Flüssig/Fest Phasengleichgewicht binärer Systeme

Größe: px
Ab Seite anzeigen:

Download "Flüssig/Fest Phasengleichgewicht binärer Systeme"

Transkript

1 Fest/Flüssig Phasengleichgewicht binärer Systeme 1 Flüssig/Fest Phasengleichgewicht binärer Systeme In diesem Experiment geht es um das Gleichgewicht zwischen festen und flüssigen Phasen in einem Zwei-Komponenten-System. Je nach Stoffmengenverhältnissen (Molenbruch) handelt es sich dabei um die Temperaturabhängigkeit der Löslichkeit fester Stoffe in einem Lösemittel (bei gesättigten Lösungen) oder um die Konzentrationsabhängigkeit des Gefrierpunkts der Lösung (bei nicht gesättigten Lösungen. Stichworte Phasendiagramm thermodynamische Freiheitsgrade, Gibbssche Phasenregel Eutektikum Gefrierpunktserniedrigung kolligative Eigenschaften Löslichkeit, Sättigung Gleichgewicht Entropie freie Gibbssche Enthalpie, chemisches Potential Theoretischer Teil Für die Lösung eines Feststoffes in einer Flüssigkeit wird zur einfacheren etrachtung angenommen, dass der gelöste Stoff nicht flüchtig ist, d.h. nicht zur Zusammensetzung der Gasphase beiträgt, und dass der gelöste Stoff im festen Lösungsmittel unlöslich ist. Abbildung 1: Das chemische Potenzial eines Lösungsmittels bei Anwesenheit eines gelösten Stoffs. Eine Lösung des Feststoffs in der flüssigen Phase alleine trägt durch die Mischungs-(Lösungs-)Entropie dazu bei, dass im Phasendiagramm der Existenzbereich der flüssigen Phase

2 Fest/Flüssig Phasengleichgewicht binärer Systeme 2 auf Kosten der gasförmigen und der festen Phase zunimmt: Es kommt, aus rein entropischen Gründen, zur Siedepunktserhöhung und zur Gefrierpunktserniedrigung (s. Abb. 1). Abbildung 2: Schmelzdiagramm mit Eutektikum für ein Lösemittel A und einen gelösten Feststoff eide hier untersuchte Phänomene - die Gefrierpunktserniedrigung und die Temperaturabhängigkeit der Löslichkeit - werden durch ein Schmelzdiagramm mit Eutektikum beschrieben, wie es schematisch in Abbildung 2 für ein Lösemittel A und einen gelösten Feststoff dargestellt ist. Dabei wurde vereinfachend angenommen, dass die Komponenten im flüssigen Zustand (d.h. für T > T ) vollkommen mischbar sind. eide hier untersuchte Phänomene - die Gefrierpunktserniedrigung und die Temperaturabhängigkeit der Löslichkeit - werden durch ein Schmelzdiagramm mit Eutektikum beschrieben, wie es schematisch in Abbildung 2 für ein Lösemittel A und einen gelösten Feststoff dargestellt ist. Dabei wurde vereinfachend angenommen, dass die Komponenten im flüssigen Zustand (d.h. für T > T ) vollkommen mischbar sind. T A und T bezeichnen die Schmelzpunkte der reinen Stoffe. E ist der eutektische Punkt mit der eutektischen Temperatur T E und der Zusammensetzung x E. Der linke Ast der Schmelzpunktskurve (T A -E) ist die Gefrierpunktskurve des Lösemittels. Hier befinden sich die Lösung und die reine feste Phase des Lösungsmittels im Gleichgewicht. Der rechte Ast der Schmelzpunktskurve (E-T ) ist die Löslichkeitskurve des gelösten Stoffs. Hier befinden die Lösung und der reine Feststoff im Gleichgewicht. Oberhalb der Schmelzpunktskurve liegt nur eine Phase, die flüssige Lösung, vor, während unterhalb der Schmelzpunktskurve mehrere Zweiphasengebiete (Mischungslücken) liegen, in denen kein thermodynamisches Gleichgewicht herrscht. Dort liegen entweder Lösung und festes (gefrorenes) Lösemittel (Mischungslücke 1), gesättigte Lösung und Feststoff (Mischungslücke 2) oder reines, festes (gefrorenes) Lösemittel und reiner Feststoff (Mischungslücke 3) nebeneinander vor. Am eutektischen Punkt E liegen drei Phasen im Gleichgewicht vor: das reine feste Lösemittel, der reine Feststoff und die flüssige Lösung mit dem Molenbruch x E. Durch Vertauschung der Achsen (T x) und Umrech-

3 Fest/Flüssig Phasengleichgewicht binärer Systeme 3 nung des Molenbruchs x auf die Löslichkeit erhält man oberhalb der eutektischen Temperatur T E aus dem oben abgebildeten Schmelzdiagramm die in Abb. 3 dargestellten Löslichkeitskurven von Salzen. Abbildung 3: Temperaturabhängigkeit der Löslichkeit einiger Salze Löslichkeitsgleichgewicht Die Temperaturabhängigkeit des Sättigungsmolenbruchs x des gelösten Stoffes ist - unter den nachfolgend aufgeführten Voraussetzungen: ideal verdünnte Lösungen, Temperaturunabhängigkeit von Schmelzwärme und Schmelzentropie - mit seiner molaren Schmelzwärme (heat of fusion) H,m verknüpft: bzw. H, m 1 1 R T T0 x( T) x( T0 ) e H, m ln x const RT (1a) (1b) Zur Herleitung der eziehungen (1a/b) betrachten Sie das Löslichkeitsgleichgewicht in einer gesättigten Lösung auf dem Kurvenast E T aus Abb. 2. Hier gilt für jede Temperatur T: s *(T) = l *(T) + RT ln x (T) (2) wobei die i * die chemischen Standardpotentiale der festen (i=s) bzw. der flüssigen (i=l) Phase des Stoffes, R die allgemeine Gaskonstante und x der Stoffmengenanteil (Molenbruch) des Stoffs sind. Auflösen der Gleichung (2) nach x (unserer Messgröße) ergibt:

4 Fest/Flüssig Phasengleichgewicht binärer Systeme 4 * * * ml(t) - ms (T) Dm(T) ln x (T) = = (3) RT RT *(T) ist dabei das "chemische Standardschmelzpotenzial", also die beim Schmelzen auftretende Differenz der chemischen Standardpotentiale der reinen festen und der reinen flüssigen Phase. Für einen Reinstoff ist das chemische Standardpotential µ* definitionsgemäß gleich der molaren freien Gibbsschen Enthalpie G m µ* = G m = H m TS m (4) Damit wird die Phasenumwandlungsdifferenz zu µ* = G m = H m T S m (5) H m und S m sind die molare Schmelzenthalpie und die molare Schmelzentropie, die im Folgenden näherungsweise - als temperaturunabhängig angesehen werden sollen. Wird nun Gl. (5) in Gl. (3) eingesetzt, so erhält man ln x (T) DH - TDS DH DS RT RT R m m m m = - = - + (6) ildet man nun die Differenz für den Logarithmus des Molenbruchs für zwei beliebige, verschiedene Temperaturen (T und T 0 ), so erhält man æ x (T) ö DH æ 1 1 ç ç ö è ø è ø m ln x (T) - ln x (T 0) = ln = - - x (T 0 ) R T T 0 (7) Die Entropie-Terme fallen weg, da die molare Schmelzentropie als temperaturunabhängig angesehen wurde. Durch Entlogarithmieren erhält man Gl. (1a) Gefrierpunktserniedrigung Da das Phänomen der Gefrierpunktserniedrigung eine kolligative Eigenschaft des gelösten Stoffes ist, d.h. nur von der Molalität y der gelösten Teilchen im Lösemittel A und nicht von der Art der Teilchen abhängt, kann es zur Molmassenbestimmung herangezogen werden: Die Masse m der eingewogenen Substanz wird durch eine Wägung, die Teilchenzahl durch die Gefrierpunktserniedrigung T bestimmt. T = K K y (8) K K wird als kryoskopische Konstante bezeichnet. Sie ist spezifisch ausschließlich für das Lösungsmittel, nicht für den gelösten Stoff. Da die Stoffmenge n durch das Verhältnis der Masse m zur Molmasse M gegeben ist, ergibt sich für den Zusammenhang zwischen Molmasse M und Gefrierpunktserniedrigung T: m K = (9) D K M m A T

5 Fest/Flüssig Phasengleichgewicht binärer Systeme 5 Herleitung Analog zu Gleichung (2) für den gelösten Stoff erhält man für das Lösemittel A die Gleichgewichtsbedingung: m (T) = m (T) + RT ln x (T) (10) * * As Al A In einem binären System gilt x A = 1 x, und für kleine Werte von x gilt ln (1 x ) x. Somit wird Gl. (10) zu Daraus folgt mit Gl. (4) und (5): m (T) = m (T) - RTx (T) (11) * * As Al * * DmA DGAm DHAm DSAm x (T) = = = + (12) RT RT RT R Für das reine Lösungsmittel gilt: x = 0 und T = T A, also x (T A ) = 0. Analog zu Gl. (7), aber nun für T und T A, erhält man: x (T) x (T) x (T ) DH æ 1 1 ö ç R è T TA ø Am = - A = - (13) wobei H Am und S Am als temperaturunabhängig angenommen wurden. Für nicht zu große Gefrierpunktserniedrigungen T = T A T «T A gilt: T T A T A 2 und aus Gl. (13) wird: bzw. DH x (T) = x (T) - x (T ) = D T (14) Am A 2 RTA RT T H 2 A Am x (15) Gleichung (15) beschreibt die im Zustandsdiagramm (Abb. 2) dargestellte Grenzgerade durch den Punkt T A. Für kleine Molenbrüche x ist die Molalität y des gelösten Stoffes y n n n x = =» = m n M (n + n )M M A A A A A A (n i : Stoffmenge, M A : Molmasse des Lösungsmittels. Damit geht Gl. (15) über in Gl. (9) mit K K M ART H Am 2 A (16)

6 Fest/Flüssig Phasengleichgewicht binärer Systeme 6 Ausführung und Auswertung der Messung 1) estimmen Sie die Temperaturabhängigkeit des Sättigungsmolenbruchs von enzoesäure zwischen 30 C und 65 C in 5 -Intervallen und berechnen Sie daraus die molare Schmelzwärme von enzoesäure. 2) estimmen Sie die Molmasse eines unbekannten, in Wasser löslichen organischen Stoffes durch Messung seiner Gefrierpunktserniedrigung. Schmelzwärmebestimmung von enzoesäure Apparatur Zur Schmelzwärmebestimmung von enzoesäure benötigen Sie gesättigte enzoesäurelösungen bei unterschiedlichen Temperaturen. Erwärmen Sie dazu je 250 ml der vorbereiteten, bei Raumtemperatur gesättigten enzoesäurelösung in 2 echergläsern. Achten Sie darauf, dass genügend feste enzoesäure vorhanden ist, um Sättigung auch bei hohen Temperaturen sicherzustellen. Vorbereitung zur Messung Nach Erwärmen und Umrühren setzen Sie die echergläser in ein thermostatisiertes Wasserbad, dessen Temperatur kleiner als die der Lösung ist und im ereich der höchsten Messtemperatur liegen soll. Nach etwa 20 Minuten hat sich der zur Temperatur des Thermostaten gehörige Sättigungsmolenbruch eingestellt. estimmung der Sättigungskonzentration Zur Konzentrationsbestimmung entnehmen Sie 20 ml Lösung mit einer Vollpipette, an deren Spitze ein Glasrohr mit einer Glasfritte angesetzt wird, und titrieren Sie mit 0.1m NaOH gegen Phenolphthalein. Die Glasfritte verhindert das Einsaugen kristalliner enzoesäure. Titrieren Sie zwei weitere Proben nach jeweils einigen Minuten und bilden Sie den Mittelwert. Messen Sie in gleicher Weise den Sättigungsmolenbruch für die übrigen, tieferen Temperaturen. In der Pipette auskristallisierte enzoesäure überführen Sie in das Titrationsgefäß, indem Sie die Pipette mit heißem dest. Wasser ausspülen. Auswertung Tragen Sie den Logarithmus der gemessenen Sättigungskonzentration gegen l/t auf und legen Sie mittels linearer Regression eine Ausgleichsgerade durch die acht Messpunkte. Aus der Steigung ergibt sich die gesuchte molare Schmelzwärme gemäß Gl. (1b).

7 Fest/Flüssig Phasengleichgewicht binärer Systeme 7 Molmassenbestimmung Apparatur Zur Molmassenbestimmung verwenden Sie die in Abb. 4 dargestellte Apparatur. Der Versuchsaufbau besteht aus einem zweiteiligen Versuchsgefäß und einem Kühlthermostaten. Das Messgefäß dient zur Aufnahme der Probe (Lösungsmittel bzw. Lösung) sowie eines Pt100-Widerstandsthermometers. Ein Magnetrührer sorgt für eine gute Durchmischung der Lösung. Ein Messverstärker erzeugt ein Spannungssignal, das dem Widerstand proportional ist und von einem Digital-Multimeter registriert wird. Der Messverstärker ist so konfiguriert, dass er Temperaturen im hier interessierenden ereich zwischen ca. 10 ºC und + 10 ºC in eine Gleichspannung von 0 V bis 5 V umwandelt. Das Programm Digiscop überträgt die im Multimeter digitalisierten Daten an den Computer, stellt die Messwerte als Temperaturverlaufskurve in Echtzeit dar und speichert die Daten im ASCII-(Text-)Format. Abb. 4: Apparatur zur Messung der Gefrierpunktserniedrigung Kalibrierung Zur Auswertung müssen Sie die vom Computer aufgezeichneten Spannungswerte in Temperaturwerte umrechnen. Führen Sie dazu eine Kalibrier-Messreihe durch, bei der Sie (mindestens) fünf verschiedene (konstante) Temperaturen sowohl mit einem Thermometer als auch mit dem Pt100-Widerstand messen und die mit dem Thermometer gemessenen Temperaturwerte T mit den aufgezeichneten Spannungswerten U vergleichen. Sie können die Kalibriermessungen zu einem beliebigen Zeitpunkt vornehmen - vor, nach oder während der eigentlichen Messungen. Temperieren Sie entweder Wasser durch unterschiedliche Zugabe von Eis oder verwenden Sie den Kältethermostaten, der den Kühlmantel C versorgt. Achten Sie in jedem Fall auf konstante und homogene Temperatur im System (Geduld!), damit der Pt100-Widerstand und das Thermometer

8 Fest/Flüssig Phasengleichgewicht binärer Systeme 8 dieselbe Temperatur messen. Legen Sie durch die Messpunkte eine Ausgleichsgerade T(U), mittels derer Sie die anschließend aufgenommenen Temperatur-Zeit-Kurven auswerten. Geben Sie die Geradengleichung für T(U) explizit an und bestimmen Sie den Fehler für den Umrechnungsfaktor von Spannung in Temperatur aus der linearen Regressionsanalyse. Abkühlkurve des Lösemittels Nehmen Sie zweimal die Temperatur-Zeit-Kurve des Abkühlvorganges des Lösungsmittels auf. Die Temperatur-Zeit-Kurve wird etwa den in Abbildung 5 dargestellten Verlauf zeigen. estimmen Sie daraus die Lage des Gefrierpunktes T 0 von Wasser als reinem Lösungsmittel. Abkühlkurve der Lösung Nehmen Sie dann Abkühlkurven mit m = 0.5, 1.0 und 1.5 g Einwaage auf. Lösen Sie dazu die abgewogenen Mengen m in 25 ml Leitungswasser und kühlen Sie die Lösung vor. Füllen Sie dann die Lösung in den Einsatz A und nehmen die Abkühlkurve der Lösung auf, die einen ähnlichen Verlauf wie in Abbildung 5 zeigen sollte. Abb. 5: Abkühlkurve des Lösemittels (schwarz) und der Lösung (rot) Auswertung Während die Temperatur des zweiphasigen Lösungsmittels (Wasser/Eis) während des gesamten Gefriervorgangs streng konstant bleibt, sollte sich die zweiphasige Lösung (Eis und Lösung) weiter abkühlen, bis das Eutektikum erreicht ist. Der Grund ist der zusätzliche thermodynamische Freiheitsgrad des zweikomponentigen Systems. Allerdings ist dieser Unterschied wegen der geringen Kühlleistung des Praktikumsaufbaus experimentell kaum beobachtbar.

9 Fest/Flüssig Phasengleichgewicht binärer Systeme 9 Tritt keine Unterkühlung auf, so scheidet sich bei der Temperatur T das feste Lösungsmittel ab. In der Regel sind jedoch erhebliche Unterkühlungen, in der Skizze bis zur Temperatur T'', zu beobachten. Arbeiten Sie zur estimmung der Gefrierpunktserniedrigung T näherungsweise mit der Temperatur T', die sich unmittelbar nach Aufheben der Unterkühlung einstellt: T = T 0 T'. Der steile Temperaturanstieg um T U = T' T'' ist eine Folge der durch das Ausfrieren einer gewissen Menge m A des Lösungsmittels freiwerdenden Gitterenergie m A H A. Dabei ist H A die spezifische Schmelzwärme des Lösungsmittels. ei starker Unterkühlung bedarf deshalb die Größe m A noch einer Korrektur, die die bei der Aufhebung der Unterkühlung abgeschiedene Menge m A des festen Lösungsmittels berücksichtigt. m A erhält man aus der Energiebilanz: (m A + m ) c L T U = m A H A. Dabei ist c L die spezifische Wärme der Lösung. Nimmt man an, dass c L in etwa gleich der spezifischen Wärme c des Lösungsmittels ist, so lässt sich die Größe m A berechnen und zur Korrektur von m A in der Weise m A ' = m A - m A verwenden. Verwenden Sie den korrigierten Wert m A ' an Stelle von m A in T = K K y, um die Molmasse M des unbekannten Stoffes nach Gleichung (9) zu bestimmen. Die Zahlenwerte c, H A und K K für Wasser entnehmen Sie der Literatur oder Tabellenwerken. Geben Sie die benutzten Werte sowie die Quelle bei der Auswertung an. Vergleichen Sie Ihren Wert für M mit dem tatsächlichen Wert. Wie groß ist die relative Abweichung?

Flüssig/Fest Phasengleichgewicht binärer Systeme

Flüssig/Fest Phasengleichgewicht binärer Systeme Fest/Flüssig Phasengleichgewicht binärer Systeme 1 Flüssig/Fest Phasengleichgewicht binärer Systeme In diesem Experiment geht es um das Gleichgewicht zwischen festen und flüssigen Phasen in einem Zwei-Komponenten-System.

Mehr

Flüssig/Fest Phasengleichgewicht binärer Systeme

Flüssig/Fest Phasengleichgewicht binärer Systeme Flüssig/Fest Phasengleichgewicht binärer Systeme 1 Flüssig/Fest Phasengleichgewicht binärer Systeme In diesem Experiment geht es um das Gleichgewicht zwischen festen und flüssigen Phasen in einem Zwei-Komponenten-System.

Mehr

Fest/Flüssig Phasengleichgewicht binärer Systeme

Fest/Flüssig Phasengleichgewicht binärer Systeme Fest/Flüssig Phasengleichgewicht binärer Systeme 1 Fest/Flüssig Phasengleichgewicht binärer Systeme In diesem Experiment geht es um das Gleichgewicht zwischen festen und flüssigen Phasen in einem Zwei-Komponenten-System.

Mehr

Bestimmung des Schmelzdiagramms eines eutektischen Gemisches aus Naphthalin und Phenantren (SMD)

Bestimmung des Schmelzdiagramms eines eutektischen Gemisches aus Naphthalin und Phenantren (SMD) Analytisch-Physikalische Chemie Teil Physikalische Chemie Sommersemester 2007 Bestimmung des Schmelzdiagramms eines eutektischen Gemisches aus thalin und Phenantren (SMD) Matthias Geibel, Studiengang Chemie,

Mehr

Aufgabe: Es sind die kryoskopischen Konstante von Wasser und die Molmassen von darin löslichen Substanzen zu bestimmen.

Aufgabe: Es sind die kryoskopischen Konstante von Wasser und die Molmassen von darin löslichen Substanzen zu bestimmen. Versuchsanleitungen zum Praktikum Physikalische Chemie für nfänger 1 4 Kryoskopie ufgabe: Es sind die kryoskopischen Konstante von Wasser und die Molmassen von darin löslichen Substanzen zu bestimmen.

Mehr

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2 hasengleichgewichte Definitionen: hase: Homogener Raumbereich, innerhalb dessen sich keine physikalische Größe (z.b. Dichte, Zusammensetzung, emperatur...) sprunghaft ändert. Das Berührungsgebiet zweier

Mehr

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG VERDAMPFUNGSGLEICHGEWICHTE: RAMM EINER BINÄREN MISCHUNG 1. Lernziel Ziel des Versuchs ist es, ein zu bestimmen, um ein besseres Verständnis für Verdampfungsgleichgewichte und Mischeigenschaften flüssiger

Mehr

TU Ilmenau Chemisches Praktikum Versuche Binäres Phasendiagramm. Schmelzdiagramm

TU Ilmenau Chemisches Praktikum Versuche Binäres Phasendiagramm. Schmelzdiagramm TU Ilmenau Chemisches Praktikum Versuche Binäres Phasendiagramm V4 Fachgebiet Chemie Schmelzdiagramm 1. Aufgabenstellungen A. Nehmen Sie die Abkühlungskurven verschiedener Gemische aus den Metallen Zinn

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Reale Zustandsdiagramme und ihre Interpretation

Reale Zustandsdiagramme und ihre Interpretation 4 Reale Zustandsdiagramme und ihre Interpretation 4. Grundlagen Was zu beachten ist, wird hier anhand einer kurzen Wiederholung dargestellt - die grundlegenden egriffe binärer ysteme: ufbau einer Legierung

Mehr

2 Gleichgewichtssysteme

2 Gleichgewichtssysteme Studieneinheit III Gleichgewichtssysteme. Einstoff-Systeme. Binäre (Zweistoff-) Systeme.. Grundlagen.. Systeme mit vollständiger Mischbarkeit.. Systeme mit unvollständiger Mischbarkeit..4 Systeme mit Dreiphasenreaktionen..4.

Mehr

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch.

Institut für Eisen- und Stahl Technologie. Seminar 2 Binäre Systeme Fe-C-Diagramm. www.stahltechnologie.de. Dipl.-Ing. Ch. Institut für Eisen- und Stahl Technologie Seminar 2 Binäre Systeme Fe-C-Diagramm Dipl.-Ing. Ch. Schröder 1 Literatur V. Läpple, Wärmebehandlung des Stahls, 2003, ISBN 3-8085-1308-X H. Klemm, Die Gefüge

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Aufgabe: Es ist die Dampfdruckkurve einer leicht flüchtigen Flüssigkeit zu ermitteln

Mehr

Schmelzdiagramm. Grundlagen

Schmelzdiagramm. Grundlagen Grundlagen Schmelzdiagramm Grundlagen Bei Schmelzdiagrammen handelt es sich um flüssig-fest Phasendiagramme von Zweikomponentensystemen (binären Systemen). Dargestellt wird die bhängigkeit der Zusammensetzung

Mehr

Schmelzdiagramm eines binären Stoffgemisches

Schmelzdiagramm eines binären Stoffgemisches Praktikum Physikalische Chemie I 30. Oktober 2015 Schmelzdiagramm eines binären Stoffgemisches Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1. Theorie hinter dem Versuch Ein Schmelzdiagramm zeigt

Mehr

Grundpraktikum Physikalische Chemie V 18/19. Molekulargewichtsbestimmung. nach Rast, Dumas und durch. Gefrierpunktserniedrigung nach Beckmann

Grundpraktikum Physikalische Chemie V 18/19. Molekulargewichtsbestimmung. nach Rast, Dumas und durch. Gefrierpunktserniedrigung nach Beckmann Grundpraktikum Physikalische Chemie V 8/9 Molekulargewichtsbestimmung nach Rast, Dumas und durch Gefrierpunktserniedrigung nach Beckmann Kurzbeschreibung: Wird eine Substanz in einem bestimmten flüssigen

Mehr

Mischungslücke in der flüssigen Phase

Mischungslücke in der flüssigen Phase Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser

Mehr

Phasendiagramme. Seminar zum Praktikum Modul ACIII

Phasendiagramme. Seminar zum Praktikum Modul ACIII Phasendiagramme Seminar zum Praktikum Modul ACIII Definition Phase Eine Phase ist ein Zustand der Materie, in dem sie bezüglich ihrer chemischen Zusammensetzung und bezüglich ihres physikalischen Zustandes

Mehr

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie

Mehr

Einführung in Werkstoffkunde Zustandsdiagramme

Einführung in Werkstoffkunde Zustandsdiagramme Einführung in Werkstoffkunde Dr.-Ing. Norbert Hort norbert.hort@gkss.de Magnesium Innovations Center (MagIC) GKSS Forschungszentrum Geesthacht GmbH Inhalte Über mich Einführung Aufbau von Werkstoffen Physikalische

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

Tropfenkonturanalyse

Tropfenkonturanalyse Phasen und Grenzflächen Tropfenkonturanalyse Abstract Mit Hilfe der Tropfenkonturanalyse kann die Oberflächenspannung einer Flüssigkeit ermittelt werden. Wird die Oberflächenspannung von Tensidlösungen

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Versuch: Siedediagramm eines binären Gemisches

Versuch: Siedediagramm eines binären Gemisches Versuch: Siedediagramm eines binären Gemisches Aufgaben - Kalibriermessungen Bestimmen Sie experimentell den Brechungsindex einer gegebenen Mischung bei unterschiedlicher Zusammensetzung. - Theoretische

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Mikro-Thermomethoden. Ziel des Versuches

Mikro-Thermomethoden. Ziel des Versuches B 1 Mikro-Thermomethoden Ziel des Versuches ist, die Grunderscheinungen des Phasengleichgewichts fest-flüssig an Zweistoff-Systemen zu studieren. Das Schmelzdiagramm (Schmelztemperaturen als Funktion des

Mehr

Praktikum Physikalische Chemie II (C-3) Versuch Nr. 7. Kryoskopie und Molmassenbestimmung

Praktikum Physikalische Chemie II (C-3) Versuch Nr. 7. Kryoskopie und Molmassenbestimmung Praktikum Physikalische Chemie II (C-3) Versuch Nr. 7 Kryoskopie und Molmassenbestimmung Grundlagen Kryoskopische Messungen haben zur Voraussetzung, dass Lösungsmittel und gelöster Stoff im festen Zustand

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Neutralisationsenthalpie

Neutralisationsenthalpie Universität Potsdam Professur für Physikalische Chemie Grundpraktikum Physikalische Chemie Dr. B. Kallies, 21.02.2001 Neutralisationsenthalpie Zur Messung von Wärmeeffekten bei Vorgängen in Lösungen (Lösungs-,

Mehr

Einführung in die chemische Thermodynamik

Einführung in die chemische Thermodynamik G. Kortüm /H. Lachmann Einführung in die chemische Thermodynamik Phänomenologische und statistische Behandlung 7., ergänzte und neubearbeitete Auflage Verlag Chemie Weinheim Deerfield Beach, Florida Basel

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID

ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AUF DIE POTENTIOMETRISCHE BESTIMMUNG VON FLUORID Thermodynamik Anwendung einer ionenselektiven Elektrode auf LUORID die potentiometrische Bestimmung von luorid ANWENDUNG EINER IONENSELEKTIVEN ELEKTRODE AU DIE POTENTIOMETRISCHE BESTIMMUNG VON LUORID 1.

Mehr

Flüssigkeiten. einige wichtige Eigenschaften

Flüssigkeiten. einige wichtige Eigenschaften Flüssigkeiten einige wichtige Eigenschaften Die Oberflächenspannung einer Flüssigkeit ist die zur Vergröß ößerung der Oberfläche um den Einheitsbetrag erforderliche Energie (H 2 O bei 20 C: 7.29 10-2 J/m

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Siedediagramme Beispiel: System Stickstoff Sauerstoff - Das Siedeverhalten des Systems Stickstoff Sauerstoff Der Übergang vom flüssigen in den gasförmigen Aggregatzustand. - Stickstoff und Sauerstoff bilden

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Versuch: Schmelzdiagramm

Versuch: Schmelzdiagramm Versuch: Schmelzdiagramm Bei der Anwendung des GIBBSschen Phasengesetzes auf Mehrkomponentensysteme kommt außer den Variablen Druck, Temperatur und Volumen noch eine weitere Variable hinzu, die die Zusammensetzung

Mehr

Mischungsenthalpie. E AB zwischen den verschiedenen Molekülsorten in der Mischung. Wenn die

Mischungsenthalpie. E AB zwischen den verschiedenen Molekülsorten in der Mischung. Wenn die 1 ischungsenthalpie Ziel des Versuches Aus essungen der mittleren molaren ischungsenthalpie sind die partiell molaren ischungsenthalpien als Funktion der Zusammensetzung zu bestimmen. Unter Annahme des

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von

Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H 2 O von Aufgabe 1: Berechnen Sie die Wärmemenge in kj, die erforderlich ist, um 750g H O von 0 C bis zum Siedepunkt (100 C) zu erwärmen. Die spezifische Wärmekapazität von Wasser c = 4.18 J K - 1 g -1. Lösung

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Oberflächenspannung und Dichte von n-propanollösungen

Oberflächenspannung und Dichte von n-propanollösungen Oberflächenspannung und Dichte von n-propanollösungen Zusammenfassung Die Oberflächenspannungen von n-propanollösungen wurden mit Hilfe eines Tropfentensiometers bei Raumtemperatur bestimmt. Dabei wurden

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 2010 Versuch 05 Wärmeübergang in Gaswirbelschichten Betreuer: Michael Jusek (jusek@dechema.de, Tel: +49-69-7564-339) Symbolverzeichnis

Mehr

Universität Kassel, Grundpraktikum Physikalische Chemie Studiengänge Nanostrukturwissenschaft, Lehramt Chemie, Diplom Biologie

Universität Kassel, Grundpraktikum Physikalische Chemie Studiengänge Nanostrukturwissenschaft, Lehramt Chemie, Diplom Biologie Molmassenbestimmung mittels Gefrierpunktserniedrigung (Kryoskopie) Themenbereiche Chemisches Potential; Thermodynamik idealer und nichtidealer Lösungen; Aktivitäten und Aktivitätskoeffizienten; Phasengleichgewichte;

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28.

Praktikumsbericht. Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha. Betreuerin: Natalia Podlaszewski 28. Praktikumsbericht Gruppe 6: Daniela Poppinga, Jan Christoph Bernack, Isaac Paha Betreuerin: Natalia Podlaszewski 28. Oktober 2008 1 Inhaltsverzeichnis 1 Versuche mit dem Digital-Speicher-Oszilloskop 3

Mehr

Grundlagen der Chemie Lösungen Prof. Annie Powell

Grundlagen der Chemie Lösungen Prof. Annie Powell Lösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Inhalte Konzentrationsmaße Wasser als Lösungsmittel Solvatation,

Mehr

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008 Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008 Verfasser: Zihlmann Claudio Teammitglied: Knüsel Philippe Datum: 29.10.08 Assistent: David Weibel E-Mail: zclaudio@student.ethz.ch 1. Abstract

Mehr

Versuch: Siedetemperaturerhöhung

Versuch: Siedetemperaturerhöhung Versuch: Siedetemperaturerhöhung Die Molmasse stellt für einen chemisch einheitlichen, niedermolekularen Stoff eine charakteristische Kenngröße dar. Mit physikalisch-chemischen Messmethoden lässt sich

Mehr

Was sagt dieses sog. van`t Hoffsche Gesetz aus? Welche Randbedingungen gelten für die Gesetzmäßigkeiten der Osmose?

Was sagt dieses sog. van`t Hoffsche Gesetz aus? Welche Randbedingungen gelten für die Gesetzmäßigkeiten der Osmose? Osmose C.Stick Eine spezielle Form der Diffusion ist die Osmose. Dieser Prozess spielt eine zentrale Rolle in der Volumen- und Wasserregulation der Zellen und Organismen. Als Osmose bezeichnet man die

Mehr

Bericht zum Versuch Hall-Effekt

Bericht zum Versuch Hall-Effekt Bericht zum Versuch Hall-Effekt Michael Goerz, Anton Haase 20. September 2005 GP II Tutor: K. Lenz 1 Einführung Hall-Effekt Als Hall-Effekt bezeichnet man das Auftreten einer Spannung in einem stromdurchflossenen

Mehr

Lehrbücher der Physikalischen Chemie

Lehrbücher der Physikalischen Chemie VERSUCH - Dampfdruckkure VERSUCH DAMPFDRUCKKURVE hema Messung der Dampfdruckkuren leicht erdampfbarer Flüssigkeiten Grundlagen thermodynamische Gesetze der Phasenübergänge Dampfdruckkure Beschreibung der

Mehr

Kristallographisches Praktikum I

Kristallographisches Praktikum I Kristallographisches Praktikum I Versuch T1: Phasentransformationen in Ein- und Zweikomponentensystemen Schmelzpunktsbestimmungen mittels Heiztischmikroskopie (vorläufige Fassung vom 7.1. 2006) Betreuer:

Mehr

Ternäres System mit 2 peritektischen Randsystemen 2 peritektische Randsysteme 1 vollständig mischbares System

Ternäres System mit 2 peritektischen Randsystemen 2 peritektische Randsysteme 1 vollständig mischbares System Ternäres System mit 2 peritektischen Randsystemen 2 peritektische Randsysteme 1 vollständig mischbares System Aufgabe: Im ternären System A-B-C haben die 2 Randsysteme A-B und B-C eine peritektische Reaktion,

Mehr

Biochemisches Grundpraktikum

Biochemisches Grundpraktikum Biochemisches Grundpraktikum Versuch Nummer G-01 01: Potentiometrische und spektrophotometrische Bestim- mung von Ionisationskonstanten Gliederung: I. Titrationskurve von Histidin und Bestimmung der pk-werte...

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und heoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2. Das Gasgesetz von Gay-Lussac hema In diesem ersuch soll das erhalten von Gasen bei Erwärmung unter

Mehr

Prinzipien des chemischen Gleichgewichts

Prinzipien des chemischen Gleichgewichts Prinzipien des chemischen Gleichgewichts Eine Thermodynamik für Chemiker und Chemie-Ingenieure Von KENNETH DENBIGH, F.R.S. ehem. Professor für Chemische Technologie am Imperial College, London Principal

Mehr

Zusatzinformation zum Anorganisch Chemischen Grundpraktikum. 2. Teil: Stoff-Systeme. Dr. A. Hepp

Zusatzinformation zum Anorganisch Chemischen Grundpraktikum. 2. Teil: Stoff-Systeme. Dr. A. Hepp Zusatzinformation zum Anorganisch Chemischen Grundpraktikum 2. Teil: Stoff-Systeme Dr. A. Hepp (07.05.2010) Uni- Münster - Zusatzinformation zum Anorganisch Chemischen Grundpraktikum von Dr. A. Hepp 1/14

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1 Bestimmung der Verbrennungsenthalpie Praktikumsaufgaben 1. Ermittlung der Kalorimeterkonstante durch Verbrennung von Benzoesäure. 2. Bestimmung der

Mehr

Praktikumsrelevante Themen

Praktikumsrelevante Themen Praktikumsrelevante Themen Lösungen Der Auflösungsprozess Beeinflussung der Löslichkeit durch Temperatur und Druck Konzentration von Lösungen Dampfdruck, Siede- und Gefrierpunkt von Lösungen Lösungen von

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6 Praktikum Physikalische Chemie I ersuch 4 p,, T - erhalten realer Gase am Beispiel von SF 6 1. Grundlagen Komprimiert man ein Gas isotherm, so steigt dessen Druck näherungsweise gemäß dem idealen Gasgesetz

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen Elektrolyt- und Nichtelektrolytlösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrolyt- und Nichtelektrolytlösungen

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Technische Universität Chemnitz Chemisches Grundpraktikum

Technische Universität Chemnitz Chemisches Grundpraktikum Technische Universität Chemnitz Chemisches Grundpraktikum Protokoll «CfP5 - Massanalytische Bestimmungsverfahren (Volumetrie)» Martin Wolf Betreuerin: Frau Sachse Datum:

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Kapitel 2 Thermische Ausdehnung

Kapitel 2 Thermische Ausdehnung Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Bradford Reagent, 5x

Bradford Reagent, 5x GEBRAUCHSANLEITUNG Bradford Reagent, 5x Reagenz für die Proteinkonzentrationsbestimmung (Kat.-Nr. 39222) SERVA Electrophoresis GmbH Carl-Benz-Str. 7 D-69115 HeidelbergPhone +49-6221-138400, Fax +49-6221-1384010

Mehr

Sebastian Rattey 104030 MSR1 Mess-, Steuerungs- und Regelungstechnik

Sebastian Rattey 104030 MSR1 Mess-, Steuerungs- und Regelungstechnik 1. Aufgaben und Zweck des Versuches: Im Versuch MSR 1 Temperaturmessung werden Temperaturmessfühler(mechanische oder elektrische Temperatursensoren) auf ihr statisches Verhalten untersucht, welches durch

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Das chemische Potential- eine Übersicht wichtiger Beziehungen

Das chemische Potential- eine Übersicht wichtiger Beziehungen Das chemische Potential- eine Übersicht wichtiger Beziehungen Definition des chem. Potentials Das chemische Potential beschreibt die bhängigkeit der extensiven thermodynamischen Energiegrößen von der Stoffmenge.

Mehr

Versuch W7 für Nebenfächler Wärmeausdehnung

Versuch W7 für Nebenfächler Wärmeausdehnung Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

1.1 Wichtige Begriffe und Größen 1.2 Zustand eines Systems 1.3 Zustandsdiagramme eines Systems 1.4 Gibb sche Phasenregel

1.1 Wichtige Begriffe und Größen 1.2 Zustand eines Systems 1.3 Zustandsdiagramme eines Systems 1.4 Gibb sche Phasenregel Studieneinheit II Grundlegende Begriffe. Wichtige Begriffe und Größen. Zustand eines Systems. Zustandsdiagramme eines Systems.4 Gibb sche Phasenregel Gleichgewichtssysteme. Einstoff-Systeme. Binäre (Zweistoff-)

Mehr

Labor Messtechnik Versuch 1 Temperatur

Labor Messtechnik Versuch 1 Temperatur HS Kblenz Prf. Dr. Kröber Labr Messtechnik Versuch 1 emperatur Seite 1 vn 5 Versuch 1: emperaturmessung 1. Versuchsaufbau 1.1. Umfang des Versuches Im Versuch werden flgende hemenkreise behandelt: - emperaturfühler

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

Modul Chemische Thermodynamik: Reaktionsenthalpie

Modul Chemische Thermodynamik: Reaktionsenthalpie Modul Chemische Thermodynamik: Reaktionsenthalie M. Broszio, F. Noll, Oktober 27, Korrekturen Setember 28 Lernziele Der vorliegende Versuch beschäftigt sich mit Fragestellungen der Thermochemie, welche

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder. Newton 10 und / Elektrizitätslehre Kapitel 1 Gesetzmäßigkeiten des elektrischen Stromkreises 1.1 Widerstände hemmen den Stromfluss Ohm sches Gesetz und elekt- rischer Widerstand Seite 13 / 14 1. Welche

Mehr

Musterlösung Übung 10

Musterlösung Übung 10 Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen

Mehr