Ausbildungsberuf KonstruktionsmechanikerIn

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ausbildungsberuf KonstruktionsmechanikerIn"

Transkript

1 KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke wird nict berücksictigt Lernfeld/er: Inlt/e Tecnisce Kommuniktion / Fertigungstecnik - Merkmle der gerden Pyrmide mit qudrtiscer Grundfläce - Vordernsict und Drufsict einer Pyrmide zeicnen einscl. Bemßung - Zeicnung/en erstellen mit AutoCAD Fertigungs- / Montgetecnik - Grfisce Bestimmung der Scmiegenwinkel der Knten - Fertigung und Montge der Pyrmide - Abwicklung der Pyrmide - Modell nfertigen Tecnisce Mtemtik - Geometrisce Größen für die Pyrmide berecnen (Tbellenbuc) (Mntelöe, Kntenlänge, Blecbedrf, Volumen) - Arbeiten mit einem Progrmm (Excel) zur Berecnung der Knickwinkel Arbeitsgruppe: 07. Juni 008 Entwurf: rt KM 07U Abgbe der Arbeitsmppe: 6. Juni 008 Seite

2 KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Aufgbe Vgl. Anlge und Tbellenbuc Metll (VERLAG EUROPA-LEHRMITTEL)) Bescreiben Sie die Form einer gerden Pyrmide mit qudrtiscer Grundfläce und nennen Sie die bestimmenden geometriscen Größen. Aufgbe Informieren Sie sic über weitere uc gescnittene - Formen der Pyrmide (Litertur, Internet,...). Stellen Sie diese in einem Dokument (Power-Point-Präsenttion, Fotomontge,...) mit Benennung zusmmen. Aufgbe 3 Nennen Sie Buteile m Sciff, bei denen die Pyrmide ls Grundform der Konstruktion in Ersceinung tritt. Aufgbe 4 Zeicnen Sie die Vorder- und Drufsict der skizzierten Pyrmide im Mßstb :0 (:5). Die VA ist wie in der Skizze drgestellt zu zeicnen. Abb.: Gerde Pyrmide mit qudrtiscer Grundfläce Speicern Sie Ire Zeicnung mit dem Dteinmen KM07U_Pyrmide_NV Aufgbe 5 Zeicnen Sie die Vorder- und Drufsict der skizzierten Pyrmide im Mßstb :0 (:5) so, dss DS und VA gegenüber der ersten Zeicnung um 45 gedret drgestellt wird. Speicern Sie Ire Zeicnung mit dem Dteinmen KM07U_Pyrmide_NV NV stet für die Anfngsbucstben Ires Nc- und Vornmens. Seite

3 KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Aufgbe 6 Berecnen Sie die Kntenlänge der Pyrmide und vergleicen Sie Ir Ergebnis mit der entsprecenden Knte in der Zeicnung. Trgen Sie Recnung und Ergebnis ndscriftlic in den Ausdruck der Zeicnung ein. Sind die Dten gleic? Aufgbe 7 Zeicnen Sie die Abwicklung für die Pyrmide. Speicern Sie diese Zeicnung mit dem Dteinmen KM07U_Pyrmide3_NV Aufgbe 8 Fertigen Sie ein Modell der Pyrmide us Ppier (besser: feste Pppe) n. Aufgbe 9 9. Grfisce Bestimmung der Knickscmiege: Lererinweise becten 9. Recnerisce Bestimmung der Knickscmiege (vgl. Anlge ) Aufgbe 0 Überlegen und entsceiden Sie, wie Sie die Pyrmide in der Prxis fertigen und montieren würden (Annme: Werkstoff, Dicke: 5 mm). Aufgbe Hinweis: Benutzen Sie bei der Lösung der folgenden uc die Möglickeiten von AutCAD. Berecnen Sie die geometriscen Größen für die Pyrmide (Kntenlänge wurde bereits in Aufg. 6 berecnet und die Knickscmiege in Aufg. 9 ermittelt): Mntelöe, Kntenlänge, Blecbedrf, Volumen. Berecnen Sie entspr. Irer Lösung zu Aufg. 0 den Blecbedrf, Verscnitt, die Brennscnittlänge, Scweißzeit,... Aufgbe Ermittlung der Knickscmiege mit Hilfe eines Progrmms: (ier: -> Unterrictsilfen für Konstr.-Mecniker -> Projekte -> Projekt Gerde Pyrmide... -> Recn. Best. Scmiege ) - Skizzieren Sie die isometrisce Drstellung der Pyrmide. - Kennzeicnen Sie die Eckpunkte. - Fügen Sie ein dreidimensionles Koordintensystem inzu mit einer sinnvollen Wl des Koordintennullpunkts. - Für den weiteren Verluf: Lererinweise becten Aufgbe 3 Bescreiben Sie die Scritte zur grfiscen Bestimmung der Knickscmiege. Wie knn mn ds Verfren optimieren? Seite 3

4 Anlge KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Anzl der Ecken: 5 Anzl der Knten: 8 Anzl und Formen der Fläcen: 5 Grundfläce: Viereck Seitenfläce: Dreieck Seitenfläce: Dreieck Seitenfläcen: Dreieck Netz (eine Möglickeit) Seite 4

5 KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Anlge : Recnerisce Bestimmung der Knickscmiege für eine gerde qudrtisce Pyrmide. Bild : Gerde qudrtisce Pyrmide Bild : Pyrmide entspr. Bild, 45 gedret Wenn e l l Lot α Seitenlänge der qudrtiscen Grundfläce Eckenmß (Digonle der qudrtiscen Grundfläce) Höe der Pyrmide Kntenlänge der Pyrmide Länge des Lotes von der Seitenknte der Pyrmide zum Mittelpunkt der Acse der Pyrmide Winkel zwiscen dem Lot zur Seitenknte und Bsis der Pyrmide bzw. zwiscen der Höe und der Seitenknte. Winkel zwiscen den Scenkeln im Scnitt senkrect zur Seitenknte der Pyrmide = Öffnungswinkel zwiscen den Seitenfläcen der Pyrmide dnn gilt: = rctn + Seite 5

6 KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Lösung: Scritt. Scritt: Lösungsnstz e tn = l Lot e tn = l Lot Bemerkung/en Vgl. Bild Drufsict; l Lot wird us Bild Vordernsict ermittelt.. Scritt: Länge des Lotes l Lot bestimmen llot llot cosα = = e e cosα = l l e Lot = l Vgl. Bild Vordernsict l Lot = e l 3. Scritt: in einsetzen e e tn = = l e Lot l e l = e tn = l 4. Scritt: Kntenlänge l der Pyrmide bestimmen e l = + = + + = + = + = + 4 l = + Vgl. Tb.-Buc; Vgl. Bild Vordernsict und Bild Drufsict l ist die Länge der Knte der Pyrmide (räumlicer Pytgors) Seite 6

7 KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce 5. S critt: in einsetzen -> Formel zur Berecnung der Scmiege tn = + = rctn + = rctn + Beispiel: = 800 mm = 900 mm = rctn = rctn = rctn + ( 0,8 m) 0,64 + m ( ) + 0,8 m = rctn,3 m = rctn, m = rctn = rctn,8... = 49, ,50 0,3 m + 0,8 m Seite 7

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6

Geometrie. 26. Juni Inhaltsverzeichnis. 1 Zweidimensionale Geometrie 2. 2 Dreidimensionale Geometrie 6 Geometrie 6. Juni 017 Inltsverzeicnis 1 Zweidimensionle Geometrie Dreidimensionle Geometrie 6 1 1 Zweidimensionle Geometrie In diesem Kpitel wollen wir uns mit einigen einfcen geometriscen Formen bescäftigen

Mehr

Gymnasium. Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2. Klasse 9. - Lösungen

Gymnasium. Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2. Klasse 9. - Lösungen Aufgben zum Pytgors, Ktetenstz, Höenstz Hinweise: Die Zeicnungen sind teilweise verkleinert drgestellt. Alle Mße sind in mm, flls nict nders ngegeben.. Der Abstnd zweier Punkte im Koordintensystem errecnet

Mehr

Wochenplan Woche vom...

Wochenplan Woche vom... Wocenplan Woce vom... Temenübersict Arbeitsblatt 1 Holzylinder Inalt, Scwerpunkte des Temas Volumenberecnungen und Masseberecnung für den Holzylinder Kontrolle Arbeitsblatt Netze von, Oberfläcenberecnung,

Mehr

Eigenschaften von Prismen

Eigenschaften von Prismen gnz klr: Mtemtik - Ds Ferieneft mit Erfolgsnzeiger Eigenscften von Ein gerdes Prism t immer eine rund- und eine Deckfläce, die deckungsgleic (kongruent) und prllel zueinnder sind. Den Astnd zwiscen rund-

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Gerade Pyramide mit quadratischer Grundfläche Lösungsvorschläge

Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Gerade Pyramide mit quadratischer Grundfläche Lösungsvorschläge Ausbildungsberuf KonstruktionsmechanikerIn Einsatzgebiet/e: Metallbau Schiffbau Schweißen Projekt Gerade Pyramide mit quadratischer Grundfläche Lösungsvorschläge Lernfeld/er: Inhalt/e Technische Kommunikation

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

Um das Volumen (V) eines Prismas zu erhalten, multipliziert man den Inhalt der Grundfläche (G) mit der Körperhöhe (h). Für alle Prismen gilt:

Um das Volumen (V) eines Prismas zu erhalten, multipliziert man den Inhalt der Grundfläche (G) mit der Körperhöhe (h). Für alle Prismen gilt: gnz klr: Mtemtik - D Ferieneft mit Erfolgnzeiger Rettungring Volumen von Primen Um d Volumen (V) eine Prim zu erlten, multipliziert mn den Inlt der Grundfläce (G) mit der öe (). Für lle Primen gilt: V

Mehr

Ebenflächig begrenzte Körper

Ebenflächig begrenzte Körper I Eenfläcig egrenzte Körper 38. erde Prismen Bstle Kntenmodelle versciedener Prismen. (Mteril: Trinklme, Znstocer, Scere, Knetmsse) Würfel Quder Verinde rictig. Kreise lle Prismen ein. A B E C D F ) Quder

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird.

Aufgaben, in denen die Nebenbedingung mithilfe des Strahlensatzes ermittelt wird. Differentilrecnung Extremwertufgben Arbeitsbltt Aufgben, in denen die Nebenbedingung mitilfe des Strlenstzes ermittelt wird. Vorwissen 1 Werden zwei Strlen und b mit dem gemeinsmen Anfngspunkt S von zwei

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

6 Numerische Integration (Quadratur)

6 Numerische Integration (Quadratur) 6 Numerisce Integrtion (Qudrtur) In diesem Kpitel get es um die pproximtive Berecnung des Wertes eines bestimmten Integrls Anwendungen sind zb die Berecnung von Oberfläcen, Volumin, Wrsceinlickeiten, ber

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Demo-Text für Winkel. Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Stand: 19. Juni Datei Nr

Demo-Text für  Winkel. Geometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Stand: 19. Juni Datei Nr Geometrie 0 50 b 0 Winkel Stnd: 9. Juni 207 Dtei Nr. 0 = 55 = 25 2 INTERNETBIBLITHEK FÜR SCHULMTHEMTIK = 25 2 = 55 Demo-Text für 0 Winkel Grundlen 2 Inlt. Dreunen durc Winkel messen 3 Zeicnen von Winkeln

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden?

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden? Relscule Scüttorf Mtemtik Klsse 10d Dezemer 006 1) Ein Deic t folgende Mße: c = 9 m = 0 m = 18 β = 8 ) Wie reit ist die Deicsole? ) Wie groß ist der trpezförmige Querscnitt des Deices? Runde uf zwei Stellen

Mehr

Berechnung des Volumens von Hühnereiern

Berechnung des Volumens von Hühnereiern HTL Slfelen Berecnung es Volumens eines Eies Seite 1 von 7 Wilfrie Rom wrom@on.t Berecnung es Volumens von Hünereiern Mtemtisce / Fclice Inlte in Sticworten: Integrlrecnung, Splinefunktionen, Simpson-Regel

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic nn... Ic nn Mte... Ic nn Mte lernen Mtemti - Areitslätter 9 M Wiederolung 1 Gleicungen 1 5 6 7 8 0 Teilreit 1 5 6 6 Geometrisce Konstrutionen 1 5 6 7 5 Brucrecnung 1 5 6 7 8 9 10 11 1 1 1 67 Dreiece

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

( ) = ( ) y Kosten in 800

( ) = ( ) y Kosten in 800 R. Brinkmnn tt://brinkmnn-du.de Seite 09.0.008 Lge zweier Gerden zueinnder Ein Gleicungssstem us zwei lineren Gleicungen t beknntlic entweder eine, keine oder unendlic viele Lösungen. Ws ber t ds mit der

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Einfache Formeln als Gleichungen sehen und entsprechend umformen.

Einfache Formeln als Gleichungen sehen und entsprechend umformen. orereitung uf die (6.Juni 01) NME: 6. Sculreit: MTHEMTIK KL.: M/I. - S.1 leicungen umformen: Wgemodell und Umkeropertion. Wgemodell: Umformungregeln Durc jede ktion mu d leicgewict erlten leien! - = 8

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I

Aufgabe 2.1. Aufgabe 2.2. Aufgabe 2.3. Institut für Angewandte und Experimentelle Mechanik. Technische Mechanik I Institut für Angewndte und Eperimentelle Mecni Tecnisce Mecni I ZÜ. Aufgbe. F 4 O F F F In den Knten einer gleicseitigen Prmide wiren 4 Kräfte gemäß nebensteender Sie. Für die Beträge der Kräfte gilt:

Mehr

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946 Institut ür Bupysik und Mterilwissensct Univ.-Pro. Dr. Mx J. Seite von 9 nc Kosler, W.: Mnuskript zur E DIN 408-3:998-0, NA Buwesen (NABu) im DIN - Deutsces Institut ür Normung vom 28.0.998 Hinweise: DIN

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Abzugshaube Anm.: Blechstärke wird nicht berücksichtigt Lernfeld/er:

Ausbildungsberuf KonstruktionsmechanikerIn. Projekt Abzugshaube Anm.: Blechstärke wird nicht berücksichtigt Lernfeld/er: Ausbildungsberuf KonstruktionsmechanikerIn Einsatzgebiet/e: Metallbau Schiffbau Schweißen Projekt Abzugshaube Anm.: Blechstärke wird nicht berücksichtigt Lernfeld/er: Inhalt/e Technische Kommunikation

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Stereochemische Untersuchungen in der Diphenylmethan-Reihe

Stereochemische Untersuchungen in der Diphenylmethan-Reihe Stereocemisce Untersucungen in der DipenylmetnReie V. M i t t. : Zur Berecnung v o n teoretiscen Dipolmomenten v o n symmetrisc und unsymmetrisc substituierten /?,ß,/?Triclor bzw. /?,/?Diclor,bisrdätnen

Mehr

Wiederholung Prisma, Zylinder, Kegel

Wiederholung Prisma, Zylinder, Kegel Wiederolung Prism, Zylinder, Kegel 1.) Prism: Bei einem Prism liegen Grundfläce und Deckfläce prllel gegenüer und sind gleic groß. Die Mntelfläce estet usscließlic us Rectecken. Mntelfläcenformel: M =

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Stzgruppe des Pytgors Inlt: 1 Der Stz des Pytgors Pytgors im Rum 3 ufstellen von Formeln 4 Prktise nwendungen 5 Der Ktetenstz 6 Der Höenstz 7 Exkurs: Konstruktion retwinkliger Dreieke 8 ekliste 9 Hinweise

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

Eigenschaften mathematischer Körper

Eigenschaften mathematischer Körper Rettungsing Köpe gnz kl: temtik 4 - Ds Feieneft mit Efolgsnzeige Eigenscften mtemtisce Köpe Eigenscften von Pismen Ein gedes Pism t imme eine und- und eine Deckfläce, die deckungsgleic und pllel zueinnde

Mehr

ÜBUNGSAUFGABEN SERIE 04

ÜBUNGSAUFGABEN SERIE 04 Elementreometrie ÜBUNGSAUFGABEN SERIE 04 AUFGABE 1: Beweisen Sie den folenden Stz: Stz 2.10: Die Nceinnderusfürun mit ist eine Verscieun. Zum Beweis verwenden wir Stz 2.9: Eine Beweun verscieden von der

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Körper I. 1 Berechne das Volumen eines Prismas. Multipliziere die Grundfläche (G) mit der Körperhöhe (h) V = G h Prisma mit quadratischer Grundfläche

Körper I. 1 Berechne das Volumen eines Prismas. Multipliziere die Grundfläche (G) mit der Körperhöhe (h) V = G h Prisma mit quadratischer Grundfläche G Körper I 26. Oerfläce und Volumen gerder Prismen 1 Berecne ds Volumen eines Prisms. Multipliziere die Grundfläce (G) mit der Körperöe () V = G Prism mit qudrtiscer Grundfläce Prism mit rectwinkligen

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen 2.6. Anwendung- und eweiufgben zu Kongruenzätzen Aufgbe ) Ermittle zeicneric die Längen der drei Fläcendigonlen d b, d c und d bc und der Rumdigonlen d de bgebildeten Quder mit den Abmeungen = 4 cm, b

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

2.10. Prüfungsaufgaben zu Pyramiden

2.10. Prüfungsaufgaben zu Pyramiden .0. Prüfungufgben zu Pyrmiden Aufgbe : Pyrmiden Berecne die Fläceninlte und Volumin der unten bgebildeten Däcer, wobei ll Mße in m ngegeben ind: Zeltdc Wlmdc Krüppelwlmdc Gekreuzte Giebeldc en Zeltdc:

Mehr

Vektoren. b b. R heißt der Vektor. des. und b. . a b

Vektoren. b b. R heißt der Vektor. des. und b. . a b 6 Vektoren 66 Ds Vektorprodukt Definition des Vektorprodukts Wir etrchten im dreidimensionlen Rum zwei nicht kollinere Vektoren R, \{0} Gesucht ist ein Vektor x R, der uf jedem der eiden Vektoren und senkrecht

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

2)Fehlerhafte Socken werden in einem Kaufhaus um 15 % billiger zu 5,10 das Paar angeboten. Berechne den Preis der fehlerfreien Ware!

2)Fehlerhafte Socken werden in einem Kaufhaus um 15 % billiger zu 5,10 das Paar angeboten. Berechne den Preis der fehlerfreien Ware! M Übung für die 5. Sculrbeit 01 Nme: 1)Eine Recnung für ds Verlegen eines Teppicbodens lutet uf 51. Bei Brzlung innerlb von Tgen werden % Skonto gewärt. Berecne die Ersprnis und den ermäßigten Preis! )Felerfte

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel Der Einfluss von Kostenbweicungen uf ds Ns-Gleicgewict in einem nict-koopertiven Disponenten-Controller-Spiel Günter Fndel und Jn Trockel Diskussionsbeitrg Nr. 428 September 28 Diskussionsbeiträge der

Mehr

Abb. 1: Klassische Rhombenfigur

Abb. 1: Klassische Rhombenfigur Hns Wlser, [216931] Rhombenfiguren 1 Worum geht es Es wird ein Beispiel einer Rhombenfigur vorgestellt, bei der im grfentheoretischen Sinne jeder Punkt den Grd 4 ht. 2 Problemstellung: Grd 4 Die Abbildung

Mehr

iek Institut für Entwerfen und Konstruieren

iek Institut für Entwerfen und Konstruieren Grundlaen der Darstellun Institut für Entwerfen und Konstruieren Prof. José Luis Moro Heiko Stacel Mattias Rottner 1 Konstruktion der senkrecten Axonometrie 2 Mertafelprojektion B(A) A B A Aufriss Seitenriss

Mehr

Uponor ISI Box. schnell und sicher installieren! NEU

Uponor ISI Box. schnell und sicher installieren! NEU Uponor ISI Box scnell und sicer instllieren! NEU Die Uponor ISI Box die einfce und scnelle Instlltionslösung im Trockenu. Vorkonfektioniert und nsclussfertig efinden sic lle Komponenten sicer und geprüft

Mehr

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen

Fertigungstechnik Technische Kommunikation - Technisches Zeichnen Uwe Rat Eckleinjarten 13a. 7580 Bremeraven 0471 3416 rat-u@t-online.de Fertigungstecnik Tecnisce Kommunikation - Tecnisces Zeicnen 11 Projektionszeicnen 11. Körperscnitte und bwicklungen 11..4 Kegelige

Mehr

MB1 LU 5 und 12 Geometrische Grundbegriffe

MB1 LU 5 und 12 Geometrische Grundbegriffe M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich

Mehr

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten.

F A = 2F, F B = F, F C = 2F. Dabei verläuft F A entlang der vorderen Flächendiagonalen, F B und F C verlaufen entlang der Kanten. Wintersemester / ZÜ. Aufgbe. z C Die Eckpunkte A, B, C eines Würfels (Kntenlänge ) sind die Anfngspunkte der Vektoren F A, F B, F C mit folgenden Beträgen: F C F A F, F B F, F C F. A x F A O B F B y Dbei

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert

Platonische Körper Eine Übersicht mit Bauanleitungen für den Einsatz in der Lehre Februar 2016 Julia Bienert Eine Übersicht mit Bunleitungen für den Einstz in der Lehre Februr 016 Juli Bienert Inhltsverzeichnis 1 Bunleitungen... 1 1.1 Aufbu der Anleitungen... 1 1. Anleitungen... Weiterführende Litertur... 9 Anhng

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wiederolung 6 7 8 8 Reelle Zlen 6 Stzgruppe des Ptgors 6 7 8 9 Terme 6 6 leicungen und Ungleicungen 6 7 8 9 7 Körpererecnungen 6 7 8 9

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8

BMS Mathematik T2 Abschlussprüfung_11 Seite: 1/8 BMS Mthemtik T Abschlussprüfung_ Seite: / Nme: Abschlussprüfung Mthemtik technische BMS Teil Prüfungsduer Minuten Erlubte Hilfsmittel: Formelsmmlung ohne selbst gelöste Beispiele. Grfikfähiger Tschenrechner

Mehr

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an.

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an. TRIGONOMETRIE [ J. Möller, WS Üerlingen] TRIGON = Dreieck Die Trigonometrie ist der Zweig der Mtemtik, der sic mit der Berecnung von Seiten und Winkeln in rectwinkligen und llgemeinen Dreiecken efsst.

Mehr

SBS Schweißbolzen-Systeme

SBS Schweißbolzen-Systeme SBS Scweißbozen-Systeme Mit wictigen Informtionen zur Anwendung und Tecnik SBS Scweißbozen-Systme OBO. Dmit rbeiten Profis. Sortiment Quität Die Vieft der Scweißbozen ist ds, ws die Prxis bruct. Von en

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung.

Aufgabenzettel. Löse rechnerisch mit Hilfe geeigneter Funktionsgleichungen. Überprüfe deine Lösung mit einer Zeichnung. Matematik Klasse 11 1 Zylinder Zwei Zylinderförmige Gefäße werden mit Wasser gefüllt (siee unten). Jedes Gefäß at einen Grundfläceninalt von 1dm 2 und ist 85cm oc. Erreict der Wasserspiegel des zweiten

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Zusammenfassung: Vektoren

Zusammenfassung: Vektoren LGÖ Ks M Sculjr 06/07 Zusmmenfssung: Vektoren Inltsverzeicnis Punkte im Koordintensystem Vektoren Linere ängigkeit von Vektoren 4 etrg eines Vektors 5 Sklrprodukt und ortogonle Vektoren 6 Vektorprodukt

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

5. PLANIMETRIE, STEREOMETRIE

5. PLANIMETRIE, STEREOMETRIE 5. PLANIMETRIE, STEREOMETRIE 5.1. Planimetrie Die Planimetrie oder auc ebene Geometrie bescäftigt sic mit den in einer Ebene liegenden geometriscen Figuren. Im folgenden Abscnitt sollen die wictigsten

Mehr

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt):

Bestimmung von Azimut und Abstand: Berechnete Höhe (= Entfernung des gegißten Ortes vom Bildpunkt): Bestimmung von Azimut und Abstand: Stundenwinkel: t = Grt + λ + für E-Längen - für W-Längen Berecnete Höe (= Entfernung des gegißten Ortes vom Bildpunkt): sin = sin ϕ sin δ + cos ϕ cosδ cos t Bei der Verwendung

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Berufsmaturitätsprüfung 2012 Mathematik

Berufsmaturitätsprüfung 2012 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmturitätsschule Berufsmturitätsprüfung 2012 Mthemtik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tbellensmmlung ohne gelöste Beispiele,

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Pyramidenvolumen. 6 a2. 9 = a

Pyramidenvolumen. 6 a2. 9 = a Prmidenvolumen 1 Die Ecken einer dreiseitigen Prmide hben die Koordinten (0 0 0), ( 0 0), (0 0) und (0 0 ) mit > 0, H ist der Mittelpunkt der trecke [] lle Ergebnisse ls möglichst einfche Terme mit der

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Aufgabe 1: Die Pyramiden von Gizeh

Aufgabe 1: Die Pyramiden von Gizeh Aufge : Die Pyrmiden von ize Nc der so gennnten Früzeit (850-600 v. Cr.) setzte gleic ls erster kultureller Höepunkt der Bu der großen Pyrmiden, welces rmäler der ltägyptiscen Könige (Pronen) sind, ein.

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

Aufgabentyp 2: Geometrie

Aufgabentyp 2: Geometrie Aufgbe 1: Würfel (1) () (3) (Schülerzeichnung) Wie wurde der links drgestellte Körper jeweils gedreht? Der Körper wurde nch links vorne gekippt. Der Körper wurde nch rechts vorne gekippt. Der Körper wurde

Mehr

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen.

Wir wollen nun die gegenseitige Lage von Punkten, Geraden und Ebenen untersuchen. Lebezieunen Lebezieunen Wir wollen nun die eenseiie Le von Punken, Gerden und benen unersucen.. Le eines Punkes bezülic einer Gerden Ds is eine scon beknne Übun. Nics deso roz ier noc einml ein Beispiel.

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN Einfürung in die Pysik für Cemiker Prof. J. Lipfert en zu Übungsblatt 7 WS 203/4 en zu Übungsblatt 7 Aufgabe Ballscleuder. Zwei Bälle werden übereinander und gleiczeitig fallen gelassen. Die Massen

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an.

Anwendungsaufgaben - Größen und Einheiten 1 Gib jeweils die Messgenauigkeit und die Anzahl der gültigen Ziffern an. Anwendungsaufgaben - Größen und Eineiten 1 Gib jeweils die Messgenauigkeit und die Anzal der gültigen Ziffern an. Messgerät Messwert Messgenauigkeit gültige Ziffern Maßband Lineal Messscieber Mikrometer

Mehr