Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "www.mathe-aufgaben.com"

Transkript

1 Berfliches Gymnasim (WG, EG, AG, SG) Haptprüfng 0 Teil 4, Lineare Optimierng, Afgabe Baden-Württemberg. Af den Malediven soll eine nee Hotelanlage entstehen. Die Investoren wollen eine Fläche von 400 m² mit maximal 90 Bngalows bebaen. Zr Aswahl stehen folgende Bngalow-Typen: Bngalow für Personen Bngalow für 4 Personen Bngalow für Personen Größe 0 m² 80 m² 90 m² Einnahmen pro Tag Das geplante hoteleigene Restarant fasst 00 Personen, so dass Bngalows für eine Gästezahl von maximal 00 Personen gebat werden sollen... Die Investoren planen in einem ersten Szenario nr Bngalows für nd für 4 Personen. Zeichnen Sie das Planngsvieleck. Wie viele Bngalows für Personen können gebat werden, wenn die Einnahmen maximiert werden sollen? ( Pnkte).. In einem zweiten Szenario sind neben den - nd 4-Personen-Bngalows noch - Personen-Bngalows zgelassen. Alle anderen Bedingngen bleiben gleich. Bestimmen Sie mittels des Simplexverfahrens, wie viele Bngalows der verschiedenen Größen gebat werden müssen, m möglichst hohe Einnahmen z erzielen. (4 Pnkte). Für k ist das folgende lineare Gleichngssystem gegeben: 4x + x + (k 4)x = x x + (k )x = k (k k )x = k 4 Unterschen Sie, für welche Werte von k das lineare Gleichngssystem nlösbar, mehrdetig lösbar bzw. eindetig lösbar ist. (5 Pnkte) Pnkte

2 Berfliches Gymnasim (WG, EG, AG, SG) Haptprüfng 0 Teil 4, Lineare Optimierng, Lösng z Afgabe Baden-Württemberg.. x = Anzahl der -Personen-Bngalows y = Anzahl der 4-Personen-Bngalows Es gelten folgende Einschränkngen: x + y 90 0x + 80y 400 x + 4y 00 Z maximieren sind die Einnahmen E = 45x + 0y Um das Planngsvieleck z zeichnen, müssen die Ungleichngen jeweils nach y afgelöst werden: () y 90 x () y 80 x 4 () y 75 0,5x Planngsvieleck:

3 Um die maximalen Einnahmen z bestimmen, werden die einzelnen Eckpnkte des Planngsvielecks in die Erlösformel eingesetzt. Pnkt P(0/75): E = = 4500 Ero Pnkt A(0/5): E = = 4800 Ero Pnkt B(40/50): E = = 4800 Ero Pnkt D(90/0): E = = 4050 Ero Die maximalen Einnahmen betragen 4800 Ero. Hierfür gibt es mehrere Möglichkeiten. Zm Beispiel den Ba von 0 -Personen- Bngalows nd 5 4-Personen-Bngalows. Oder den Ba von 40 -Personen-Bngalows nd 50 4-Personen-Bngalows... x = Anzahl der -Personen-Bngalows y = Anzahl der 4-Personen-Bngalows z = Anzahl der -Personen-Bngalows Es gelten folgende Einschränkngen: x + y + z 90 0x + 80y + 90z 400 x + 4y + z 00 Z maximieren sind die Einnahmen 45x + 0y + 90z = E Einführng von Schlpfvariablen ergibt folgendes Gleichngssytem x + y + z + = 90 0x + 80y + 90z + = 400 x + 4y + z + = 00 Afstellen des Simplex-Tableas: x y z Ergebnis Qotient () () /9 () Zielfkt E Die größte positive Zahl in der Zielfnktion ist in der.spalte. Der kleinste Qotient ist in der.zeile. Daher ist das Pivotelement

4 Division der.zeile drch : x y z Ergebnis Umformng () () () () () 90 () () Zielfkt E Zielfkt 90 () x y z Ergebnis Qotient () () / () Zielfkt E-4500 Die größte positive Zahl in der Zielfnktion ist in der.spalte. Der kleinste Qotient ist in der.zeile. Daher ist das Pivotelement. Division der.zeile drch : x y z Ergebnis Umformng () 0,5 0,5 0-0,5 0 () () 0 () () () () Zielfkt E-4500 Zielfkt 5 () x y z Ergebnis () 0,5 0,5 0-0,5 0 () ,5 00 () 0,5 -,5 0 0,75 90 Zielfkt. 0-7,5 0 -,5 0 -,5 E-5400 Ein weiterer Schritt ist nicht erforderlich, da in der Zielfnktionszeile alle Zahlen negativ sind. Die maximalen Einnahmen betragen 5400 Ero. Es gilt x = 0, y = 0, z = 0, = = 0 nd = 00. Es müssen 0 -Personen-Bngalows, nd 0 -Personen-Bngalows sowie keine 4- Personen-Bngalows gebat werden. Hierbei werden = 00 m² der Fläche nicht asgeschöpft. 4

5 Znächst wird das LGS af Stfenform gebracht. Hierz mss der Asdrck x af Nll gebracht werden. 4x + x + (k 4)x = ( ) x x + (k )x = k (k k )x = k 4 4x + x + (k 4)x = x + ( k + 9)x = + k (k k )x = k 4 Wenn vor. k k = 0 ergibt, liegt ein Sonderfall (das heißt nlösbar oder mehrdetig lösbar) ± + 4 ± 5 k k = 0 k, = = nd damit k = oder k = -. Für k = latet die letzte Zeile: 0x = 5, was z einem Widersprch führt. Daher besitzt das LGS für k = keine Lösng. Für k = - latet die letzte Zeile 0x = 0, was z einer wahren Assage 0 = 0 führt. Daher besitzt das LGS für k = - nendlich viele Lösngen. Für alle anderen Werte von k besitzt das LGS eine eindetige Lösng. 5

Aufgaben zu Exponentialgleichungen

Aufgaben zu Exponentialgleichungen www.mathe-afgaben.com Afgaben z Eponentialgleichngen Definition Logarithms: b a b a Logarithmengesetze. Logarithmengesetz: ( y) () (y) b b. Logarithmengesetz: b( ) b() b(y) y. Logarithmengesetz: ( ) m

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 8 Teil, Lineare Optimierung, Aufgabe Baden-Württemberg.. Ein Fertigungsbetrieb für Frottierartikel stellt unter anderem Handtücher und Badetücher her.

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg 2.1 Weinbauer Müller kann maximal 30 Hektar Rebfläche bewirtschaften. Er möchte Gutedel-

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt

Michael Buhlmann Mathematik > Vektorrechnung > Kreuzprodukt Michael Bhlmann Mathematik > Vektorrechnng > Krezprodkt Einleitng a Für zwei Vektoren a a nd gelten im dreidimensionalen reellen Vektorram a neen der Addition Vektoraddition) nd der Mltiplikation mit einer

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Lösungen E: Gutenberg-Produktionsmodell

Lösungen E: Gutenberg-Produktionsmodell Craskrs Aktiitätsanalyse nd Kostenbeertng SS 00.ni-nacilfe.de Lösngen E: Gtenberg-Prodktionsmodell E.a) As den gegebenen Daten kann direkt die kostenfnktion übernommen erden: k a+ a + a33 ( 0, ² +,9) +

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

ÜbungsaufgabeN mit Lösungen

ÜbungsaufgabeN mit Lösungen ÜbngsafgabeN mt Lösngen Statstk / Grndstdm Statstk I G - 3. Fachhochschle der Detschen Bndesbank Dr. Detmar Hbrch Dr. Detmar Hbrch Statstk I Afgaben nd Lösngen Fachhochschle der G 3. Detschen Bndesbank

Mehr

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z

8 (z.b.) (1 P.) z. (0.5 P.) (0.5 P.) x. (z.b.) (0.5 P.) z Gymnasim Bämlihof Matritätsprüfngen 9 Seite 1 on 1 fgabe 1 Ramgeometrie 15 P. a) k CS CS CS 4 4 9 7 CS ( 4) 7 74 8.65... 8.6 1.5 P. b) c) Variante: Direkt in Distanzformel einsetzen. x 6 g : y 4 s 4 4

Mehr

Hauptprüfung 2009 Aufgabe 4

Hauptprüfung 2009 Aufgabe 4 Haptpüfng 9 Afgabe 4 Gegeben ind die Geaden g: x nd h: x mit, 4. Beechnen Sie die Koodinaten de Schnittpnkte de Geaden g nd h. Beechnen Sie den Schnittwinkel δ de Geaden g nd h. Becheiben Sie die beondee

Mehr

Lagebeziehungen. Titel Beschreibung Allgemeine Vorgehensweise Beispiel. Lage zwischen Geraden. g und h gleichsetzen. LGS lösen.

Lagebeziehungen. Titel Beschreibung Allgemeine Vorgehensweise Beispiel. Lage zwischen Geraden. g und h gleichsetzen. LGS lösen. Lagebeziehngen Titel Bescheibng Allgemeine Vogehensweise Beispiel Lage zwischen Geaden Zwei Geaden g nd h im Ram können......sich schneiden. Sie besitzen einen einzigen gemeinsamen Pnkt...zeinande paallel

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institt für Regelngs- nd Atomatisierngstechnik A Schriftliche Prüfng as Control Systems am 5 0 006 Name / Vorname(n): Kenn-MatrNr: Gebrtsdatm: BONUSPUNKTE as Compterrechenübng: 3 erreichbare Pnkte

Mehr

Ferienkurs Analysis 3 für Physiker. Integralsätze

Ferienkurs Analysis 3 für Physiker. Integralsätze Ferienkrs Analysis 3 für Physiker Integralsätze Ator: Benjamin Rüth Stand: 17. März 214 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Differentialoperatoren 3 2 Integralsatz von Gaß 4 2.1

Mehr

Zusammenfassung Lineare Algebra und Analytische Geometrie

Zusammenfassung Lineare Algebra und Analytische Geometrie Technik Zsmmenfssng Linere Alger nd Anlytische Geometrie Begriff Ortsvektor Vektor mit Anfngspnkt im Koordintenrsprng: OA æ ö = ç ; ç çè ø OB Berechnng æ ö = ç ç çè ø Addition zweier Vektoren Die Komponentenwerte

Mehr

Checkliste 36 Formulierung exportbezogener Zahlungsbedingungen

Checkliste 36 Formulierung exportbezogener Zahlungsbedingungen Checkliste 36 Formlierng exportbezogener Zahlngsbedingngen Definition Mit der im Kafvertrag vereinbarten Zahlngsbedingng sollen.a. folgende Pnkte geregelt werden: wer zahlt an wen wann wo welchen Betrag

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Achsen eines Parallelogramms. Eckart Schmidt

Achsen eines Parallelogramms. Eckart Schmidt Achsen eines Parallelogramms Eckart Schmidt Eine Achsenkonstrktion für Ellipsen dürfte hete kam Thema der Schlgeometrie sein Betrachtet man statt der Ellipse ein einbeschriebenes Parallelogramm z konjgierten

Mehr

Überlegen Sie, ob es weitere Verfahren zur Berechnung des Abstandes eines Punktes von einer Geraden gibt, die ggf. einfacher durchzuführen sind.

Überlegen Sie, ob es weitere Verfahren zur Berechnung des Abstandes eines Punktes von einer Geraden gibt, die ggf. einfacher durchzuführen sind. Abstan Pnkt / Gerae Afabe: Entwickeln Sie ein Verfahren zr Berechnn es Abstanes eines Pnktes von einer Geraen n führen Sie ieses Verfahren am Beispiel von (3 0-8) n : x ; t I; rch. Überleen Sie, ob es

Mehr

Quellen und Senken als Feldursachen

Quellen und Senken als Feldursachen Kapitel 2 Qellen nd Senken als Feldrsachen Wir sprechen von Qellenfeldern nd Wirbelfeldern. Beide nterscheiden sich grndlegend voneinander. Wir wollen deswegen beide Feldarten getrennt besprechen, m deren

Mehr

Beschäftigungstheorie

Beschäftigungstheorie Prof. Dr. Oliver Landmann SS 2006 Beschäftigngstheorie Nachholklasr vom 7. Oktober 2006 Afgabe (30 %) Nehmen Sie an, die makroökonomische Dynamik eines grossen Landes der Ero-Zone lasse sich in kontinierlicher

Mehr

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Werkrealschule Realschule

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Werkrealschule Realschule paker. 25 Ja hr e pa k er Abschlss2014 Haptschle Werkrealschle Realschle W B ür ad tt e em nbe rg Prüfngsvorbereitng Übngsmaterial 1 BW_2013_kompl.indd 1 25 Jahre paker Seit nnmehr einem Vierteljahrhndert

Mehr

Dynamische Untersuchungen eines netzgekoppelten Photovoltaik-Wechselrichters unter Fehlerbedingungen

Dynamische Untersuchungen eines netzgekoppelten Photovoltaik-Wechselrichters unter Fehlerbedingungen Dynamische Unterschngen eines netzgekoppelten Photovoltaik-Wechselrichters nter Fehlerbedingngen Tobias Nemann Abstract Der vorliegende Beitrag beschäftigt sich mit dem dynamischen Verhalten von netzgekoppelten

Mehr

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen

Vektorraum. Ist =, so spricht man von einem reellen Vektorraum, ist =, so spricht man von einem komplexen 6. Vektorra Ein Vektorra oder linearer Ra ist eine algebraische Strktr die in fast allen Zweigen der Matheatik erwendet wird. Eingehend betrachtet werden Vektorräe in der Linearen Algebra. Die Eleente

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

3 Flächen und Flächenintegrale

3 Flächen und Flächenintegrale 3 Flächen Flächen sind im dreidimensionalen Ram eingebettete zweidimensionale geometrische Objekte In der Mechanik werden zb Membranen nd chalen als Flächen idealisiert In der Geometrie treten Flächen

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

Yield Management II. Das Zeitungsjungenproblem

Yield Management II. Das Zeitungsjungenproblem II Flie 1 Das Zeitngsjngenprblem Ein Zeitngsjnge kaft Zeitngen beim Verlag für f c je Stück ein nd verkaft sie für f p je Stück. Die Nachfrage nach Zeitngen x ist stchastisch. Der Zeitngsjnge kennt die

Mehr

Mathe mit Mieze Mia Mia hat Würfel eingenetzt. Mathe mit Mieze Mia

Mathe mit Mieze Mia Mia hat Würfel eingenetzt. Mathe mit Mieze Mia Mathe mit Mieze Mia Mathe mit Mieze Mia Mia hat Würfel eingenetzt Dieses Lernheft habe ich für meinen eigenen Unterricht erstellt nd stelle es af meiner privaten Homepage www.grndschlnews.de zm absolt

Mehr

7 Lineare Gleichungssysteme

7 Lineare Gleichungssysteme 116 7 Lineare Gleichngsssteme Lineare Gleichngsssteme treten in vielen mathematischen, aber ach natrwissenschaftlichen Problemen af; m Beispiel beim Lösen von Differentialgleichngen, bei Optimierngsafgaben,

Mehr

Graphentheorie. Planarität und Dualität. Planarität und Dualität. Planarität und Dualität. Rainer Schrader. 28. November 2007.

Graphentheorie. Planarität und Dualität. Planarität und Dualität. Planarität und Dualität. Rainer Schrader. 28. November 2007. raphentheorie Rainer Schrader Zentrm für Angewandte Informatik Köln 8. Noember 007 1 / 67 / 67 liederng planare raphen Eler-Formel Charakterisierng planarer raphen Erweiterngen kreisplanare raphen Dalität

Mehr

Die "Goldene Regel der Messtechnik" ist nicht mehr der Stand der Technik

Die Goldene Regel der Messtechnik ist nicht mehr der Stand der Technik Die "Goldene Regel der Messtechnik" Ator: Dipl.-Ing. Morteza Farmani Häfig wird von den Teilnehmern nserer Seminare zr Messsystemanalyse nd zr Messnsicherheitsstdie die Frage gestellt, für welche Toleranz

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

Labor Messtechnik Versuch 4 Dehnungsmesstechnik

Labor Messtechnik Versuch 4 Dehnungsmesstechnik F Ingenierwesen FR Maschinenba Versch 4 Dehnngsmesstechnik Seite 1 von 8 Versch 4: Dehnngsmesstechnik 1. Verschsafba 1.1. Umfang des Versches Im Versch werden folgende Themenkreise behandelt: - Verschsstand

Mehr

Umdruck IV: Transformatoren. 1 Idealer, festgekoppelter und realer Transformator

Umdruck IV: Transformatoren. 1 Idealer, festgekoppelter und realer Transformator Universität Stttgart Institt für Leistngselektronik nd lektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow ÜBUG ZU LKTRISCH RGITCHIK II Hinweis zr Pfeilng der Spannngen nd zr Festlegng des Wickelsinnes:

Mehr

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ

T6 THERMOELEMENT UND ABKÜHLUNGSGESETZ PHYSIKALISCHE GRUNDLAGEN Wichtige Grndbegriffe: ermspannng, ermelement, ermkraft, Astrittsarbeit, Newtnsches Abkühlngsgesetz Beschreibng eines ermelementes: Ein ermelement besteht as zwei Drähten verschiedenen

Mehr

Gesellschaft für Informatik, Arbeitskreis IV Beratung

Gesellschaft für Informatik, Arbeitskreis IV Beratung Gesellschaft für Informatik, Arbeitskreis IV Beratng Welche Kenntnisse nd Fähigkeiten it sich Beratngsnternehmen bei Hochschlabsolventen wünschen Statement Version 0.9 Bad Hombrg, im Febrar 2010 Agenda

Mehr

2 Addition, Subtraktion und Skalar-Multiplikation von Vektoren

2 Addition, Subtraktion und Skalar-Multiplikation von Vektoren 2 Addition, Sbtrktion nd Sklr-Mltipliktion on Vektoren 2 Addition, Sbtrktion nd Sklr-Mltipliktion on Vektoren 2.1 Addition on Vektoren An die Spitze des Vektors des 1. Smmnden ird der Fß des Vektors des

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Der Approximationsalgorithmus von Christofides

Der Approximationsalgorithmus von Christofides Der Approximationsalgorithms on Christofides Problem: Traeling Salesman Inpt: Ein Graph G = (V, E) mit einer Distanzfnktion d : E Q 0. Afgabe: Finde eine Tor, die alle Knoten des Graphen G gena einmal

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Baden-Württember: Facocsclreife 2014 www.mate-afaben.com Haptprüfn Facocsclreife 2014 Baden-Württember Afabe 3 Analysis Hilfsmittel: rafikfäier Tascenrecner Berfskolle Alexander Scwarz www.mate-afaben.com

Mehr

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält.

B: Gleichung der Kugel mit Zentrum M(3, -2, 1), die den Punkt P(1, 4, 4) enthält. 5 0. Die Kgel 0. Die Kgelgleichng Def. Unter der Kgel k mit Mittelpnkt M nd adis verstehen wir die Menge aller Pnkte P, die vom Mittelpnkt M einen vorgegebenen abstand haben, für die also gilt: MP MP oder

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 c 001 by Rainer Müller - www.emah.de 1 Lösng Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR a Asympoen Senkreche Asympoen Es

Mehr

Lösen einer Gleichung

Lösen einer Gleichung Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in

Mehr

Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse

Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse Mathematik Vergleichsarbeit 2010 Baden-Württemberg Gymnasium Bildungsstandard 6.Klasse Gesamte Bearbeitungszeit: 60 Minuten Diese Aufgaben sind ohne Taschenrechner zu bearbeiten! Aufgabe 1: Berechne 5

Mehr

Thermodynamik 2. Kältemaschinen Wärmepumpen

Thermodynamik 2. Kältemaschinen Wärmepumpen Thermodynamik 2 Kältemaschinen Wärmepmpen Linkslafender Carnot-Prozess Seite 80 Kraft-Wärme-Prozesse Kältemaschine z.b. Kühlschrank, Klimaanlage Leistngszahl: Wärmepmpe z.b. Wohnramheizng Leistngszahl:

Mehr

Magische Quadrate. Mögliche Aufgabenstellungen: Überprüfen, ob ein vorgegebenes Zahlenquadrat ein magisches Quadrat ist.

Magische Quadrate. Mögliche Aufgabenstellungen: Überprüfen, ob ein vorgegebenes Zahlenquadrat ein magisches Quadrat ist. . Was sind magische Quadrate? Magische Quadrate Die Zahlen bis lassen sich auf vielerlei Arten so in einem x Quadrat anordnen, dass - jede der vier Zeilensummen, - jede der vier Spaltensummen - und auch

Mehr

matheskript Analysis Teil II GEBROCHENRATIONALE und EXPONENTIALFUNKTIONEN 12. Klasse 2014 Jens Möller

matheskript Analysis Teil II GEBROCHENRATIONALE und EXPONENTIALFUNKTIONEN 12. Klasse 2014 Jens Möller 6 5 matheskript 5 Analsis 6 Teil II GEBROCHENRATIONALE nd EXPONENTIALFUNKTIONEN. Klasse 0 Jens Möller Ator: Jens Möller Owingen Tel. 0755-6889 Hjmoellerowingen@aol.com 5. Aflage Owingen 0 Bestellng bei

Mehr

Numerische Hydrodynamik: Stoßrohr

Numerische Hydrodynamik: Stoßrohr Proekt 4 Nmerische Hydrodynamik: Stoßrohr (Wilhelm Kley) 4. Einführng In diesem Versch wird eine Methode zr Lösng der ein-dimensionalen Hydrodynamik- Gleichngen vorgestellt, welche von den Teilnehmern

Mehr

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz

Formfunktionen (Interpolation): Bedeutung und praktischer Einsatz Formfnktionen (Interpolation): Bedetng nd praktischer Einsatz Dr.-Ing. Martin Zimmermann Lehrsthl für Konstrktionslehre nd CAD Universität Bayreth Einleitng, Problem nd Motivation Knoten Steifigkeit Elemente

Mehr

Forderungskatalog. Studierendenschaften. der Landeskonferenz der. Mecklenburg-Vorpommern

Forderungskatalog. Studierendenschaften. der Landeskonferenz der. Mecklenburg-Vorpommern Forderngskatalog der Landeskonferenz der Stdierendenschaften Mecklenbrg-Vorpommern Die Landeskonferenz der Stdierendenschaften ist die Vertretng aller Stdierenden in Mecklenbrg-Vorpommern gemäß 25 (6)

Mehr

7.1. Aufgaben zu Vektoren

7.1. Aufgaben zu Vektoren 7.. Afgben z Vektoren Afgbe : Vektoren in der Ebene ) Zeichne die folgenden Vektoren ls Ortsvektoren in eine pssende Koordintenebene (x -x -Ebene, x -x -Ebene oder x - x -Ebene) des krtesischen Koordintensystems.,,,

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

The Royal London With Profits Bond Plus

The Royal London With Profits Bond Plus The Royal London With Profits Bond Pls Stärke nd Sicherheit In Zeiten des Wandels, bietet Ihnen der Royal London With Profits Bond Pls ein aßergewöhnliches Maß an Sicherheit nd Entwicklngspotenzial. Dank

Mehr

Die Begriffe der absoluten, relativen und kumulierten Häufigkeit - diskrete Beobachtungen - (empirische Dichte und empirische Verteilung)

Die Begriffe der absoluten, relativen und kumulierten Häufigkeit - diskrete Beobachtungen - (empirische Dichte und empirische Verteilung) Häfigkeit (relative nd kmlierte Häfigkeit) Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistiqe/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

F5: Dichte fester Körper. Verfasserin: Dan-Nha Huynh, 512230 Versuchspartner: Marco Kraft Versuchsbetreuer: K. Sauer Versuchsplatz: 3

F5: Dichte fester Körper. Verfasserin: Dan-Nha Huynh, 512230 Versuchspartner: Marco Kraft Versuchsbetreuer: K. Sauer Versuchsplatz: 3 F5: Dichte fester Körper Verfasserin: Dan-Nha Hynh, 50 Verschspartner: Marco Kraft Verschsbetreer: K. Saer Verschsplatz: Verschsdat: 8. Jni 008 F5: DICHTE FESTER KÖRPER. ZIESTEUNG. EINFÜHRUNG. IN UFT GEWOGENE

Mehr

14 Allgemeines Gleichgewicht

14 Allgemeines Gleichgewicht 4 llgemeines Gleichgewicht Gleichgewicht af einem einzelnen Markt Unternehmen Geld Gt Hashalte llgemeines Gleichgewicht Faktoren Kosten + Gewinn = Einkommen Unternehmen Hashalte Erlös = Konsmasgaben Konsmgüter

Mehr

Discrete Cost Multicommodity Network Optimization

Discrete Cost Multicommodity Network Optimization Discrete Cost Mlticommodity Network Optimization Seminar Operations Research WS 2007/2008 Seminarasarbeitng von Niklas Germann Inhaltsverzeichnis 1 Einführende Problemstellng 1 2 Modellierng 1 3 Lösngsansatz

Mehr

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor:

Um vorerst bei den geometrischen Aufgaben zu bleiben, stelle dir folgendes Problem vor: Erkläre bitte Extremwertaufgaben... Extremwertaufgaben Sobald man verstanden hat, was ein Extremwert einer Funktion ist (ein lokales Maximum oder Minimum) stellt sich die Frage Und was mach ich damit??.

Mehr

Übungen Kapitel 3: Arbeitsangebot

Übungen Kapitel 3: Arbeitsangebot Übngen Kapitel 3: Arbeitsangebot Christian Keschnigg Universität St.Gallen, FGN September 24 Exercise Die Präferenzen seien Y, = α ln (Y )+( α)ln. Der ohnsatz sei w nd das exogene Nicht-Arbeitseinkommen

Mehr

Webers Smart Sudoku. - Ergänzung zum ebook. 20 Sudoku vom Feinsten mit Kommentaren und Lösungen

Webers Smart Sudoku. - Ergänzung zum ebook. 20 Sudoku vom Feinsten mit Kommentaren und Lösungen Webers Smart Sudoku - Ergänzung zum ebook 20 Sudoku vom Feinsten mit Kommentaren und Lösungen Ein Service des Autors www.inoweber-schriftsteller.jimdo.com Nr. 1 Eine einfache Übung zum Aufwärmen. Rastern

Mehr

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem

Definition und Eigenschaften von elliptischen Funktionen Thomas Regier. 1. Verdoppelung des Lemniskatenbogens und erweitertes Additionstheorem Definition nd Eigenschaften von elliptischen Fnktionen Thomas Regier. Verdoppelng des Lemniskatenbogens nd erweitertes Additionstheorem Elliptische Integrale berechnen die Krvenlänge von z.b. elliptischen

Mehr

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Realschule

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Realschule paker. 25 Ja hr e pa k er Abschlss2014 Prüfngsvorbereitng Übngsmaterial Ni ed er sa ch se n Haptschle Realschle 1 NDS_2013_kompl.indd 1 19.07.13 11:46 25 Jahre paker Seit nnmehr einem Vierteljahrhndert

Mehr

ScanSoft Europe BV Randstad 22-139 1316 BW Almere Niederlande Teilenummer 50-28001-02A

ScanSoft Europe BV Randstad 22-139 1316 BW Almere Niederlande Teilenummer 50-28001-02A R E C H T S H I N W E I S E Copyright 2001 ScanSoft, Inc. Alle Rechte vorbehalten. Kein Teil dieser Veröffentlichng darf in irgendeiner Form oder drch irgendwelche Mittel, sei es mechanisch, elektronisch,

Mehr

Fakultät für Physik Prof. Dr. M. Weber, Dr. K. Rabbertz D. Karnick, S. Kudella, W.Y. Tan, B. Zimmermann. U a

Fakultät für Physik Prof. Dr. M. Weber, Dr. K. Rabbertz D. Karnick, S. Kudella, W.Y. Tan, B. Zimmermann. U a Fakltät für Physik Prof. Dr. M. Weber, Dr. K. Rabbertz D. Karnick, S. Kdella, W.Y. Tan, B. Zimmermann 5. November 205 Übng Nr. A5/D2 Inhaltsverzeichnis 2. Die Grndschaltngen des OPV.................................

Mehr

IK Ökonomische Entscheidungen und Märkte

IK Ökonomische Entscheidungen und Märkte IK Ökonomische Entscheidungen und Märkte LVA-Leiterin: Ana-Maria Vasilache Einheit 6/I: Märkte und Wohlfahrt (Kapitel 9) Märkte und Wohlfahrt Fragestellung: Ist die zum Gleichgewichtspreis produzierte

Mehr

ClickSoftware Mobilitätslösungen bieten mehr als nur Transparenz

ClickSoftware Mobilitätslösungen bieten mehr als nur Transparenz ClickSoftware Mobilitätslösungen bieten mehr als nur Transparenz Einführung Die Nutzung einer Dispositionslösung zur Optimierung des Workforce-Managements bringt viele Vorteile mit sich. Für die meisten

Mehr

Spiel Abgefahrene Vögel

Spiel Abgefahrene Vögel PDF Lernzirkel_Wintergaeste_Abgefahrene_Voegel Spiel Abgefahrene Vögel Dieses Spiel ist konzipiert für den Lernzirkel Wintergäste af dem Ammersee (vgl. PDF Lernzirkel_Wintergaeste_Projektbeschreibng),

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

4 Halbleiterelektronik Operationsverstärker Ersatzschaltbild des einstufigen Wechselstromverstärkers

4 Halbleiterelektronik Operationsverstärker Ersatzschaltbild des einstufigen Wechselstromverstärkers Universität Stttgart Institt für Leistngselektronik nd Elektrische Antriebe Abt. Elektrische Energiewandlng Prof. Dr.-Ing. N. Parspor Inhalt 4 Halbleiterelektronik Operationsverstärker... 4-46 4.5 Der

Mehr

Binnendifferenzierung in der Kursstufe Beispiel 6: gestufte Hilfestellung / verschiedene Lösungswege Abstand Punkt Gerade

Binnendifferenzierung in der Kursstufe Beispiel 6: gestufte Hilfestellung / verschiedene Lösungswege Abstand Punkt Gerade Binnenifferenziern in er Krsstfe Beispiel 6: estfte ilfestelln / verschieene Lösnswee Abstan Pnkt Gerae Thema er Unterrichtseinheit: Abstan Pnkt/Gerae Methoe: Abestfte ilfestelln / Afaben zr Wahl / (Marktplatz

Mehr

Member of the NKT Group. Wir verbinden erneuerbare Energien. Onshore, Offshore und Photovoltaik

Member of the NKT Group. Wir verbinden erneuerbare Energien. Onshore, Offshore und Photovoltaik Member of the NKT Grop Wir verbinden erneerbare Energien Onshore, Offshore nd Photovoltaik Completing the pictre www.nktcables.de Wir verbinden erneerbare Energien Hetztage gewinnen die erneerbaren nd

Mehr

Ansicht 10 P. Aufsicht 12 P m m 12 P 2 P 4 P 4 P 4 P m 7.50 m

Ansicht 10 P. Aufsicht 12 P m m 12 P 2 P 4 P 4 P 4 P m 7.50 m Berechnng FEMrämlichen Fachwerks eines Beisiel zr ehrveranstaltng Ein der Finite Elemente Methode Grndlagen Systembeschreibng Geometrie nd Abmessngen des Systems.... Materialarameter................. Skizzen

Mehr

1 Pythagoräische Zahlentripel

1 Pythagoräische Zahlentripel 1 Pythagoräische Zahlentripel Wir fragen ns nn, welche natürlichen Zahlen die Gleichng 2 + y 2 = 2 lösen. Übng 1 Finden Sie Zahlentripel (; y; ) 2 N 3, mit 1 ; y < ; welche die Gleichng 2 + y 2 = 2 lösen.

Mehr

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Realschule

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Realschule paker. 25 Ja hr e pa k er Abschlss2014 Prüfngsvorbereitng Übngsmaterial He ss en Haptschle Realschle 1 Hessen_2013_kompl.indd 1 19.07.13 11:39 25 Jahre paker Seit nnmehr einem Vierteljahrhndert sind wir

Mehr

Blatt 14.2: Integralsätze von Gauß und Stokes

Blatt 14.2: Integralsätze von Gauß und Stokes Fakltät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan on Delft Übngen: Benedikt Brognolo, Dennis Schimmel, Frake Scharz, Lkas Weidinger http://homepages.physik.ni-menchen.de/~ondelft/lehre/5r/

Mehr

Facharbeit Mathematik Die Zahl π. Sascha Lambeck Jahrgangsstufe 12 Leistungskurs Mathematik M1 Fachlehrer: Herr Tobias Schuljahr 2000 / 01

Facharbeit Mathematik Die Zahl π. Sascha Lambeck Jahrgangsstufe 12 Leistungskurs Mathematik M1 Fachlehrer: Herr Tobias Schuljahr 2000 / 01 Facharbeit Mathematik Die Zahl π Sascha Lambeck Jahrgangsstfe Leistngskrs Mathematik M Fachlehrer: Herr Tobias Schljahr / Inhaltsverzeichnis Einleitng 3. Vorwort.............................. 3. Geschichtliches..........................

Mehr

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter :

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter : Mathematik MB Übungsblatt Termin Lösungen Themen: Grundlagen Vektoren und LGS ( Aufgaben) DHBW STUTTGART WS / Termin SEITE VON Aufgabe (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden

Mehr

Der Bewertungskalkül der Faustmann schen Formel

Der Bewertungskalkül der Faustmann schen Formel Der Bewertngskalkül der Fastmann schen Formel Der sich hinter der Fastmann-Formel verbergende Bewertngskalkül wrde bereits vor Fastmann von G. König verwendet (KÖNIG, G., 835: Die Forstmathematik mit Anweisng

Mehr

Analytische Geometrie Lehrbuch. Skriptum zum Vorbereitungskurs

Analytische Geometrie Lehrbuch. Skriptum zum Vorbereitungskurs Analytische Geometrie Lehrbuch Skriptum zum Vorbereitungskurs WICHTIGER HINWEIS: Ich bitte den Eigentümer dieses Skriptes, weder das gesamte Skript noch Teilauszüge daraus zu kopieren, einzuscannen oder

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Musterlösung zum Kurs 42110, EA zu KE 2, WS 2008/09

Musterlösung zum Kurs 42110, EA zu KE 2, WS 2008/09 Msterlösng zm Krs 42110, EA z KE 2, WS 2008/0 Seite 1 Msterlösng zr Einsendearbeit zm Krs Krseinheit 2 42110 Preisbildng af nvollommenen Märten nd allgemeines Gleichgewicht, Die folgende Lösngssizze soll

Mehr

Arithmetik und Algebra

Arithmetik und Algebra Willkommen Gliederung "Hallo Welt!" für Fortgeschrittene Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Informatik Lehrstuhl 2 7. Juni 2005 Willkommen Gliederung Gliederung 1 Repräsentation

Mehr

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem

Übungsaufgaben Mathematik III MST. Zu b) Klassifizieren Sie folgende Differentialgleichungen nach folgenden Kriterien : - Anfangswertproblem Übngsafgaben Mathematik III MST Lösngen z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Z a) Klassifizieren Sie folgende Differentialgleichngen nach folgenden Kriterien: -Ordnng der Differentialgleichng

Mehr

Inhalt der 9. Vorlesung

Inhalt der 9. Vorlesung Objektorientierte Modellierng mechatronischer Systeme Prof. Dr.-Ing. Martin Otter (DLR) 9. Vorlesng Veranstaltet vom Lehrsthl für Elektr. Antriebssysteme nd Leistngselektronik (Prof. Kennel), TU München

Mehr

UNSER KONZEPT FÜR ERFOLGREICHE IMMOBILIENWERBUNG mit allen Umsetzungsschritten und konkreter Preiskalkulation

UNSER KONZEPT FÜR ERFOLGREICHE IMMOBILIENWERBUNG mit allen Umsetzungsschritten und konkreter Preiskalkulation Kreative Werbng MACHT IHR OBJEKT ZUM HIGHLIGHT! UNSER KONZEPT FÜR ERFOLGREICHE IMMOBILIENWERBUNG mit allen Umsetzngsschritten nd konkreter Preiskalklation INHALT S.2 10 Schritte z mehr Vermietng, Verkaf

Mehr

Ausbildung zum/zur Gesundheitsund. Krankenpfleger/in

Ausbildung zum/zur Gesundheitsund. Krankenpfleger/in Asbildng zm/zr Gesndheitsnd Krankenpfleger/in Sie möchten bei ns eine Asbildng in der Gesndheits- nd Krankenpflege machen? Schwerpnkte des Berfsbildes sind.a.: die Unterstützng erkrankter Menschen in den

Mehr

Komfortable und sichere Höhenzugangstechnik

Komfortable und sichere Höhenzugangstechnik Komfortable nd sichere Höhenzgangstechnik Arbeitsbühnen-Vermietng Die Flesch Arbeitsbühnen GmbH & Co. KG agiert eropaweit als Fachnternehmen der Höhenzgangstechnik. Innovative technische Dienstleistngen

Mehr

Lösen Sie folgendes Problem aus der Linearen Planungsrechnung mit der grafischen Lösungsmethode.

Lösen Sie folgendes Problem aus der Linearen Planungsrechnung mit der grafischen Lösungsmethode. Aufgabe 1: Ein Schullandheim schafft für 3000 Fahrräder an. Es sollen mindestens 3 Kinderr ä- der für je 100 und mindestens 6 Jugendräder für je 250 angeschafft werden. W e- gen der Altersverteilung der

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Thomas Beier Petra Wurl. Regelungstechnik. Basiswissen, Grundlagen, Beispiele. 2., neu bearbeitete Auflage

Thomas Beier Petra Wurl. Regelungstechnik. Basiswissen, Grundlagen, Beispiele. 2., neu bearbeitete Auflage Thomas Beier Petra Wrl Regelngstechnik Basiswissen, Grndlagen, Beispiele 2., ne bearbeitete Aflage 1.2 Darstellng von Regelkreisen 19 Am Eingang der Regelstrecke befindet sich das Stellglied. Es ist ein

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

Kapitel 3. Betriebsbesichtigung in der Firma PSE

Kapitel 3. Betriebsbesichtigung in der Firma PSE Kapitel 3 Betriebsbesichtigung in der Firma PSE Periodensystem der Elemente Betriebsbesichtigung in der Firma PSE PSE Das PeriodenSystem der Elemente Das PeriodenSystem der Elemente ist eine tabellarische

Mehr

1 Zahlen im Dezimalsystem

1 Zahlen im Dezimalsystem 1 Zahlen im Dezimalsystem Es gibt verschiedene Arten Zahlen aufzuschreiben. Zunächst gibt es verschiedene Zahlzeichen wie chinesische, römische oder arabische. Im deutschsprachigen Raum ist die Verwendung

Mehr

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit.

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. FELJC Optimierung_Theorie.odt Optimierung. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. Hierzu gibt es unterschiedliche

Mehr

Tabellenkalkulation Excel

Tabellenkalkulation Excel Tabellenkalkulation Excel Teil 7.6 Was man können muss! V0.7 23.4.2012 1 von 17 Inhaltsverzeichnis Seite 3... Lernziele Seite 4... Relative und absolute Bezüge Seite 5... Grundrechnungsarten Seite 6...

Mehr