Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014"

Transkript

1 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz

2 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4. Wahrscheinlichkeitstheorie 5. Zufallsvariablen 6. Verteilungsfunktionen 7. Erhebung von Stichproben Quellen: Steenbergen, Marco. Vorlesung Angewandte Methoden der Politikwissenschaften.

3 Was ich nicht mache Mathe help desks R Interpretation von Graphiken Chi²-, t-, F-Verteilungen (auswendig lernen ) Aber: Fragen gerne!

4 1. Einheiten und Variablen Einheiten: Objekte über die wir empirische Aussagen treffen Ein Sample/Stichprobe ist ein Teil einer Population (=Universum aller relevanten Objekte) Inferentielle Statistik wird benutzt um vom Sample auf die Population zu schliessen Attribute: Charakteristika von Einheiten Konstante: variiert nicht Variable: variiert zwischen Einheiten Abhängige und unabhängige Variablen

5 2. Messung, Skalen, und Transformation Messung: Zuteilung von Zahlen, die einen bekannten, empirischen Zusammenhang zwischen Objekten darstellen Skalen: Nominalskala (Geschlecht/Gender) Ordinalskala (Zustimmung) Intervallskala (Temperatur in Celsius) Verhältnisskala (Distanz in Meter) Transformationen: Nominalskala alle Transformationen, die Unterschied behalten Ordinalskala positiv monotone Transformation Intervallskala affine und positiv lineare Transformation Verhältnisskala positiv lineare Transformation

6 3. Deskriptive Statistik - univariat Wieso: Datenchaos ordnen/visualisieren und Muster erkennen Wie: Tabellen & Graphiken mit Frequenzen, Proportionen und Prozenten. Kontinuierliche Variablen: Gruppieren in sog. Klassen ( bins ). Klassenbreite:

7 3. Deskriptive Statistik multivariat 2 x 2 Tabellen: relatives Risiko (relative risk ratio) & Odds Ratio Kurzsichtig Stolpern Ja Nein Ja 15 5 Nein 3 25 Relatives Risiko? Odds Ratio?

8 3. Deskriptive Statistik multivariat 2 x 2 Tabellen: relatives Risiko (relative risk ratio) & Odds Ratio Kurzsichtig Stolpern Ja Nein Ja 15 5 Nein 3 25 Relatives Risiko? RR = Odds Ratio? = 5

9 3. Deskriptive Statistik multivariat 2 x 2 Tabellen: relatives Risiko (relative risk ratio) & Odds Ratio Kurzsichtig Stolpern Ja Nein Ja 15 5 Nein 3 25 Relatives Risiko? RR = Odds Ratio? OR = = = = 25

10 3. Deskriptive Statistik multivariat Nominale / ordinale Werte: Camér s υ nominale mit nominalen oder ordinalen Variablen 0 bis 1; 1 perfekte Assoziierung Goodman and Kruskal s γ ordinale mit ordinalen Variablen 0 bis 1; 1 perfekte Assoziierung

11 4. Wahrscheinlichkeitstheorie - Grundlagen Wahrscheinlichkeit: Logisch: deduktiv; Münzwurf, Würfel Subjektiv: Grad der subjektiven Überzeugung, dass eine bestimmte Aussage wahr ist; Obama tritt morgen zurück Frequentistisch: induktiv, basierend auf Beobachtung von einer Menge an Versuchen; Autounfall, Krankheiten, etc. Gesetz der grossen Zahlen: Wenn die Anzahl der Beobachtungen genügend gross genug ist, ist die relative Frequenz von j eine genügend gute Approximation an Pr (j).

12 4. Wahrscheinlichkeitstheorie - Rechnen Basiert auf Kombinatorik (siehe basta14lec4a) Stichprobenraum (sample space) = volles Ereignisset S mit jedem Event als Subset: ℇ S Events und ihre Wahrscheinlichkeiten können kombiniert werden: Komplemente ( A & A ) : Pr A = 1 Pr (A) Schnittmenge ( A B ): Pr A B = Pr A B Pr (B) Vereinigung ( A B ): Pr A B = Pr A + Pr B Pr (A B)

13 5. Zufallsvariablen Die Werte einer Zufallsvariablen sind durch Zufall beeinflusst. Diskrete (bspw. Demonstrationen) oder kontinuierliche (bspw. GDP/capita) Werte. Diskrete ZV: Probability Mass Function (PMF) f y = Pr (Y = y) Kontinuierliche ZV: Probability Density Funktion (PDF) b a f y dy = Pr (a y b) Kumulative Verteilungsfunktionen y F y = y i y Pr (Y = y i ) ; F y = f y dy

14 5. Zufallsvariablen: Beispiel 1 Die Temperatur ist heute uniform zwischen 0 und 10 C verteilt. 1. Was ist die Wahrscheinlichkeit, genau 1 C zu messen? 2. Mit welcher Wahrscheinlichkeit messen wir einen Wert zwischen 0 und 3 C am Thermometer? 3. Mit welcher Wahrscheinlichkeit messen wir 1 C, 2 C, oder 7 C und höher? 4. Wie hoch ist die Wahrscheinlichkeit, 12 C zu messen?

15 5. Zufallsvariablen: Support & Parameter Support / Träger: Menge an Werten von Y für die f(y) > 0 Parameter: Bestimmen die Form der Verteilung Mittelwert Varianz Schiefe (skewness) Wölbung (kurtosis) Beispiel: Zeichne eine rechtsschiefe, leptokurtische Normalverteilung mit beliebigem Mittelwert und beliebiger Varianz.

16 5. Zufallsvariablen: Multivariate Verteilungen Bivariate Wahrscheinlichkeitsfunktion: f y 1, y 2 = Pr Y 1 = y 1 Y 2 = y 2 Marginale Verteilung: Verteilung von nur einer ZV (y 1 ) unabhängig von der zweiten ZV (y 2 ) Konditionale / bedingte Verteilung: Verteilung von y 1 bei einem bestimmten Wert von y 2 -> f(y 1 y 2 ) Statistische Unabhängigkeit: f y 1 y 2 = f(y 1 )

17 5. Zufallsvariablen: Beispiel 2 Bsp: Y 1 = 1,2 ; Y 2 = 1,2 ; f y 1, y 2 = Pr Y 1 = 2, Y 2 = 2? Pr Y 1 = 2? Pr Y 1 = 2 Y 2 = 2? 4 9y 1 y 2

18 5. Zufallsvariablen: Beispiel 2 y2 y /9 2/9 2 2/9 1/9 Bsp: Y 1 = 1,2 ; Y 2 = 1,2 ; f y 1, y 2 = Pr Y 1 = 2, Y 2 = 2 -> 1/9 Pr Y 1 = 2? Pr Y 1 = 2 Y 2 = 2? 4 9y 1 y 2

19 5. Zufallsvariablen: Beispiel 2 y2 y /9 2/9 2 2/9 1/9 Bsp: Y 1 = 1,2 ; Y 2 = 1,2 ; f y 1, y 2 = 4 9y 1 y 2 Pr Y 1 = 2, Y 2 = 2 -> 1 9 Pr Y 1 = 2 -> = 1 3 Pr Y 1 = 2 Y 2 = 2?

20 5. Zufallsvariablen: Beispiel 2 y2 y /9 2/9 2 2/9 1/9 Bsp: Y 1 = 1,2 ; Y 2 = 1,2 ; f y 1, y 2 = 4 9y 1 y 2 Pr Y 1 = 2, Y 2 = 2 -> 1 9 Pr Y 1 = 2 -> = 1 3 Pr Y 1 = 2 Y 2 = 2 -> = 1 3

21 5. Zufallsvariablen: Zusammenfassen Mittelwert: Diskret Kontinuierlich Varianz: Diskret Kontinuierlich Kovarianz: Diskret Kontinuierlich

22 5. Zufallsvariablen: Korrelation & kond. Mittel Korrelation: -> Lineare Assoziation zwischen Y 1 und Y 2 auf einer Skala von -1 bis 1 Konditionales Mittel:

23 5. Zufallsvariablen: Erwartungen & Momente Erwartungswert = Mittelwert: E Y = μ Momente: Mittelwert Varianz Schiefe (skewness) <0 linksschief; >0 rechtsschief Wölbung (kurtosis) γ 4 3 = excess kurtosis <0 platykurtisch ; >0 leptokurtisch

24 6. Verteilungsfunktionen Bernoulliverteilung: Dichotom (nur zwei Ereignisse im Möglichkeitenraum); Münzwurf Binomialverteilung: Nur diskrete Werte von 0 n Beschreibt Serie von n Bernoulli-Prozessen Poissonverteilung: Für Variablen deren Mittel und Varianz gleich sind Oft count -Daten (Demonstrationen, Tote, etc.)

25 6. Verteilungsfunktionen Normalverteilung Kontinuierliche Werte von bis PDF: μ= Mittelwert σ= Standardabweichung Generell: Y~N(μ, σ) Median = Mode = Mittel Wölbung = Schiefe = 0 Standard Normalverteilung: Z~N 0,1 ; 95%: Z-Transformation (von realer zur standard NV): z = y μ σ Chi²-Verteilung, t-verteilung, F-Verteilung.

26 7. Stichprobenerhebung Zufällige vs. Bewusste Auswahl Randomisiert: jedes Mitglied der untersuchten Population hat dieselbe Wahrscheinlichkeit (>0), gezogen zu werden. Simple random sampling Stratified sampling Cluster sampling Was unterscheidet die verschiedenen Samplingmethoden und wann werden sie angewendet?

27 7. Stichprobenerhebung Zufällige vs. bewusste Auswahl Randomisiert: jedes Mitglied der untersuchten Population hat dieselbe Wahrscheinlichkeit (>0), gezogen zu werden. Simple random sampling Stratified sampling Cluster sampling Was unterscheidet die verschiedenen Samplingmethoden und wann werden sie angewendet?

28 7. Stichprobenerhebung Stichprobenverteilung: Wahrscheinlichkeitsverteilung eines statistischen Wertes der Stichprobe (bzw. des Mittels) auf Grundlage der hypothetischen Ziehung aller möglichen Proben der Größe n. Normalverteilte Werte: In einem Sample ist der Mittelwert einer normalverteilten Variable normalverteilt um den wahren Mittelwert der Variable in der Grundgesamtheit. Central Limit Theorem: Gegeben eine genügend grosse Stichprobe, so ist jeder Mittelwert normalverteilt um den (wahren) Mittelwert μ mit einer Varianz von σ 2 n.

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

1 Einleitung und Grundlagen 1

1 Einleitung und Grundlagen 1 Inhaltsverzeichnis Vorwort vii 1 Einleitung und Grundlagen 1 1.1 Einführende Beispiele 1 1.2 Statistischer Prozess 2 1.3 Grundlagen 2 1.4 Unterscheidung von Merkmalen 3 1.4.1 Skalenniveaus 3 1.4.2 Stetige

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik 1. Deskriptive Statistik 2. Induktive Statistik 1. Deskriptive Statistik 1.0 Grundbegriffe 1.1 Skalenniveaus 1.2 Empirische Verteilungen 1.3 Mittelwerte 1.4 Streuungsmaße 1.0

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5

Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5 Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Arbeitsbuch zur deskriptiven und induktiven Statistik

Arbeitsbuch zur deskriptiven und induktiven Statistik Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen

Mehr

Grundlagen der Statistik

Grundlagen der Statistik www.nwb.de NWB Studium Betriebswirtschaft Grundlagen der Statistik Band 2: Wahrscheinlichkeitsrechnung und induktive Statistik Von Professor Dr. Jochen Schwarze 9., vollständig überarbeitete Auflage STUDIUM

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...

Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken... I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10

Mehr

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur...

1 EINLEITUNG Allgemeines Kapitelübersicht Gebrauch dieses Buches Verwenden zusätzlicher Literatur... Inhaltsverzeichnis 1 EINLEITUNG... 1 1.1 Allgemeines... 1 1.2 Kapitelübersicht... 2 1.3 Gebrauch dieses Buches... 3 1.4 Verwenden zusätzlicher Literatur... 4 DESKRIPTIVE STATISTIK 2 GRUNDLAGEN... 5 2.1

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Deskriptive Statistik 1 behaftet.

Deskriptive Statistik 1 behaftet. Die Statistik beschäftigt sich mit Massenerscheinungen, bei denen die dahinterstehenden Einzelereignisse meist zufällig sind. Statistik benutzt die Methoden der Wahrscheinlichkeitsrechnung. Fundamentalregeln:

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie

Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Formelsammlung: Statistik und Wahrscheinlichkeitstheorie Kapitel 1: Deskriptive und explorative Statistik Empirische Verteilungsfkt (S15): Quantile (S24): Bei Typ7 1.Pkt = 0 Danach 1/(n-1) Median (S24):

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19

Inhaltsverzeichnis. Vorwort 13. Teil I Beschreibende Statistik 17. Kapitel 1 Statistische Merkmale und Variablen 19 Inhaltsverzeichnis Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten 19 1.2 Merkmale und Merkmalsausprägungen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Statistische Methoden der VWL und BWL Theorie und Praxis ST?

Statistische Methoden der VWL und BWL Theorie und Praxis ST? Statistische Methoden der VWL und BWL Theorie und Praxis ST? Vorwort 13 Teil I Beschreibende Statistik 17 Kapitel 1 Statistische Merkmale und Variablen 19 1.1 Statistische Einheiten und Grundgesamtheiten

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Lehr- und Übungsbuch der angewandten Statistik. Von Dr. Bärbel Elpelt und. O. Prof. Dr. Joachim Hartung Fachbereich Statistik der Universität Dortmund

Lehr- und Übungsbuch der angewandten Statistik. Von Dr. Bärbel Elpelt und. O. Prof. Dr. Joachim Hartung Fachbereich Statistik der Universität Dortmund Grundkurs Statistik Lehr- und Übungsbuch der angewandten Statistik Von Dr. Bärbel Elpelt und O. Prof. Dr. Joachim Hartung Fachbereich Statistik der Universität Dortmund Mit ausführlichen Übungs- und Klausurteilen

Mehr

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15

Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15 Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Tabellarische und graphie Darstellung von univariaten Daten

Tabellarische und graphie Darstellung von univariaten Daten Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische

Mehr

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten!

Inhaltsverzeichnis Inhaltsverzeichnis VII Erst mal locker bleiben: Es f angt ganz einfach an! Keine Taten ohne Daten! Inhaltsverzeichnis Inhaltsverzeichnis VII 1 Erst mal locker bleiben: Es fängt ganz einfach an! 1 1.1 Subjektive Wahrscheinlichkeit - oder warum...?..... 4 1.2 Was Ethik mit Statistik zu tun hat - Pinocchio

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

1 GRUNDLAGEN Grundbegriffe Skalen...15

1 GRUNDLAGEN Grundbegriffe Skalen...15 Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren

Mehr

Statistik für das Psychologiestudium

Statistik für das Psychologiestudium Dieter Rasch / Klaus D. Kubinger Statistik für das Psychologiestudium Mit Softwareunterstützung zur Planung und Auswertung von Untersuchungen sowie zu sequentiellen Verfahren ELSEVIER SPEKTRUM AKADEMISCHER

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

I Beschreibende Statistik 1

I Beschreibende Statistik 1 Inhaltsverzeichnis Vorwort ix I Beschreibende Statistik 1 Lernziele zu Teil I 2 1 Statistik, Daten und statistische Methoden 3 1.1 Statistik im Alltag, in Politik und Gesellschaft...... 3 1.2 Aufgaben

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Inhaltsverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Inhaltsverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik...

Inhaltsverzeichnis. 1 Über dieses Buch Zum Inhalt dieses Buches Danksagung Zur Relevanz der Statistik... Inhaltsverzeichnis 1 Über dieses Buch... 11 1.1 Zum Inhalt dieses Buches... 13 1.2 Danksagung... 15 2 Zur Relevanz der Statistik... 17 2.1 Beispiel 1: Die Wahrscheinlichkeit, krank zu sein, bei einer positiven

Mehr

Angewandte Statistik mit R

Angewandte Statistik mit R Reiner Hellbrück Angewandte Statistik mit R Eine Einführung für Ökonomen und Sozialwissenschaftler 2., überarbeitete Auflage B 374545 GABLER Inhaltsverzeichnis Vorwort zur zweiten Auflage Tabellenverzeichnis

Mehr

Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr.

Statistik für. von. Prof. Dr. Josef Bleymüller. und. Prof. Dr. Rafael Weißbach. sowie. Dr. Günther Gehlert. und. Prof. Dr. Statistik für Wirtschaftswissenschaftler von Prof. Dr. Josef Bleymüller und Prof. Dr. Rafael Weißbach sowie Dr. Günther Gehlert und Prof. Dr. Herbert Gülicher bei früheren Auflagen 17., überarbeitete Auflage

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Statistik für Psychologen, Pädagogen und Mediziner

Statistik für Psychologen, Pädagogen und Mediziner Thomas Köhler Statistik für Psychologen, Pädagogen und Mediziner Ein Lehrbuch ^~i: Verlag W. Kohlhammer 1 Einführung: Begriffsklärungen und Überblick 11 1.1 Aufgaben und Subdisziplinen der Statistik 11

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Einige Grundbegriffe der Statistik

Einige Grundbegriffe der Statistik Einige Grundbegriffe der Statistik Philipp Mitteröcker Basic terms Statistik (statistics) stammt vom lateinischen statisticum ( den Staat betreffend ) und dem italienischen statista ( Staatsmann" oder

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 3. Vorlesung Dr. Jochen Köhler 1 Inhalte der heutigen Vorlesung Ziel: Daten Modellbildung Probabilistisches Modell Wahrscheinlichkeit von Ereignissen Im ersten

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Stichwortverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Stichwortverzeichnis. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Stichwortverzeichnis Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch):

Mehr

Population und Stichprobe Wahrscheinlichkeitstheorie II

Population und Stichprobe Wahrscheinlichkeitstheorie II Population und Stichprobe Wahrscheinlichkeitstheorie II 5. Sitzung 1 S. Peter Schmidt 2003 1 Stichprobenziehung als Zufallsexperiment Definition Stichprobe: Teilmenge der Elemente der Grundgesamtheit bzw.

Mehr

Einführung in die computergestützte Datenanalyse

Einführung in die computergestützte Datenanalyse Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL

Mehr

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Gundlagen empirischer Forschung & deskriptive Statistik. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Gundlagen empirischer Forschung & deskriptive Statistik Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Grundlagen Vorbereitung einer empirischen Studie Allgemeine Beschreibung

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter

Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Was für Kenngrößen von Verteilungen kennst du? Ortsparameter (Arithmetisches Mittel, Median, MedMed,

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage

Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage

Statistik. Einführung in die com putergestützte Daten an alyse. Oldenbourg Verlag München B , überarbeitete Auflage Statistik Einführung in die com putergestützte Daten an alyse von Prof. Dr. Karlheinz Zwerenz 4., überarbeitete Auflage B 366740 Oldenbourg Verlag München Inhalt Vorwort XI Hinweise zu EXCEL und SPSS XII

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

Statistik. Von Dr. Günter Bamberg. o. Professor für Statistik und Dr. habil. Franz Baur. Universität Augsburg. 12., überarbeitete Auflage

Statistik. Von Dr. Günter Bamberg. o. Professor für Statistik und Dr. habil. Franz Baur. Universität Augsburg. 12., überarbeitete Auflage Statistik Von Dr. Günter Bamberg o. Professor für Statistik und Dr. habil. Franz Baur Universität Augsburg 12., überarbeitete Auflage R.01denbourg Verlag München Wien V INHALTSVERZEICHNIS Vorwort Liste

Mehr

Inhaltsverzeichnis. Vorwort. Abbildungsverzeichnis. Tabellenverzeichnis. 1 Einleitung Gegenstand Aufbau 4

Inhaltsverzeichnis. Vorwort. Abbildungsverzeichnis. Tabellenverzeichnis. 1 Einleitung Gegenstand Aufbau 4 Inhaltsverzeichnis Vorwort Abbildungsverzeichnis Tabellenverzeichnis v xv xvii 1 Einleitung 1 1.1 Gegenstand 1 1.2 Aufbau 4 2 Datenerhebung - ganz praktisch 7 2.1 Einleitung 7 2.2 Erhebungsplan 7 2.2.1

Mehr

Statistische Datenanalyse

Statistische Datenanalyse Werner A. Stahel Statistische Datenanalyse Eine Einführung für Naturwissenschaftler 3., durchgesehene Auflage vieweg VII 1 Einleitung 1 1.1 Was ist Statistische Datenanalyse? 1 1.2 Ziele 6 1.3 Hinweise

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es

Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr