1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

Größe: px
Ab Seite anzeigen:

Download "1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert"

Transkript

1 Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume Folie 1 Lernziele Sie festigen Ihr Wissen über Arrays und Heaps Sie verstehen die verschiedenen Arten der Speicherung von Informationen in Listen Sie kennen sich mit den verschiedenen Arten von binären Bäumen aus Sie wissen, wie binäre Bäume traversiert werden können Folie 2 Seite 1

2 Einführung Datenstrukturen Zentrale Bedeutung in der Programmierung Unabhängig von einer bestimmten Programmiersprache Typische Eigenschaften von Datenstrukturen sind:? Zugriffsart, z.b. direkt? Zugriffsmöglichkeiten, z.b. Nachfolger? Zugriffsaufwand, z.b. O(n)? statische oder dynamische Datenstrukturen (vgl. Array vs. Bäume)? implizite oder explizite Datenstrukturen (vgl. Stack als Array oder Liste) 4 1 Folie 3 1. Arrays Array Grösse wird bei Deklaration oder Instanzierung festgelegt Zur Laufzeit ist Speicherplatz fest reserviert (statisch) Unabhängig, wie viele Komponenten des Arrays effektiv zum Speichern von Daten benötigt werden Direkter Zugriff auf Komponente über Index direct access einfach, sehr schnell Arrays repräsentieren implizite Datenstrukturen Für das Festhalten der Beziehungen zwischen den Daten ist nicht explizit Speicher erforderlich Beziehungen werden implizit festgehalten, z.b. durch Formeln 4 2 Folie 4 Seite 2

3 1. Arrays In Java werden meistens Objekte in Arrays verwaltet Objekte via Referenzvariablen "s" "c" "x" "i" "o" "m" "e" "k" array Vereinfacht array s c x i o m e k Folie Array unsortiert array s c x i o m e k Zugriff auf Elemente suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(n) O(n)* O(1) nein nein nein * inklusive Nachrücken bzw. Auffüllen mit letztem Element Bemerkung: Ein Array kann bekanntlich mit einem Aufwand von O(n log n) sortiert werden (vgl. Heapsort) 4 3 Folie 6 Seite 3

4 1.2 Array sortiert array c e i k m o s x Zugriff auf Elemente suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(log n) O(n)* O(n)* ja ja ja * inklusive Nachrücken Bemerkung: Das Suchen erfolgt nun einfach binär 4 3 Folie Heap Nicht verwechseln mit dynamischer Speicherverwaltung! Ein Heap ist ein binärer Baum, der eine strukturelle Bedingung erfüllt ein fast vollständiger Baum ist (vgl. 3.5), eine inhaltliche Bedingung erfüllt jeder innere Knoten besitzt eine höhere Priorität als seine Söhne auf eine spezielle Weise in einem Array abgespeichert ist 4 4 Folie 8 Seite 4

5 1.3 Heap Entfernen des Wurzelelementes Durch MethodegetMaximum() Baum muss reorganisiert werden Erfüllung der strukturelle und inhaltliche Bedingung 1. Wurzelelement entfernen: O(1) 17 getmaximum() Folie Heap 2. Blatt ganz unten rechts zur Wurzel hoch verschieben: O(1) Sinkprozess durchführen: O(log n) Folie 10 Seite 5

6 1.3 Heap Auchinsert() muss beide Bedingungen sicherstellen: 1. Neues Element als Blatt ganz unten rechts einfügen: O(1) insert() Steigprozess durchführen: O(log n) Folie Heap Abbildung des fast vollständigen binäre Baums in einem Arraya: a Vater mit Index (j 1)/2 Sohn mit Indexj Vater mit Indexi linker Sohn mit Index(2i)+1 rechter Sohn mit Index2(i+1) 4 7 Folie 12 Seite 6

7 1.3 Heap Aufwände bezüglich: getmaximum(): O(1) + O(1) + O(log n) = O(log n) insert(): O(1) + O(log n) = O(log n) Zugriff auf Elemente suchen entfernen* einfügen Nachfolger Vorgänger sortierte Ausgabe O(n) O(log n) O(log n) nein nein "nein" * nur Maximum (oder Minimum) inklusive Reorganisation 4 7 Folie Listen Liste Mit Hilfe von Referenzvariablen und Objekten Datenstrukturen dynamisch auf und abbauen Nur soviel Speicherplatz allozieren, wie benötigt wird Von Anzahl Objekten abhängig Objekte sind nicht mehr direkt ansprechbar Nur noch indirekt über Referenzvariablen Listen repräsentieren explizite Datenstrukturen Für das Festhalten der Beziehungen zwischen den Daten ist explizit Speicher erforderlich 4 8 Folie 14 Seite 7

8 2. Listen In Java werden Objekte in Listen verwaltet Objekte via Referenzvariablen Verweis auf nächstes Objekt via Referenzvariable "s" "c" "x" "i" "o" "m" liste Vereinfacht liste s c x i o m 4 8 Folie Einfach verkettete Liste unsortiert liste s c x i o m Zugriff auf Elemente suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(n) O(n) O(1) nein nein nein 4 9 Folie 16 Seite 8

9 2.2 Einfach verkettete Liste sortiert liste c i m o s x Zugriff auf Elemente suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(n) O(n) O(n) ja nein ja Bemerkung: Handhabung von sortierten, einfach verketteten Listen ist relativ aufwendig Deshalb werden sie eher selten eingesetzt 4 9 Folie Doppelt verkettete Liste sortiert head c i m o tail Zugriff auf Elemente suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(n) O(n) O(n) ja ja ja 4 10 Folie 18 Seite 9

10 3. Bäume Bäume Weitere wichtige dynamische Datenstrukturen Verwendung bei: hierarchischen Beziehungen rekursiven Objektstrukturen 4 11 Folie Beispiele a) Sortierte Namen b) Arithmetischer Ausdruck: z.b. (8+(7*2))*(4 (2/3)) 4 11 Folie 20 Seite 10

11 3.1 Beispiele c) Quadtree Nummerierung der Quadranten: Folie Terminologie 4 12 Folie 22 Seite 11

12 3.3 Binäre Bäume Ein binärer Baum ist ein Baum mit Grad 2: Minimale Höhe h min Binärer Baum mit n Knoten (vgl. vollständig ausgeglichener binärer Baum) :? h min = aufgerundet ld(n + 1) Maximale Höhe h max Binärer Baum mit n Knoten (vgl. lineare Liste):? h max = n Hinweis: ld n = (log n) / (log 2) O(ld n) = O(log n) 4 13 Folie Binäre Bäume Minimale Weglänge w min Beliebiger binärer Baum (vgl. Wurzel):? w min = 1 Maximale Weglänge w max Binärer Baum mit n Knoten (vgl. lineare Liste):? w max = h max Mittlere Weglänge w mittel Zufälliger binärer Baum mit n Knoten (gilt für grosse n):? w mittel 1,4 h min 4 13 Folie 24 Seite 12

13 3.3 Binäre Bäume Vollständiger binärer Baum Ein binärer Baum der Höhe h heisst vollständig, wenn er aus n = 2 h 1Knoten besteht Er besitzt dann natürlich die kleinstmögliche Höhe h =h min 4 14 Folie Fast vollständiger binärer Baum Fast vollständiger binärer Baum Unterschied zu vollständigen Baum mit der Höhe h: Niveau h muss nicht vollständig mit Blättern belegt sein Vorhandene Blätter auf Niveau h müssen sich ganz links befinden Besitzt ebenfalls die kleinstmögliche Höhe h = h min 4 14 Folie 26 Seite 13

14 3.5 Vollständig ausgeglichener binärer Baum Vollständig ausgeglichener binärer Baum Für jeden inneren Knoten unterscheiden sich die Anzahl Knoten in linken und rechten Teilbaum um höchstens 1 Besitzt ebenfalls die kleinstmögliche Höhe h =h min 4 15 Folie Ausgeglichener binärer Baum AVL Baum Ausgeglichener binärer Baum AVL Baum Adelson Velskii und Landis, 1962 Für jeden inneren Knoten unterscheiden sich die Höhen in linken und rechten Teilbaum um höchstens 1 Die Höhe lässt sich unabhängig von n abschätzen Höhe h < 1.45 * h min 4 15 Folie 28 Seite 14

15 3.7 Geordneter binärer Baum Geordneter binärer Baum Jedem Knoten ist ein Schlüssel zugeordnet z.b. Nummer oder Namen Einfügen eines neuen Knotens entsprechend der definierten Ordnung auf den Schlüsselwerten immer als Blatt Die Höhe des Baumes ist abhängig von der Reihenfolge der Schlüssel Die Höhe liegt im Bereich h =h min... h max 4 16 Folie Geordneter binärer Baum Beispiel: Folie 30 Seite 15

16 3.7 Geordneter binärer Baum Bester Fall Binäre Baum ist vollständig ausgeglichen Höhe h = h min 4 17 Folie Geordneter binärer Baum Schlechtester Fall Binäre Baum ist lineare Liste Höhe h = h max 4 17 Folie 32 Seite 16

17 3.8 Durchlaufen eines Baumes Durchlaufen eines Baumes Tree Traversal Alle Knoten bzw. Objekte eines Baumes bearbeiten Drei Varianten für das Durchlaufen des Baumes Diese Varianten sind rekursiv wie folgt definiert: W L R 4 18 Folie Durchlaufen eines Baumes 1. Preorder:? W, L, R die Wurzel vor den Teilbäumen 2. Inorder:? L, W, R 3. Postorder:? L, R, W die Wurzel nach den Teilbäumen L W R 4 18 Folie 34 Seite 17

18 3.8 Durchlaufen eines Baumes Beispiel Arithmetischer Ausdruck (8+(7*2))*(4 (2/3)) 1. Preorder (W, L, R) Prefix: 2. Inorder (L, W, R) Infix: (vgl. Normalfall) 3. Postorder (L, R, W) Postfix: (vgl. hp) * + 8 * / * 2 * 4 2 / * / * 4 18 Folie Aufwand bei geordneten binären Bäumen Aufwand allgemein Höhe des Baumes ist massgebend Suchen maximale Weglänge Vergleich bei jedem Knoten gewünschter Knoten gefunden im linken oder rechten Teilbaum weitersuchen Pro traversiertem Knoten typisch 2 Vergleiche erforderlich suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(log n)...o(n) O(log n)...o(n) O(log n)...o(n) nein nein ja 4 19 Folie 36 Seite 18

19 3.9 Aufwand bei geordneten binären Bäumen Für geordnete ausgeglichene binäre Bäume (AVL Bäume) gilt: suchen entfernen einfügen Nachfolger Vorgänger sortierte Ausgabe O(log n) O(log n) O(log n) nein nein ja Bemerkungen: Hat man Pech, so ist ein binärer Baum zu einer Liste entartet Bedeutet Mehraufwand Die Algorithmen für AVL Bäume sind komplex Justierung des Baums nach jedem Entfernen und Einfügen Eine weniger komplexe Alternative stellen sogenannte Skip Listen dar Aufwand von O(log n) ist gleichwertig wie ein Aufwand von O(ld n) 4 19 Folie 37 Seite 19

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Einführung in (Binäre) Bäume

Einführung in (Binäre) Bäume edeutung und Ziele inführung in (inäre) äume Marc Rennhard http://www.tik.ee.ethz.ch/~rennhard rennhard@tik.ee.ethz.ch äume gehören ganz allgemein zu den wichtigsten in der Informatik auftretenden atenstrukturen,

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen 9.2.5 HUT 9.2.5 3 atenstrukturen im omputer atenstrukturen ie beiden fundamentalen atenstrukturen in der Praxis sind rray und Liste Rekursion Feedback valuation rray Zugriff: schnell Umordnung: langsam

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Unterrichtsvorhaben Q2- I:

Unterrichtsvorhaben Q2- I: Schulinterner Lehrplan Informatik Sekundarstufe II Q2 III. Qualifikationsphase Q2 Unterrichtsvorhaben Q2- I: Im ersten Halbjahr 1 Klausur, im 2. Halbjahr ein Projekt. Die Länge der Klausur beträgt 90 min.

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Java Virtual Machine (JVM) Bytecode

Java Virtual Machine (JVM) Bytecode Java Virtual Machine (JVM) durch Java-Interpreter (java) realisiert abstrakte Maschine = Softwareschicht zwischen Anwendung und Betriebssystem verantwortlich für Laden von Klassen, Ausführen des Bytecodes,

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 5. Vorlesung Martin Middendorf / Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Quick-Sort

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6 Kompaktübersicht Bäume Diese Übersicht entstand im Wintersemester 2003/04 parallel zur Vorlesung Grundzüge der Informatik III an der Technischen Universität Darmstadt (TUD) und soll die behandelten Aspekte

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 25. September 2013 Aufgabe 1 Gegeben sei ein binärer Suchbaum mit Werten im Bereich von 1 bis 1001. In diesem Baum wird nach der Zahl

Mehr

Notizen Programmieren 3: Algorithmen und Datenstrukturen

Notizen Programmieren 3: Algorithmen und Datenstrukturen Notizen Programmieren 3: Algorithmen und Datenstrukturen Klaus Kusche, 2010 / 2011 / 2012 1 Die Rekursion & Backtracking Siehe mein altes Skript und meine Folien für AIK 1... 2 Suchen Im Array: Unsortiertes

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

MS SQL Server: Index Management. Stephan Arenswald 10. Juli 2008

MS SQL Server: Index Management. Stephan Arenswald 10. Juli 2008 MS SQL Server: Index Management Stephan Arenswald 10. Juli 2008 Agenda 1. Einführung 2. Grundlagen Tabellen 3. Grundlagen Indexe 4. Indextypen 5. Index-Erstellung 6. Indexe und Constraints 7. Und Weiter...?

Mehr

Jeder Datenträger besitzt einen I-Node-Array. Jede Datei auf dem Datenträger hat einen I-Node-Eintrag.

Jeder Datenträger besitzt einen I-Node-Array. Jede Datei auf dem Datenträger hat einen I-Node-Eintrag. Einführung in die Betriebssysteme Fallstudien zu Dateisystemen Seite 1 Unix-Dateisystem Der Adreßraum einer Datei wird in gleichlange Blöcke aufgeteilt. Ein Block hat die Länge von 1 oder mehreren Sektoren

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

XML Verarbeitung mit einer in Haskell eingebetteten DSL. Manuel Ohlendorf (xi2079)

XML Verarbeitung mit einer in Haskell eingebetteten DSL. Manuel Ohlendorf (xi2079) XML Verarbeitung mit einer in Haskell eingebetteten DSL Manuel Ohlendorf (xi2079) 2.0.200 Manuel Ohlendorf Übersicht 1 2 Einführung Datenstruktur Verarbeitung Vergleich mit anderen Verfahren Fazit 2 Übersicht

Mehr

Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung. Klaus Kusche, September 2014

Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung. Klaus Kusche, September 2014 Die Bedeutung abstrakter Datentypen in der objektorientierten Programmierung Klaus Kusche, September 2014 Inhalt Ziel & Voraussetzungen Was sind abstrakte Datentypen? Was kann man damit grundsätzlich?

Mehr

Eine zu Grunde liegende Typdefinition beschreibt eine Struktur, die alle erlaubten Instanzen dieses Typs gemeinsam haben.

Eine zu Grunde liegende Typdefinition beschreibt eine Struktur, die alle erlaubten Instanzen dieses Typs gemeinsam haben. Der binäre Baum Tree Die geläufigste Datenstuktur ist der binäre Baum Tree. Dieses Beispielskript zeigt im direkten Vergleich zu anderen Sprachen den Umgang mit formalen Typparametern in CHELSEA. Wir steigen

Mehr

Einführung in die Programmierung Konstanten, dynamische Datenstrukturen. Arvid Terzibaschian

Einführung in die Programmierung Konstanten, dynamische Datenstrukturen. Arvid Terzibaschian Einführung in die Programmierung Arvid Terzibaschian 1 Konstanten 2 Motivation Unveränderliche, wichtige Werte mathematische Konstanten z.b. PI String-Konstanten wie z.b. häufige statische Meldungen mögliche

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Algorithmen. Suchalgorithmen

Algorithmen. Suchalgorithmen Algorithmen Suchalgorithmen Suchen in Tabellen Der Standardfall. Wie in der Einleitung beschrieben, handelt es sich bei den Datensätzen, die durchsucht werden sollen, um Zahlen. Ein Array könnte beispielsweise

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr

Kanonische Huffman Codes (Canonical Huffman Codes)

Kanonische Huffman Codes (Canonical Huffman Codes) Projektarbeit (Canonical Huffman Codes) SS 2008 Studentin: Michaela Kieneke Dozent: Dr. Heiko Körner 0001010110110110010001110110001111100001101000110111100101111110001111000 1010101110101001011100100101011111110000011001011010100101000101010001010

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

6.2 FAT32 Dateisystem

6.2 FAT32 Dateisystem 6.2 FAT32 Dateisystem Dateisystem für Windows 98 einige Unterschiede zum Linux-Dateisystem EXT2: keine Benutzeridentifikation für Dateien und Verzeichnisse! Partitionen werden durch Laufwerke repräsentiert,

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Komplexe Softwaresysteme 2 - SS 2014. Dominik Korner

Komplexe Softwaresysteme 2 - SS 2014. Dominik Korner Komplexe Softwaresysteme 2 - SS 2014 Dominik Korner 24. März 2014 Inhaltsverzeichnis 1 Übung 1 2 1.1 Heap.............................................. 2 A Zeichnen Sie den (min)-heap, der durch Einfügen

Mehr

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung 1 Kapitel III Skalierbare Peer to Peer-Netzwerke Tapestry von Zhao, Kubiatowicz und Joseph (2001) Netzw erke 2 Tapestry

Mehr

Arbeiten mit Arrays. 4.1 Eigenschaften. 4.1.1 Schlüssel und Element. Kapitel 4

Arbeiten mit Arrays. 4.1 Eigenschaften. 4.1.1 Schlüssel und Element. Kapitel 4 Arbeiten mit s Eine effiziente Programmierung mit PHP ohne seine s ist kaum vorstellbar. Diese Datenstruktur muss man verstanden haben, sonst brauchen wir mit weitergehenden Programmiertechniken wie der

Mehr