Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. SS 06

Größe: px
Ab Seite anzeigen:

Download "Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06"

Transkript

1 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer SS 06

2 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter Bäume kennen lernen Realisierung der Mengen-Operationen einfügen, löschen und der enthalten sein -Abfrage verstehen

3 3 Wiederholung: Suchbäume (Geordnete Binärbäume ) Ein Binärbaum b heißt Suchbaum, wenn b leer ist oder wenn Folgendes für alle nichtleeren Teilbäume t von b gilt: Der Schlüssel von t ist größer (oder gleich) als alle Schlüssel des linken Teilbaums von t und kleiner (oder gleich) als alle Schlüssel des rechten Teilbaums von t > 7 < 5 > > < 12

4 4 Beispiele: Suchbäume Beispiel: Zwei verschiedene binäre Suchbäume über den Monatsnamen: Nach welchen Kriterien (Vergleichsoperationen) sind diese Bäume geordnet?

5 5 Beispiele: Suchbäume Hoare Dijkstra Gosling Zuse Dijkstra Turing Gamma Zuse Einfügereihenfolge: Hoare, Dijkstra, Gosling,, Zuse, Gamma,, Einfügereihenfolge:,, Dijkstra, Turing,, Zuse

6 6 Beispiele: Suchbäume Hoare Level 1 Floyd Gosling Dijkstra Turing Zuse Level 2 Level 3 Level 4 Ein vollständig ausgeglichener Baum Einfügereihenfolge: Hoare, Floyd,, Dijkstra,, Zuse, Turing,, Gosling

7 7 Vollständig ausgeglichene binäre Suchbäume Ein vollständig ausgeglichener binärer Suchbaum ist ein binärer Suchbaum, bei dem - abgesehen von der untersten Schicht - alle Levels vollständig besetzt sind. Die Höhe eines vollständig ausgeglichenen Suchbaums beträgt log 2 (n1) Dies ist die minimale Höhe für alle Suchbäume: Optimaler Zeitaufwand für Suche

8 8 Vollständig ausgeglichene binäre Suchbäume Beispiele: Vollständig ausgeglichene binäre Suchbäume der Höhen 1-4

9 9 Vollständig ausgeglichene binäre Suchbäume Problem: Beim Einfügen eines Elements muss ein vollständiger Suchbaum möglicherweise vollständig reorganisiert werden. Beispiel: Einfügen von Zuse unproblematisch; Einfügen von führt zu vollständiger Reorganisation Hoare Hoare Zuse Floyd einfügen Floyd Gosling Turing Zuse Gosling Turing Floyd Hoare einfügen Gosling Turing Gosling Turing Floyd Hoare

10 10 Vollständig ausgeglichene binäre Suchbäume Problem: Beim Einfügen eines Elements muss ein vollständiger Suchbaum möglicherweise vollständig reorganisiert werden. Einfügezeit im schlechtesten Fall: O(n) Kompromißlösung nötig mit: Höhe des Baumes ist im schlechtesten Fall O(log(n)). Reorganisation bleibt auf einen Suchpfad beschränkt und ist damit im schlechtesten Fall in Zeit O(log(n)) ausführbar.

11 11 Eine Klasse von Suchbäumen heißt balanciert, falls: h max O(n log (n)) Balancierte Suchbäume die Operationen Suchen, Einfügen und Entfernen sind auf einen Pfad von der Wurzel zu einem Blatt beschränkt und benötigen damit im schlechtesten Fall O(n log (n)) Zeit.

12 12 Ein binärer Suchbaum heißt AVL-Baum, falls für den linken Teilbaum T1 und den rechten Teilbaum T2 der Wurzel gilt: h(t2) h(t1) < 1 T1 und T2 sind ihrerseits AVL-Bäume. Der Wert h(t1) h(t2) wird als Balancefaktor (BF) eines Knotens bezeichnet. Er kann in einem AVL-Baum nur die Werte -1, 0 oder 1 (dargestellt durch -, und ) annehmen. AVL-Bäume Jeder AVL-Baum ist ein binärer Suchbaum.

13 13 Ein binärer Suchbaum heißt AVL-Baum, falls für die beiden Teilbäume T1 und T2 der Wurzel gilt: h(t1) h(t2) < 1 T1 und T2 sind ihrerseits AVL-Bäume. Der Wert h(t1) h(t2) wird als Balancefaktor (BF) eines Knotens bezeichnet. Er kann in einem AVL-Baum nur die Werte -1, 0 oder 1 (dargestellt durch -, und ) annehmen. Jeder AVL-Baum ist ein binärer Suchbaum. Strukturverletzungen durch Einfügen oder Entfernen von Schlüsseln erfordern Rebalancierungsoperationen. AVL-Bäume Die minimale Höhe eines AVL-Baumes mit n Schlüsseln ist log 2 (n1). Die maximale Höhe eines AVL-Baumes mit n Schlüsseln ist O(log n). Im Durchschnitt ist ein AVL-Baum ca. 44% höher als ein vollständig ausgeglichener Baum.

14 George Adelson-Velsky *1922, jetzt in Israel Forscher am ITEP (Moskau Inst. für Theor. u. Exper. Physik) Schachcomputer Pionier Gewann :1 im Computerschach gegen John McCarthy AVL-Bäume: Entstehung AVL Bäume sind benannt nach den russischen Mathematikern G.M. Adelson-Velskii und E. M. Landis, die diese schwächere Definition von Ausgeglichenheit eines Baums 1962 aufstellten. G. M. Adelson-Velskii und E. M. Landis, Doklady Nauk SSSR 146, S , 1962; Englische Übersetzung in Soviet Math 3, S Evgenii Mikhailovich Landis Diss. 1953, ITEP und Professor der Moskauer Staatsuni.

15 15 Beispiele: AVL-Bäume Mit Angabe der Balancefaktoren KEIN AVL-Baum

16 16 Einfügen in AVL-Baum Dijkstra Dijkstra einfügen - Einfügen von : Neuberechnung des Balancierungsfaktors, AVL Kriterium erfüllt

17 17 Einfügen in AVL-Baum Dijkstra Dijkstra einfügen - Einfügen von : Neuberechnung des Balancierungsfaktors, AVL Kriterium erfüllt Einfügen von : Verletzung des AVL Kriteriums Dijkstra -2 - Rechtsrotation Dijkstra Nach Rechtsrotation: AVL Kriterium wieder erfüllt

18 18 Einfügen in AVL-Baum Dijkstra Einfügen von : Nach Neuberechnung des Balancierungsfaktors ist AVL-Kriterium weiter erfüllt Einfügen von Zuse: 2 Dijkstra 2 Linksrotation Zuse Nach Linksrotation: AVL Kriterium wieder erfüllt Dijkstra Zuse

19 Einfügen in AVL-Baum Einfügen von Hoare: Benötigt Doppelrotation 2 Dijkstra - Zuse Hoare Doppelrotation - Dijkstra Hoare 19 Zuse Einfügen von Gosling und Naur: ohne Probleme Dijkstra - - Hoare Gosling Naur Zuse

20 20 Einfügen in AVL-Baum Einfügen von Turing: Noch einmal Doppelrotation Dijkstra 2 Dijkstra - Gosling Hoare -2 Naur Zuse Turing Doppelrotation - Hoare - Gosling Turing Naur Zuse Doppelrotation stellt AVL Kriterium wieder her Sind die vorgestellten Rotationen ausreichend?

21 21 Anwendungsstelle der Rotation Veränderungen der Balancierungsfaktoren geschehen ausschließlich auf dem Pfad von der Wurzel zur Einfügeposition Ausgangspunkt der Rotation ist immer der tiefste Elternknoten mit BF ±2 (dieser Knoten hatte vorher BF ±1) Der (auf dem Pfad) darunter liegende Knoten hat BF ±1 2 Dijkstra 2 Zuse - Dijkstra 2 Gosling Hoare -2 Naur Zuse Turing

22 22 Rotationstypen Betrachte ausgehend vom tiefsten Knoten mit BF 2 den Pfad zur Einfügeposition: RR: Rechts-Rechts Linksrotation LL: Links-Links Rechtsrotation RL: Rechts-Links Doppelrotation rechts LR: Links-Rechts Doppelrotation links L R L R L R R L Rotation ist immer eindeutig bestimmt Jetzt genauere Betrachtungen der einzelnen Typen

23 23 Typ RR: Linksrotation Wir bezeichnen den tiefsten Knoten mit Strukturverletzung mit A, dessen Kind mit S und den Enkelknoten mit B Bei der Linksrotation hat S den BF und A den BF 2 T1 A 2 T2 S T3 Linksrotation T1 S A T2 T3

24 24 Typ LL: Rechtsrotation Bei der Rechtsrotation hat S den BF - und A den BF -2 T1 A -2 S - T2 T3 Rechtsrotation T1 S T2 A T3

25 25 Typ RL: Doppelrotation Bei der RL-Doppelrotation hat A den BF 2, S den BF -2, B den BF oder -. Wir wählen - für den BF von B. T1 A 2 T2 B - T3 S - T4 RL Doppelrotation T1 A T2 B T3 S T4

26 26 Typ LR: Doppelrotation Bei der LR-Doppelrotation hat A den BF -2, S den BF, B den BF oder -. Wir wählen - für den BF von B. A B -2 S S A B T4 - T1 LR Doppelrotation T1 T2 T3 T4 T2 T3

27 27 Typ LR: Doppelrotation Variante der LR-Doppelrotation mit Balancefactor für B A B -2 S S A B T4 T1 LR Doppelrotation T1 T2 T3 T4 T2 T3

28 28 Löschen Das Löschen erfolgt wie bei Suchbäumen und kann (wie das Einfügen) zu Strukturverletzungen führen, die durch Rotationen ausgeglichen werden. Beim Löschen genügt nicht immer eine einzige Rotation oder Doppelrotation beseitigt. Im schlechtesten Fall muss auf dem Suchpfad bottom-up vom zu entfernenden Schlüssel bis zur Wurzel auf jedem Level eine Rotation bzw. Doppelrotation durchgeführt werden.

29 29 Weitere effiziente Baumstrukturen: (a,b)-bäume Interner Suchbaum: Information steht in den Knoten. Externer Suchbaum: Information steht nur in den Blättern; Knoten tragen Verwaltungsinformation.

30 30 Weitere effiziente Baumstrukturen: (a,b)-bäume Ein (a,b)-baum, wobei b > 2a - 1, ist ein externer Suchbaum, dessen interne Knoten außer der Wurzel einen Rang (Kinderzahl) zwischen a und b (einschließlich) haben. Die Wurzel hat mindestens 2 und höchstens b Kinder. Jeder interne Knoten vom Rang N enthält N-1 aufsteigend geordnete Zahlen k 1,, k N-1 als Verwaltungsinformation: Beim Suchen vergleicht man den Schlüssel k mit diesen ki. Es gilt: ist k überhaupt unterhalb des Knotens zu finden, so unterhalb des i- ten Kindes, falls k i-1 < k < k i. Beim Einfügen und Entfernen von Einträgen muss man all diesen Bedingungen Rechnung tragen.

31 31 Weitere effiziente Baumstrukturen: B-Bäume Ein B-Baum ist ein (a, b)-baum mit b 2a - 1. Entwickelt 1972 von Rudolf Bayer, em. Prof. TU München, und Edward McCreight; führte zur 1. relationalen SQL-Datenbank R von IBM In den Anwendungen ist a relativ groß, z.b Dadurch reduziert sich die Höhe enorm gegenüber einem Binärbaum. Das ist sinnvoll, wenn so viele Daten zu verwalten sind, dass die Knoten nicht im Hauptspeicher Platz finden, sondern auf Festplatten gespeichert werden. Ein Plattenzugriff dauert sehr lange (bis zu Mal solange wie ein Hauptspeicherzugriff), kann aber gleich eine ganze Seite auslesen, also z.b. einen ganzen Knoten eines B-Baumes. Interessant ist auch der Spezialfall a 2, b 3; d.h. die Knoten haben 2 oder 3 Kinder. Solche Bäume kann man wiederum als Binärbäume codieren und erhält so die Rot-Schwarz-Bäume [siehe Vorlesung Effiziente Algorithmen].

32 32 Zusammenfassung Balancierte Bäume sind besondere binäre Suchbäume, die der zusätzlichen Invariante Höhe O(log(Knotenzahl)) genügen. Dadurch laufen die Operationen Suchen, Einfügen, Löschen in logarithmischer Zeit. Vollständig ausgeglichen Suchbäume sind 1-balancierte Suchbäume. Beim Einfügen eines Elements muss ein vollständiger Suchbaum möglicherweise vollständig reorganisiert werden (Zeitkomplexität O(Knotenzahl)). AVL-Bäume sind 1-balancierte Bäume, bei denen die Operationen Suchen, Einfügen, Löschen logarithmische Zeitkompexität besitzen. Weitere effiziente Baumstrukturen sind (a,b)-bäume mit den Spezialfällen der B-Bäume und Rot-Schwarz-Bäume.

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Copyright, Page 1 of 8 AVL-Baum

Copyright, Page 1 of 8 AVL-Baum www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form. für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6.

Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6. Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Die Hausaufgaben sollen in Gruppen von je - Studierenden aus der gleichen

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I.6.5 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Hinweise zur Übungsklausur (Weitere) Traversierungen von Binärbäumen

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,

Mehr

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Werner Struckmann Wintersemester 2005/06 6. Bäume 6.1 Bäume 6.2 Binäre Suchbäume 6.3 Ausgeglichene Bäume 6.4 Heapsort Listen und Bäume Listen und Bäume: Listen: Jedes Listenelement

Mehr

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6 Kompaktübersicht Bäume Diese Übersicht entstand im Wintersemester 2003/04 parallel zur Vorlesung Grundzüge der Informatik III an der Technischen Universität Darmstadt (TUD) und soll die behandelten Aspekte

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume AVL-Bäume Splay-Bäume B-Bäume Digitale Suchbäume Heaps M.O.Franz; Oktober 2007 Algorithmen und

Mehr

BÄUME BALANCIERTE BÄUME. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm. 10. Kapitel (Teil 2)

BÄUME BALANCIERTE BÄUME. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm. 10. Kapitel (Teil 2) 10. Kapitel (Teil 2) BÄUME BALANCIERTE BÄUME Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Übersicht 1 1. Einführung 2. Algorithmen 3. EigenschaDen von Programmiersprachen 4. Algorithmenparadigmen

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write Thomas Maier Proseminar: Ein- / Ausgabe Stand der Wissenschaft Seite 1 von 13 Gliederung 1. Hashtabelle 3 2.B-Baum 3 2.1 Begriffserklärung 3 2.2

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen

2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen 2.5 Bäume 2.5.1 Binäre Suchbäume 2.5.2 Optimale Suchbäume 2.5.3 Balancierte Bäume 2.5.4 Skip-Listen 2.5.5 Union-Find-Strukturen 1 Balancierte Bäume Nachteil bei normalen Suchbäumen: Worst-case Aufwand

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 2 Einführung Binäre Suchbäume Höhe h O(h) für Operationen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner

Mehr

Änderung zur Übung. Kap. 4.4: B-Bäume. Motivation. Überblick. Motivation für B-Bäume. B-Bäume. Warum soll ich heute hier bleiben?

Änderung zur Übung. Kap. 4.4: B-Bäume. Motivation. Überblick. Motivation für B-Bäume. B-Bäume. Warum soll ich heute hier bleiben? Kap. 4.4: B-Bäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14. VO DAP2 SS 2008 3. Juni 2008 Änderung zur Übung ab jetzt: weniger Ü-Aufgaben, aber immer

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

DAP2-Klausur 07.08.2004

DAP2-Klausur 07.08.2004 DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Physische Datenorganisation

Physische Datenorganisation Physische Datenorganisation Physische Datenorganisation 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 Übersicht Datenbanken, Relationen und Tupel werden auf der untersten Ebene der bereits vorgestellten

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = +

Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = + Definition Gnutella Ein -to--netzwerk ist ein Kommunikationsnetzwerk zwischen Rechnern, in dem jeder Teilnehmer sowohl Client als auch Server- Aufgaben durchführt. Beobachtung: Das Internet ist (eigentlich

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr