 2log(n + 1). Beweis: Zunächst wird gezeigt: der Teilbaum T x zu einem Knoten x besitzt mindestens 2 bh(x) 1 innere Knoten. Beweis durch Induktion über die Höhe von x. (1) Induktionsbasis: h(x) = 0 AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 37

38 (2) Induktionsschritt: Sei x ein innerer Knoten mit 2 Kindern. Jedes Kind hat, abhängig von seiner Farbe, entweder die schwarze Höhe bh(x) (Kind ist rot) oder bh(x) 1 (Kind ist schwarz). Die Höhe eines Kindes von x ist stets kleiner als die Höhe von x. Mit der Induktionsannahme können wir schließen, dass ein Kind von x mindestens 2 bh(x) 1 1 innere Knoten besitzt. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 38

39 Induktionsschritt (Forts.): Also enthält der Teilbaum zu x mindestens (2 bh(x) 1 1) + (2 bh(x) 1 1) + 1 = 2*(2 bh(x) 1 1) + 1 = 2 bh(x) 2 + 1= 2 bh(x) 1 innere Knoten. Weiterhin gilt: Gemäß der Rot-Schwarz-Eigenschaft muss gelten, dass mindestens die Hälfte der Knoten auf jedem Pfad von x zu einem Blatt schwarz sind. Sei h die Höhe des Baumes, dann gilt: Die Schwarz-Höhe der Wurzel ist mindestens h/2, es gilt somit: n 2 h/2 1, durch Umformung gilt: lg(n + 1) h/2 bzw. h 2lg(n + 1) AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 39

40 Beispiel AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 40

41 Bedeutung der bewiesenen Aussage: Die Operationen Search, Minimum oder auch Maximum können auf einem Rot-Schwarz-Baum in O(lg n) implementiert werden, da sie auf einem Baum der Höhe h in O(h) laufen und jeder Rot-Schwarz-Baum ein Suchbaum mit Höhe O(lg n) ist. Auch modifizierte Insert, Delete Operationen liegen in O(lg n). Fazit: Rot-Schwarz-Bäume sind effiziente Strukturen, sie ermöglichen eine schelle Suche etc. Sie setzen aber voraus, dass die Daten und Suchinformationen im Arbeitsspeicher vorliegen, also ein schneller Zugriff möglich ist. Aber: In der Praxis: sehr viele Daten sind zu speichern (z.b. in riesigen Kunden- und Produktdatenbanken). AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 41

42 Die Datenvolumina können nicht alle im Hauptspeicher abgelegt werden. Eine Auslagerung auf externe Festplatten ist notwendig: die Zugriffe sind dann sehr langsam! Lösung: B-Bäume 1972 (R. Bayer): geht über AuD-Stoff hinaus Das Ziel von B-Bäumen ist es, die Daten so zu organisieren, dass die Anzahl der Zugriffe auf externe Medien minimiert wird. B-Bäume sind balancierte Suchbäume Im Unterschied zu Rot-Schwarz-Bäumen kann ein Knoten in einem B-Baum viele Kinder besitzen, bis zu einigen tausend! D.h. der Verzweigungsfaktor eines B-Baumes kann sehr groß sein. Dadurch kann die Höhe eines B-Baumes erheblich geringer sein, als bei einem Rot/Schwarz-Baum. AuD, WS10/11, C. Eckert, Kapitel 9 Suchalgorithmen 42

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 25. September 2013 Aufgabe 1 Gegeben sei ein binärer Suchbaum mit Werten im Bereich von 1 bis 1001. In diesem Baum wird nach der Zahl

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

Priority search queues: Loser trees

Priority search queues: Loser trees Priority search queues: Loser trees Advanced Algorithms & Data Structures Lecture Theme 06 Tobias Lauer Summer Semester 2006 Recap Begriffe: Pennant, Top node Linien gestrichelt vs. durchgezogen Intro

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

Teile und Herrsche Teil 2

Teile und Herrsche Teil 2 Teile und Herrsche Teil 2 binär Suchen und schnell Multiplizieren Markus Fleck Manuel Mauky Hochschule Zittau/Görlitz 19. April 2009 Suchen in langen Listen (0, 1, 2, 7, 8, 9, 9, 13, 13, 14, 14, 14, 16,

Mehr

Extending tl_member. Andreas Fieger (@fiedschmuc) 2015-10-08

Extending tl_member. Andreas Fieger (@fiedschmuc) 2015-10-08 Extending tl_member Andreas Fieger (@fiedschmuc) 2015-10-08 Übersicht Was wollen wir? Wie könnten wir es erreichen? Aufwand/Folgekosten? Was wollen wir? Felder in der Mitgliederverwaltung hinzufügen (z.b.

Mehr

Ein Verfahren zur Aufzählung binärer Audrucksbäume

Ein Verfahren zur Aufzählung binärer Audrucksbäume Ein Verfahren zur Aufzählung binärer Audrucksbäume Rüdiger Plantiko 5. Januar 2012 Zusammenfassung Ein arithmetischer Ausdruck kann durch einen binären Ausdrucksbaum repräsentiert werden. Es ist wohlbekannt,

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Gierhardt. 1 import javakara. JavaKaraProgram ; 3 public class Playit1 extends JavaKaraProgram. 4 { // Anfang von Playit1. 6 void gehezumbaum ( ) 7 {

Gierhardt. 1 import javakara. JavaKaraProgram ; 3 public class Playit1 extends JavaKaraProgram. 4 { // Anfang von Playit1. 6 void gehezumbaum ( ) 7 { Informatik: Einführung in Java Gierhardt Play it again, Kara! (Lsg.) 1. Kara soll ein Kleeblatt finden, das sich in der gleichen Zeile (oder Spalte) befindet wie er selbst. Zwischen ihm und dem Kleeblatt

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Zusatzaufgaben Lösungsvorschlag Objektorientierte Programmierung Lösung 22 (Java und UML-Klassendiagramm)

Mehr

Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei. - Prüfungsaufgaben -

Herbst. Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen. Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei. - Prüfungsaufgaben - Prüfungsteilnehmer prüfungstermin Einzelprüfungsnummei Kennzahl: Kennwort: Arbeitsplatz-Nr.: Herbst 2000 46114 Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen - Prüfungsaufgaben - Fach: Einzelprüfung:

Mehr

Unterrichtsvorhaben Q2- I:

Unterrichtsvorhaben Q2- I: Schulinterner Lehrplan Informatik Sekundarstufe II Q2 III. Qualifikationsphase Q2 Unterrichtsvorhaben Q2- I: Im ersten Halbjahr 1 Klausur, im 2. Halbjahr ein Projekt. Die Länge der Klausur beträgt 90 min.

Mehr

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen -

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - 5) Suchverfahren Prof. Dr. Anja Schanzenberger FH Augsburg, Fakultät für Informatik Kontakt: anja.schanzenberger@hs-augsburg.de http://www.hs-augsburg.de/schanzenberger

Mehr

CLRS benutzt eine etwas andere Definition:

CLRS benutzt eine etwas andere Definition: Bemerkungen LRS benutzt eine etwas andere Definition: Für einen B-Baum vom rad t gilt: - jeder Knoten, außer der Wurzel, hat mindestens t- Schlüssel, also mindestens t Kinder - jeder Knoten besitzt höchstens

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 5. Vorlesung Martin Middendorf / Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Quick-Sort

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 8, Donnerstag 11.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 8, Donnerstag 11. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 8, Donnerstag 11. Dezember 2014 (Cache-Effizienz, Teile und Herrsche) Junior-Prof. Dr.

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Von der UML nach C++

Von der UML nach C++ 22 Von der UML nach C++ Dieses Kapitel behandelt die folgenden Themen: Vererbung Interfaces Assoziationen Multiplizität Aggregation Komposition Die Unified Modeling Language (UML) ist eine weit verbreitete

Mehr

Test-Driven Design: Ein einfaches Beispiel

Test-Driven Design: Ein einfaches Beispiel Test-Driven Design: Ein einfaches Beispiel Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer SS 06 2 Ziele Veranschaulichung der Technik des Test-Driven Design am Beispiel eines Programms

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Fakultät Angewandte Informatik Lehrprofessur für Informatik 23.01.2012

Fakultät Angewandte Informatik Lehrprofessur für Informatik 23.01.2012 WS 2011/2012 Fakultät Angewandte Informatik Lehrprofessur für Informatik 23.01.2012 Prof. Dr. Robert Lorenz Musterlösung zur Vorlesung Informatik I, Extrablatt zu komplexen Datenstrukturen Aufgabe 45 **

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Primitive Datentypen

Primitive Datentypen Primitive Datentypen 2 Arten von Datentypen: primitive Datentypen (heute) Objekte (später) Java ist streng typisiert, d.h. für jede Variable muß angegeben werden was für eine Art von Wert sie aufnimmt.

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr