Bayessches Lernen Aufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bayessches Lernen Aufgaben"

Transkript

1 Bayessches Lernen Aufgaben (0721)

2 Aufgabe 1: Autodiebstahl-Beispiel Wie würde man ein NB-Klassifikator für folgenden Datensatz aufstellen? # Color Type Origin Stolen? 1 Red Sports Domestic Yes 2 Red Sports Domestic No 3 Red Sports Domestic Yes 4 Yellow Sports Domestic No 5 Yellow Sports Imported Yes 6 Yellow SUV Imported No 7 Yellow SUV Imported Yes 8 Yellow SUV Domestic No 9 Red SUV Imported No 10 Red Sports Imported Ye Konkret: Welche Parameter werden benötigt? 2

3 Aufgabe 2: NB-Klassifikatoren f. Bool-Werte Das in Aufgabe 1 gestellte Klassifikationsproblem soll jetzt automatisch berechnet werden. Dazu muss eine Klasse f. Naive Bayes-Netze entwickelt werden, die die benötigten Daten vorhalten kann. Für diese Aufgabe kann die Annahme getroffen werden, dass alle auftretenden Variablen nur boolsche Werte annehmen können. Wichtige Teilaspekte: welche Parameter müssen auf jeden Fall gespeichert werden? wie wird ein Ergebnis errechnet? 3

4 Teilaufgaben in Aufgabe 2 Klasse für NB-Klassifikator muss enthalten Wurzelknoten (Variable, die bestimmt werden soll) Blätter (Variablen, die gemessen werden) Wurzel enthält Wahrscheinlichkeiten der möglichen Werte Blatt enthält Bedingte Wahrscheinlichkeiten für mögliche Werte, geg. mögliche Werte der Wurzel 4

5 Aufgabe 3: NB-Klassifikator einsetzen Die in Aufgabe 2 entwickelte Klasse soll um die für die Anwendung benötigten Methoden ergänzt werden: die Parameter (Wahrscheinlichkeiten) müssen gesetzt werden können Werte von Variablen müssen gesetzt werden können (für die Blätter) die Ableitung der Wahrscheinlichkeit für die Wurzelvariable mittels der Bayesschen Formel muss hinzugefügt werden 5

6 Aufgabe 4: Lernen der Parameter Das in Aufgabe 2 entwickelte Framework soll um die Möglichkeit ergänzt werden, die benötigten Parameter aus gegebenen Trainingsdaten selbst zu berechnen. Wichtige Teilaspekte: Wie kann eine Instanz repräsentiert werden? Wie können daraus die benötigten Parameter bestimmt werden? 6

7 Aufgabe 5: Erweiterung auf diskrete Werte Der Fall diskreter Werte ist erheblich interessanter. Inwieweit ändert sich durch die Betrachtung von diskreten, endlichen Werten etwas an den bisherigen Überlegungen? Wichtige Teilaspekte: Weitere Parameter benötigt? Änderungen an Instanzen-Repräsentation? Änderungen an Netz-Repräsentation? Änderungen bei der Berechnung von Ergebnissen? 7

8 Aufgabe 6: Anwendung auf Tennis-Beispiel Verwenden Sie das in Aufgabe 4 erweiterte Framework, um es auf das Tennis-Beispiel anzuwenden. Vorhersage Temperatur Luftfeuchtigkeit Wind Tennis? sonnig heiß hoch schwach nein sonnig heiß hoch stark nein bedeckt heiß hoch schwach ja regnerisch warm hoch schwach ja regnerisch kalt normal schwach ja regnerisch kalt normal stark nein bedeckt kalt normal stark ja sonnig warm hoch schwach nein sonnig kalt normal schwach ja regnerisch warm normal schwach ja sonnig warm normal stark ja bedeckt warm hoch stark ja bedeckt heiß normal schwach ja regnerisch warm hoch stark nein 8

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch

Einführung: Bayessches Lernen. Dipl.-Inform. Martin Lösch. martin.loesch@kit.edu (0721) 608 45944. Dipl.-Inform. Martin Lösch Einführung: martin.loesch@kit.edu (0721) 608 45944 Übersicht Motivation & Hintergrund Naiver Bayes-Klassifikator Bayessche Netze EM-Algorithmus 2 Was ist eigentlich? MOTIVATION & HINTERGRUND 3 Warum Lernen

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

Lohntabelle gültig ab 1. Januar 2016

Lohntabelle gültig ab 1. Januar 2016 Klasse 1 A 34'953 2'912.75 16.00 37'865.75 B 36'543 3'045.25 16.73 39'588.25 C 38'130 3'177.50 17.46 41'307.50 1 39'720 3'310.00 18.19 43'030.00 2 41'307 3'442.25 18.91 44'749.25 3 42'897 3'574.75 19.64

Mehr

Lohntabelle gültig ab 1. Januar 2015

Lohntabelle gültig ab 1. Januar 2015 Klasse 1 A 34'953 2'912.75 16.00 37'865.75 23666 2'390.40 199.20 B 36'543 3'045.25 16.73 39'588.25 24743 2'499.00 208.25 C 38'130 3'177.50 17.46 41'307.50 25817 2'607.60 217.30 1 39'720 3'310.00 18.19

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen II: Klassifikation mit Entscheidungsbäumen Vera Demberg Universität des Saarlandes 12. Juli 2012 Vera Demberg (UdS) Mathe III 12. Juli 2012 1 / 38 Einleitung

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Großübung zu Einführung in die Programmierung

Großübung zu Einführung in die Programmierung Großübung zu Einführung in die Programmierung Daniel Bimschas, M.Sc. Institut für Telematik, Universität zu Lübeck https://www.itm.uni-luebeck.de/people/bimschas Inhalt 1. Besprechung Übung 4 Iteration

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Fehlerbäume. Beispiel Kuchenbacken. Beispiel Kuchenbacken. Beispiel Kuchenbacken. der Kuchen gelingt nicht. der Kuchen.

Fehlerbäume. Beispiel Kuchenbacken. Beispiel Kuchenbacken. Beispiel Kuchenbacken. der Kuchen gelingt nicht. der Kuchen. Beispiel Kuchenbacken Fehlerbäume es waren nur noch 2 Eier übrig Kuchenform war unauffindbar Präsentation im Fach Computervisualistik Sylvia Glaßer sieht seltsam aus gelingt nicht schmeckt komisch das

Mehr

Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre

Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physik Bachelor 2. Semester Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie Protokoll Harald Schmidt Sven Köppel Versuchsdurchführung:

Mehr

Fertilität und psychische Gesundheit im Alter

Fertilität und psychische Gesundheit im Alter Fertilität und psychische Gesundheit im Alter Kai Eberhard Kruk MEA, Universität Mannheim MEA Jahreskonferenz, 30.11.2010 Mannheim Research Institute for the Economics of Aging www.mea.uni-mannheim.de

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

Die Involutfunktion Inhalt

Die Involutfunktion Inhalt Die Involutfunktion Inhalt Inhalt...1 Grundlagen... Basic-Programm...3 Programm-Ablaufplan Involut rekursiv...3 Programm Involut rekursiv...4 Programme für CASIO fx-7400g PLUS...5 Involutfunktion...5 Involut

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

100 jähriger Kalender für 2016

100 jähriger Kalender für 2016 100 jähriger Kalender für 2016 2016 Vorhersage laut 100 jährigem Kalender - kühler und verschneiter, teils verregneter Winter - bis in den frühen Sommer hinein noch kühle Temperaturen - recht kurzer Sommer

Mehr

Zusammenfassung Performancegesetze

Zusammenfassung Performancegesetze Zusammenfassung Performancegesetze Utilization Law Forced Flow Law Service Demand Law Little s Law Response Time Law 0 i i X V X Z X M/ A 0 i i i S X U 0 i i i i X / U S V D X A N Leistungsmodelle System-

Mehr

Bayessche Netzwerke und ihre Anwendungen

Bayessche Netzwerke und ihre Anwendungen Bayessche Netzwerke und ihre Anwendungen 1. Kapitel: Grundlagen Zweiter Schwerpunktanteil einer Vorlesung im Rahmen des Moduls Systemplanung und Netzwerktheorie (Modul-Nr.: 1863) Fakultät für Informatik

Mehr

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte:

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte: Klausur Informatik 1 SS 08 Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte Gesamtpunkte: Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Mitglieder 3.3.xxx Version Veröffentlicht Änderungen 3.3.130 3.3.129 3.3.128 3.3.127 3.3.125 3.3.123 3.3.122

Mitglieder 3.3.xxx Version Veröffentlicht Änderungen 3.3.130 3.3.129 3.3.128 3.3.127 3.3.125 3.3.123 3.3.122 Auf den folgenden Seiten finden Sie die Beschreibung der behobenen Fehler sowie der geänderten bzw. neu implementierten Funktionen. Version Veröffentlicht Änderungen 3.3.130 16.11.2015 Updatefunktion,

Mehr

Exemplar für Prüfer/innen

Exemplar für Prüfer/innen Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2015 Mathematik Kompensationsprüfung Angabe für Prüfer/innen Hinweise zur Kompensationsprüfung

Mehr

Messung der Wärmekapazität von Nieten

Messung der Wärmekapazität von Nieten 1/1 29.09.00,21:47 Erstellt von Oliver Stamm Messung der Wärmekapazität von Nieten 1. Einleitung 1.1. Die Ausgangslage zum Experiment 1.2. Die Vorgehensweise 2. Theorie 2.1. Begriffe und Variablen 2.2.

Mehr

CSCB - Fotoclub Workshop. TIPS und Grundlagen für gute Bilder

CSCB - Fotoclub Workshop. TIPS und Grundlagen für gute Bilder CSCB - Fotoclub Workshop TIPS und Grundlagen für gute Bilder Themen Übersicht Einführungs-Workshop / Kurs Fokussierung Belichtungsmessung Weitwinkel vs. Tele wie wird scharf gestellt wie wird das Licht

Mehr

Chi Quadrat-Unabhängigkeitstest

Chi Quadrat-Unabhängigkeitstest Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

Mathematische Funktionen

Mathematische Funktionen Mathematische Funktionen Viele Schüler können sich unter diesem Phänomen überhaupt nichts vorstellen, und da zusätzlich mit Buchstaben gerechnet wird, erzeugt es eher sogar Horror. Das ist jedoch gar nicht

Mehr

Mathematische Grundlagen der Computerlinguistik Bäume

Mathematische Grundlagen der Computerlinguistik Bäume Mathematische Grundlagen der Computerlinguistik Dozentin: Wiebke Petersen 6. Foliensatz (basierend auf Folien von Gerhard Jäger) Wiebke Petersen math. Grundlagen 1 Baumdiagramme Ein Baumdiagramm eines

Mehr

Swissfire swiss forest fire database Waldbranddatenbank der Schweiz. Webapplikation Datenverwaltung. Gebrauchsanleitung. www.wsl.

Swissfire swiss forest fire database Waldbranddatenbank der Schweiz. Webapplikation Datenverwaltung. Gebrauchsanleitung. www.wsl. Swissfire swiss forest fire database Waldbranddatenbank der Schweiz www.wsl.ch/swissfire Webapplikation Datenverwaltung Gebrauchsanleitung Kontakt: marco.conedera@wsl.ch boris.pezzatti@wsl.ch larissa.peter@bafu.admin.ch

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Grundzüge der Spieltheorie

Grundzüge der Spieltheorie Grundzüge der Spieltheorie Prof. Dr. Stefan Winter Ruhr-Universität Bochum Begleitmaterialien zur Vorlesung sind abrufbar unter: http://www.rub.de/spieltheorie 1 Die folgende Vorlesungsaufzeichnung und

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009 VERSICHERUNGEN AUF MEHRERE LEBEN Marta Ja lowiecka 23 Januar 2009 1 1 Einführung Im Folgenden werden betrachtet- basierend auf Modellen und Formeln für einfache Versicherungen auf ein Leben- verschiedene

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 50.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Stetige Wahrscheinlichkeitsverteilung

Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische

Mehr

Klausur Physik 1 (GPH1) am 10.7.06

Klausur Physik 1 (GPH1) am 10.7.06 Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 10.7.06 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Naive Bayes. Naive Bayes

Naive Bayes. Naive Bayes Naive Bayes Ein einfacher Klassifikator Wolfgang Konen Fachhochschule Köln November 007 W. Konen DMC WS007 Seite - 1 informatikö Inhalt Naive Bayes Der Ansatz Beispiel Wetterdaten Bayes sche Regel Das

Mehr

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen)

Proseminarvortrag. Markov-Ketten in der Biologie (Anwendungen) Proseminarvortrag Markov-Ketten in der Biologie (Anwendungen) von Peter Drössler 20.01.2010 2 Markov-Ketten in der Biologie (Peter Drössler, KIT 2010) Inhalt 1. Das Wright-Fisher Modell... 3 1.1. Notwendige

Mehr

Suche nach einer dezimalen Darstellung von d

Suche nach einer dezimalen Darstellung von d Didaktik der Algebra und Analysis SS 2011 Bürker, 10. 6. 2011 3.5 Zahlbereichserweiterung Q R Thema: Wurzel aus 2 ist keine rationale Zahl Vorwissen: Die Schüler müssen wissen, dass die Menge der rationalen

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Erstellen von KV-Diagrammen. Fachschule für Mechatroniktechnik Kempten (Allgäu)

Erstellen von KV-Diagrammen. Fachschule für Mechatroniktechnik Kempten (Allgäu) Erstellen von KV-Diagrammen Zeile A 00 0 0 Eine Eingangsvariable Es wird für jede Zeile der Funktionstabelle ein Kästchen aufgezeichnet. Die Zuordnung muss dabei wie nachfolgend abgebildet erfolgen. Die

Mehr

Handbuch für Online-Buchungssystem für Kinderwelt Hamburg https://kinderwelt.formsoft-cash.de/kwabrechnung

Handbuch für Online-Buchungssystem für Kinderwelt Hamburg https://kinderwelt.formsoft-cash.de/kwabrechnung Handbuch für Online-Buchungssystem für Kinderwelt Hamburg https://kinderwelt.formsoft-cash.de/kwabrechnung FORMSOFT interaktiv e.k. - 2014 1 Startseite Von der Startseite aus können Sie verschiedene Funktionen

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

FEMSnap Anleitung SCP-PAD-CES, 2005-01-24

FEMSnap Anleitung SCP-PAD-CES, 2005-01-24 FEMSnap Anleitung SCP-PAD-CES, 2005-01-24 Einführung: FEMSnap ist selbsterklärend. Sie sollten daher ohne weitere Vorbereitung FEMSnap anwenden können. Mit dieser Anleitung können Sie sich offline auf

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Flächeninhalt von Dreiecken

Flächeninhalt von Dreiecken Flächeninhalt von Dreiecken Übungen Antje Schönich Thema Stoffzusammenhang Jahrgangsstufe 6 Übungen zur Flächeninhaltsberechnung von Dreiecken Flächeninhalt von Dreiecken Inhaltsbezogene Kompetenzbereiche

Mehr

Anwendung der Kurvenuntersuchung in der Kostenrechnung eines Industriebetriebes

Anwendung der Kurvenuntersuchung in der Kostenrechnung eines Industriebetriebes Dipl.-Kaufm. Wolfgang Schmitt Aus meiner Skriptenreihe: " Keine Angst vor... " Anwendung der Kurvenuntersuchung in der Kostenrechnung eines Industriebetriebes http://www.nf-lernen.de 1 Inhalt Vorkenntnisse.......................

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Inhaltsverzeichnis VB 2003

Inhaltsverzeichnis VB 2003 VB Inhaltsverzeichnis Inhaltsverzeichnis Die Integralrechnung Die Stammfunktion Wie kommt man zur Stammfunktion am Beispiel der Potenzfunktion Beispiele für Stammfunktionen: Beispiele mit Wurzelfunktionen

Mehr

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de

Skript Prozentrechnung. Erstellt: 2015/16 Von: www.mathe-in-smarties.de Skript Prozentrechnung Erstellt: 2015/16 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Berechnung des Prozentwertes... 5 3. Berechnung des Prozentsatzes... 6 4. Berechnung

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2.

Es gibt insgesamt 14 Grundkompetenzpunkte: Je einen für jede der 12 Teil-1-Aufgaben und jede der beiden mit A gekennzeichnete Aufgaben aus Teil 2. Prototypische Schularbeit 2 Klasse 8 Autor: Mag. Paul Schranz Begleittext Die vorliegende Schularbeit behandelt größtenteils Grundkompetenzen der Inhaltsbereiche Analysis und Wahrscheinlichkeitsrechnung

Mehr

Formelsammlung Fundamentum. Beginnen Sie jede Aufgabe auf einem neuen Blatt. Bei jeder Aufgabe steht die jeweilige maximale Punktzahl.

Formelsammlung Fundamentum. Beginnen Sie jede Aufgabe auf einem neuen Blatt. Bei jeder Aufgabe steht die jeweilige maximale Punktzahl. ! (Md, Pr, Rm) Prüfungsdauer: Maximalpunktzahl: Erlaubte Hilfsmittel: Bemerkungen: h 60 Punkte. Taschenrechner TI-0eco oder ähnlich. Formelsammlung Fundamentum. Beginnen Sie jede Aufgabe auf einem neuen

Mehr

Arbeitshilfe für die Hinterlegung von Unterlagen der Rechnungslegung Eingabeformular

Arbeitshilfe für die Hinterlegung von Unterlagen der Rechnungslegung Eingabeformular Arbeitshilfe für die Hinterlegung von Unterlagen der Rechnungslegung Eingabeformular Für Kleinstunternehmen steht alternativ zum Datei-Upload-Verfahren ein Eingabeformular für die Übermittlung von Jahresabschlussunterlagen

Mehr

b) in Abhängigkeit vom Durchmesser bleibt gleich c) in Abhängigkeit von der Querschnittsfläche bleibt gleich

b) in Abhängigkeit vom Durchmesser bleibt gleich c) in Abhängigkeit von der Querschnittsfläche bleibt gleich 1. Schulaufgabe Physik am Klasse «klasse»; Name 1. Wie verändert sich der Widerstand eines Leiters (kreuze an) a) in Abhängigkeit von der Länge bleibt gleich b) in Abhängigkeit vom Durchmesser bleibt gleich

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

3. Selbstbehalt und Selbstbeteiligung

3. Selbstbehalt und Selbstbeteiligung 3. Selbstbehalt und Selbstbeteiligung Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Selbstbehalt und Selbstbeteiligung 1 / 16 1. Modellrahmen 1.1

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Termumformungen. ALGEBRA Terme 2. Binomische Formeln. INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. 12102. Friedrich W.

Termumformungen. ALGEBRA Terme 2. Binomische Formeln.  INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. 12102. Friedrich W. ALGEBRA Terme Termumformungen Binomische Formeln Meistens in Klasse 8 Datei Nr. 0 Friedrich W. Buckel Stand: 4. November 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 0 Was sind und was leisten

Mehr

Linearaktuatoren. Typen Anwendungsgebiete. Berechnungen Probleme 1-16

Linearaktuatoren. Typen Anwendungsgebiete. Berechnungen Probleme 1-16 Typen Anwendungsgebiete Berechnungen Probleme 1-16 Standard-Hybrid-Linearaktuatoren Linearaktuatoren - Typen Baugröße/ NEMA Max. Geschwindigkeit* Technische Daten Max. Schubkraft* Bezeichnung Gewindesteigung

Mehr

ZENTRALE KLASSENARBEIT 2011 SEKUNDARSCHULE. Mathematik. Schuljahrgang 6

ZENTRALE KLASSENARBEIT 2011 SEKUNDARSCHULE. Mathematik. Schuljahrgang 6 SEKUNDARSCHULE Mathematik Schuljahrgang 6 Arbeitszeit: 45 Minuten Alle Aufgaben sind auf den Arbeitsblättern zu bearbeiten. Dazu gehören auch eventuell erforderliche Nebenrechnungen, Skizzen oder Ähnliches.

Mehr

In diesem Praxisteil soll ein grundlegendes Verständnis für

In diesem Praxisteil soll ein grundlegendes Verständnis für Praxisteil ZigBee In diesem Praxisteil soll ein grundlegendes Verständnis für die Verwendung von Funk- LANs in Gebäuden die ZigBee- Technologie als Beispiel für Mesh- Netze vermittelt werden. Dazu wird

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3 Kombinatorik Die Kombinatorik beschäftigt sich damit, verschiedene mögliche Auswahlen und Anordnungen von Elementen aus endlichen Mengen zu untersuchen. Insbesondere wird die Anzahl dieser berechnet. BEISPIEL:

Mehr

Längenmessung, Toleranzen und Messunsicherheit

Längenmessung, Toleranzen und Messunsicherheit Seite 1 von 22 Längenmessung, Toleranzen und Messunsicherheit Wolfgang Knapp IWF, ETH Zürich Leiter Messtechnik Tannenstrasse 3, CLA G11.2 8092 Zürich Tel 052 680 2504 knapp@iwf.mavt.ethz.ch Seite 2 von

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

Dr. Tobias Günther Programmierung Einführung Probeklausur 120 min

Dr. Tobias Günther Programmierung Einführung Probeklausur 120 min Aufgaben zu Kontrollstrukturen (Pseudocode) Aufgabe Schleifen Stellen Sie mit Hilfe von Pseudocode das Hochzählen einer Variablen jeweils mit Hilfe einer "for" bzw. Mit Hilfe einer "while" Schleife dar.

Mehr

Pluspunkt Deutsch Ergänzungsmaterial zu Band 1, Lektion 11. 1 Wie heißen die Wetter-Wörter? 1. grene 2. diwn. 3. nosen 4. tusrm. 5. chesen 6.

Pluspunkt Deutsch Ergänzungsmaterial zu Band 1, Lektion 11. 1 Wie heißen die Wetter-Wörter? 1. grene 2. diwn. 3. nosen 4. tusrm. 5. chesen 6. Übungsblatt Immer dieses Wetter A Wetter beschreiben 1 Wie heißen die Wetter-Wörter? 1. grene 2. diwn 3. nosen 4. tusrm 5. chesen 6. tegriwet 7. kelow 2 Ergänzen Sie das passende Adjektiv. bewölkt heiß

Mehr

IT > Anleitungen > Windows, Outlook Verteilerlisten erstellen (vor 2010) Verteilerliste erstellen

IT > Anleitungen > Windows, Outlook Verteilerlisten erstellen (vor 2010) Verteilerliste erstellen Verteilerliste erstellen Verteilerlisten sind für den Versand von E-Mail-Nachrichten und Besprechungsanfragen sehr nützlich, denn Sie in E-Mails, die an mehrere Empfänger gerichtet sind, nicht immer alle

Mehr

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Mathematik Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Fachcurriculum Standards 10 Johannes-Kepler-Gymnasium Weil der Stadt Stand vom 19.8.2008 1 Stand 19.08.2008 Stundenzahl in

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Effizienz von Algorithmen

Effizienz von Algorithmen Effizienz von Algorithmen Letzte Bearbeitung: Jan 211 Ein wichtiger Aspekt bei Algorithmen sind seine "Kosten". Wir wollen uns hier ausschließlich mit der Laufzeit des gewählten Algorithmus beschäftigen.

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

2. Aufgabe Die Berechnung der optimalen Bestellmenge mittels der Andler'schen Formel basiert auf den vier Parametern

2. Aufgabe Die Berechnung der optimalen Bestellmenge mittels der Andler'schen Formel basiert auf den vier Parametern 1. Aufgabe (a) Welches Ziel verfolgt die Berechnung der optimalen Bestellmenge? (b) In welchen betrieblichen Situationen sollte von der optimalen Bestellmenge abgewichen werden? (c) Nennen und erläutern

Mehr