Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Größe: px
Ab Seite anzeigen:

Download "Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben"

Transkript

1 Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde Aufgabe (G) Kantonschule Aarau, Maturaprüfung 2008, siehe Seite 3 2 (G) Gymnasium St. Antonius, Appenzell, Maturaprüfung 20, siehe Seite 4 3 (G/F/E) Kantonschule Zofingen, Aargau, Maturaprüfung 20, siehe Seite 5 4 (G/F/E) Kantonschule Zofingen, Aargau, Maturaprüfung 20, siehe Seite 5 2 (E) Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 20, siehe Seite 6 2 (G/F/E) Kantonsschule am Burggraben, St. Gallen, Maturaprüfung 2009, siehe Seite 7 3 (F) Kantonschule Reussbühl, Luzern, Maturaprüfung 20, siehe Seite 8 4 (E) Kantonschule Aarau, Maturaprüfung 2008, siehe Seite 9

2 Empfohlene Bearbeitungsreihenfolge für eigenständiges Lösen: Block Stunde Aufgabe (G) Kantonschule Reussbühl, Luzern, Maturaprüfung 203, siehe Seite 0 2 (F) Kantonsschule Romanshorn, Thurgau, Maturaprüfung 20, siehe Seite 3 (F) Gymnasium Muttenz, Baselland, Maturaprüfung 20, siehe Seite 2 4 (G/F/E) Gymnasium Muttenz, Basel, Maturaprüfung 20, siehe Seite 3 2 (E) Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 202, siehe Seite 4 2 (E) Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 202, siehe Seite gebrauchte Formeln: a b = a a 2 b b 2 a 3 b 3 Vektorprodukt: a b = = a b + a 2 b 2 + a 3 b 3 = a b cos ϕ a a 2 b b 2 a 2 b 3 a 3 b 2 = a b 3 + a 3 b a 3 b 3 a b 2 a 2 b Abstand Punktes P mit r P von der Geraden g: r = r A + t r g : d = r g ( r P r A ) r g Abstand Punktes P mit r P von der Ebene E: n r k = 0: d = n r P k n Abstand zweier windschiefer Geraden g: r = r A + t r g und h: r = r B + t r h : d = ( r g r h ) ( r B r A ) r g r h 2

3 Kantonschule Aarau, Maturaprüfung 2008 Parallelogramm [(G)] Es sind die Punkte A(/9/ ), B(5/8/0) und D(2/ 2/0) gegeben. a) Ermitteln Sie die Koordinaten des Punktes C so, dass ABCD ein Parallelogramm ist. b) Ermitteln Sie den Flächeninhalt des Parallelogramms. c) Durch A wird eine Parallele zur Diagonalen DB gelegt. Wo durchstösst diese Parallele die xy-ebene? Lösung: a) C(6/ 3/), b) F 27.7 c) S(, 3/0/0) 3

4 Gymnasium St. Antonius, Appenzell, Maturaprüfung 20 Ebene, Gerade und Winkel [(G)] 2 3 Gegeben sei die Gerade g: r =, der Punkt P (2/3/ 4) sowie die Ebenen E: x + 2y 2z = 3 und F : x y + z = 3. a) Bestimmen Sie die Abstände der Ebene E vom Ursprung und vom Punkt P. b) Legen Sie eine parallele Ebene zu E durch P. c) Wie heisst die Koordinatengleichung der Ebene H: r = 3 + u 0 + v 0? 2 0 Beschreiben Sie die Lage von H. d) Berechnen Sie die Schnittgerade s und den Schnittwinkel α von E und F. e) Bestimmen Sie die Durchstosspunkte A und B der Geraden g mit den Ebenen E und F und berechnen Sie die Länge der Strecke AB. f) Wie gross ist der Einfallswinkel ϕ von g zur Ebene E? Lösung: a) d P =, d O = 3 3 b) E P : x + 2y 2z = 6 c) y = 3, y-achse d) s: r = 0 3 α 54.7o e) A(5/2/ 2), B(/4/ 4), d = 2 f) ϕ 44.7 o 0 4

5 Kantonschule Zofingen, Aargau, Maturaprüfung 20 Gerade und Ebene [(G): a) bis d) / (F): e) und f) / (E): g)] Gegeben sind die Punkte P (6/4/3), Q(8/9/ ), A(6/ 5/3) und die Gerade g durch die Punkte P und Q. a) Zeigen Sie, dass der Punkt A nicht auf der Geraden g liegt. b) Die Ebene E enthält den Punkt A und ist senkrecht zur Geraden g. Geben Sie die Koordinatengleichung von E an. c) Eine zweite Ebene F ist gegeben als F : x+3y 2z 7 = 0. Bestimmen Sie die Schnittgerade der beiden Ebenen. d) Bestimmen Sie den Winkel ϕ zwischen der Ebene F und der Geraden g. e) Die Gerade g und die z-achse sind windschief. Wie gross ist der kürzeste Abstand zwischen g und der z-achse? f) Gesucht sind die Koordinaten jenes Punktes C, der auf g liegt und von A den kürzesten Abstand hat. Wie gross ist dieser Abstand? g) Die Spitze S einer Pyramide mit der Grundfläche OAP (wobei O der Nullpunkt ist) liegt auf der Geraden g. Bestimmen Sie die Koordinaten von S so, dass das Volumen der Pyramide 90 beträgt. 0 2 Lösung: a) A / g b) E: 2x + 5y 4z + 25 = 0 c) r = d) ϕ 84.89o e) d == f) C(4/ /7), d = 6 g) S ( 2/4/ 5), S 2 ( 0/ 6/) 5

6 Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 20 Ebenen und Kugel [(E)] G H E F D C A B Von einem Quader ABCDEFGH kennt man die Eckpunkte A(3/2/) und C(/4/5). Geraden g: r = Der Punkt B liege auf der a) Berechnen Sie die Koordinaten von B. Verwenden Sie für die folgende Teilaufgabe nur den Punkt B mit der kleineren z-koordinate. Falls Sie bei a) den Punkt B nicht gefunden haben, verwenden Sie den falschen Punkt B ( 2//). b) Der Eckpunkt F liegt in der Ebene E: 4x + 8y + 5z 38 = 0. Berechnen Sie seine Koordinaten. Lösung: a) B ( 3 / 4 3 / 8 3 ) und B2(3/4/5) b) F (3/ / 86 ) [mit B2 gerechnet] 6

7 Kantonsschule am Burggraben, St. Gallen, Maturaprüfung 2009 Gerade und Ebene [(G( (F) (E)] Die Punkte A bis H sind die Ecken eines Quaders. a) Bestimme eine Koordinatengleichung der Ebene ɛ durch B, D und E. b) Berechne den Neigungswinkel der Körperdiagonalen AG gegenüber ɛ. c) Bestimme eine Koordinatengleichung der Ebene φ durch E, die senkrecht auf ED steht. Welche spezielle Lage hat φ? d) Ein von B ausgehender Laserstrahl trifft nach einer ersten Reflexion an der Deckfläche EF GH und nach einer zweiten an ɛ im Punkt H auf. Wie lang ist der Weg des Lichtes von B bis H? Lösung: a) ɛ : x y 2z = 0 b) 35, 26 o c) 2x + z 5 = 0, parallel zur y-achse d)

8 Kantonschule Reussbühl, Luzern, Maturaprüfung 20 Gerade und Ebene [(F)] Gegeben sind die drei Punkte A(9/5/ 8), B(/9/0) und C(6/2/4). a) Berechnen Sie den Dreieckswinkel α = BAC. b) Zeigen Sie, dass der Punkt H(3/8/ 2) Höhenfusspunkt der Höhe h c des Dreiecks ABC ist. c) Geben Sie eine Parametergleichung sowie eine Koordinatengleichung der Ebene E = (ABC) an. d) Spiegeln Sie den Punkt T (8//0) an der Ebene E. e) Bestimmen Sie zwei Punkte P und Q in der Ebene E so, dass das Viereck ABP Q ein Quadrat ist. Es muss für P und Q nur je eine Lösung angegeben werden. d)t Lösung: a) α = 45 o 9 2 b) AH CH = 0 c) r = 5 + u + v, 2x + 2y + z 20 = P (5//8) [zweite Lösung P(-3/7/-8) und Q(5/3/-6)] (0/3/ 4) e) Q(3/ 3/0) und 8

9 Kantonschule Aarau, Maturaprüfung 2008 Kugel, Gerade und Tangente [(E)] Gegeben sind die Kugel K: x 2 + y 2 + z 2 + 0x 0y + 2z + 5 = 0, die Geraden g a : r = 8 0 mit a R, a 0 sowie die Punkte A(/8/8), B(3/6/4), C(7/5/5), D(7/6/4) und E(9/7/3). a) Bestimmen Sie a so, dass die Geraden g a und BC einander schneiden. Geben Sie den Schnittpunkt S und den Schnittwinkel α an. b) Geben Sie eine Gleichung der Geraden s an, die sowohl CD als auch g 8 senkrecht schneidet. c) Eine Kugel K mit dem Mittelpunkt M auf g 5 soll CD und g 8 als Tangenten haben. Geben Sie Mittelpunkt und Radius dieser Kugel an. d) Die Kugel K wird von der Ebene F : 2x y 2z + 4 = 0 in einem Kreis k geschnitten. Berechnen Sie dessen Mittelpunkt und Radius. Lösung: a) a = 2, S( 5/8/2), α 9.47 o b) r = r k = c) M( /8/5 oder M( /8/5. r = 3 d) Mk ( 3/4/ 3), 8 9

10 Kantonschule Reussbühl, Luzern, Maturaprüfung 203 Gerade und Ebene [(G)] 3 2 Gegeben sind die vier Punkte: A(3 6 5), B(2 2 4), C( 2 5), P (3 2 7) und die Gerade h: r = 2 2. a) Bestimmen Sie die Koordinatengleichung der Ebene E, welche die Punkte A, B und C enthält. Falls Sie die Gleichung von E unter Teilaufgabe a) nicht bestimmen konnten, lösen Sie die Teilaufgaben b) und c) mit der Ebenengleichung F : 2x y + 2z 4 = 0 anstelle von E. b) Gesucht ist die Gleichung der zu E parallelen Ebene H, welche durch den Punkt P geht. c) Bestimmen Sie die Koordinaten des Durchstosspunktes D der Geraden h mit der Ebene E. d) Bestimmen Sie den Abstand des Punktes P von der Geraden h. e) Die Gerade g verläuft durch die Punkte A und C. Zeigen Sie, dass die Geraden g und h windschief sind. Lösung: a) E: 2x y + 2z 0 = 0 b) H: 2x y + 2z 22 = 0 c) D(3/4/4) d) d = 6 e) g h = {} 0

11 Kantonsschule Romanshorn, Thurgau, Maturaprüfung 20) Kugel, Ebene und Gerade [(F)] Auf der Ebene E: 4x 3z + 5 = 0 liegt eine Kugel K mit dem Mittelpunkt M(5 4 5). a) Zeigen Sie, dass der Radius der Kugel r = 0 beträgt. b) Berechnen Sie irgend einen Punkt auf der Kugeloberfläche. c) Die Kugel wird an der Ebene E gespiegelt. Berechnen Sie den Mittelpunkt M der gespiegelten Kugel. 0 d) Beurteilen Sie rechnerisch, ob die Gerade g: r = 2 2 die Kugel schneidet oder berührt. 7 2 e) Geben Sie die Gleichung K der gespiegelten Kugel. f) Bestimmen Sie die fehlende y Koordinate des Punkts P (3 y 5), welcher auf der Kugeloberfläche K liegt. g) Berechnen Sie eine Koordinatengleichung der Tangentialebene T im Punkt Q( 4 3) der Kugeloberfläche K. Lösung: a) b) c) d) e) f) g)

12 Gymnasium Muttenz, Baselland, Maturaprüfung 20 Gerade und Ebene [(F)] 3 0 Gegeben sind die Gerade g: r = 7 und die Ebene E durch die Punkte K(// ), L(2/0/3) und 8 M(2//). a) Bestimmen sie k so, dass E: 2x + 2y + z + k = 0 eine Koordinatengleichung der Ebene E ist. b) Berechnen Sie die Koordinaten des Durchstosspunktes F der Geraden g mit der Ebene E. c) Der Punkt P (3/ 7/ 8) wird an der Ebene E gespiegelt. Berechnen Sie die Koordinaten des Spiegelpunktes P. d) Zeigen Sie rechnerisch, dass das gleichschenklige Dreieck P F P beim Punkt F einen rechten Winkel hat. e) Bestimmen Sie rechnerisch die Koordinaten des Punktes R so, dass das Viereck P F P R ein Quadrat ist. f) Das Quadrat P F P R ist die Grundfläche einer geraden Pyramide mit der Spitze S(0/5/ ). Berechen sie das Volumen dieser Pyramide. Lösung: a) b) c) d) e) f) 2

13 Gymnasium Muttenz, Basel, Maturaprüfung 20 Gerade und Ebene [(G): a) / (F): b) / (E): c)] Gegeben ist der Würfel ABCDEF GH mit den Eckpunkten A(6/0/0), B(6/6/0), C(0/6/0), D(0/0/0) und H(0/0/6). Der Punkt P liegt auf der Raumdiagonalen BH. a) Berechnen Sie eine Parametergleichung der Raumdiagonalen BH. b) Berechnen Sie die Koordinaten des Punktes P so, dass das Dreieck ACP bei P rechtwinklig ist. c) Berechnen Sie die Koordinaten des Punktes P so, dass das Dreieck ACP den Flächeninhalt F = 9 2 hat. Lösung: a) b) c) 3

14 Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 202) Gerade und Ebene [(E)] 9 2 Gegeben sind die Punkte A(3/ 4/7), B( 5 8 3) und die Gerade g: r = a) Zeige, dass die Gerade durch A und B und die Gerade g parallel, aber nicht identisch sind. b) Bestimme auf g die Punkte C und D, sodass ABCD ein gleichschenkliges Trapez ist mit AB = 2 CD. Die Pyramide ABCD hat das Volumen V = 250. Die Grundfläche ABC ist ein gleichschenklig-rechtwinkliges Dreieck mit der Ecke A(37/20/6) und der Ecke C(0/0/0), wo sich der rechte Winkel befindet. Die Ecke B liegt in der Ebene z = 3. a) Berechne die Koordinaten von B (es ist nur die Lösung mit ganzzahligen Koordinaten anzugeben). Wer Aufgabe a) nicht lösen konnte, löse die Aufgabe b) mit B(32/80/26). b) Das Lot von der Spitze D auf die Ebene ABC geht durch den Schwerpunkt S des Dreiecks ABC. Berechne die Koordinaten von D (die Angabe einer Lösung genügt). Lösung: a) b) a) b) 4

www.mathe-aufgaben.com

www.mathe-aufgaben.com Übersicht Analytische metrie und astik-abituraufgaben 2004-2015 Hauptprüfung 2015 Pflicht A6 a) Gegeben sind drei Punkte A, B, C. Zeige, dass das Dreieck ABC gleichschenklig ist b) Berechnung eines Punktes

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

1. Bestimmen Sie b so, dass die Punkte A(1 2 b), B(2 b 4), C(5 6 7) auf einer Geraden liegen.

1. Bestimmen Sie b so, dass die Punkte A(1 2 b), B(2 b 4), C(5 6 7) auf einer Geraden liegen. Aufgaben Vektorrechnung 1. Bestimmen Sie b so, dass die Punkte A(1 b), B( b 4), C(5 6 7) auf einer Geraden liegen.. Gegeben sind die Gerade g: x = 7 4 + λ 4 und der Punkt M( 4 ). a) Wie lautet die Gleichung

Mehr

Analytische Geometrie / Vektorgeometrie

Analytische Geometrie / Vektorgeometrie Analytische Geometrie / Vektorgeometrie. Bedingung Unter welchen Voraussetzungen gilt:. s + t + u = s + t + u. Gleiche Abstände Welcher Punkt der yz-ebene mit der y-koordinate hat vom Ursprung (= Nullpunkt)

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

AUFGABENSAMMLUNG 9. KLASSE

AUFGABENSAMMLUNG 9. KLASSE AUFGABENSAMMLUNG 9. KLASSE 1. Reelle Zahlen (1) Vereinfache soweit wie möglich. Alle Variablen sind aus R +. (a) 4a 4 a + ab a b (b) b : 7a (c) b + b + b ( 5 c 6 (d) c + ) () Schreibe ohne Wurzelzeichen

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

Algebra II. 1 Löse die Gleichung und mache die Probe.

Algebra II. 1 Löse die Gleichung und mache die Probe. D Algebra II 5. Gleichungen Lösungen Löse die Gleichung und mache die Probe. a) (3 5) = (5 + 5) jede reelle Zahl ist Lösung b) 8(a 3) + 3 a = (3a + 8)a keine Lösung c) ( )(3 4) = 3( ) = ; Probe: 0 d) (

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

Markus' Formelsammlung für die Vektorgeometrie

Markus' Formelsammlung für die Vektorgeometrie Markus' Formelsammlung für die Vektorgeometrie Markus Dangl.4. Zusammenfassung Dieses Dokument soll eine Übersicht über die Vektorgeometrie für die Oberstufe am Gymnasium geben. Ich versuche hier möglichst

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Geometrie. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Geometrie Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Geometrie Differenzierte Materialien

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β :

Anwendungen 1. b) Berechnen Sie die Hypothenuse c: c) Berechnen Sie die Winkelfunktionen sinα, cosα, und tanα. d) Berechnen Sie die Winkel α und β : Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr 2. Erstellen

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht

Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε'

Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' -Diagramm von Blatt 3 1. (a) Auf eine 2 cm dicke ebene Glasplatte fällt unter dem Einfallswinkel 50 ein Lichtstrahl. Zeichne seinen weiteren

Mehr

Übungen: Trigonometrie

Übungen: Trigonometrie Übungen: Trigonometrie Polarkoordinaten 1. Berechnen Sie die kartesischen Koordinaten der Punkte A(5; 45 ), B(6; 120 ), C(3,5; 310 ), D(4,8; 235 ); E(2,7; 0 ), F(3,3; 90 ), G(10; 53,13 ), H(3,16; 161,57

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Lösungsmuster und Bewertung 0 Minuten bschlussprüfung 00 an den Realschulen in Bayern Mathematik II ufgaben - Nachtermin RUMGEOMETRIE. EB B EB 8,9cm ES EB + BS ES 9,00cm α cm sin α 8,9 α ]0 ;80 [ 9,00cm

Mehr

Raumgeometrie - Würfel, Quader (Rechtecksäule)

Raumgeometrie - Würfel, Quader (Rechtecksäule) Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik Kopiervorlagen zur ufgabensammlung GEOMETRIE 1 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik utoren: ownload: Michael Graf, Heinz Klemenz www.geosoft.ch/buecher Inhaltsverzeichnis

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

BMT8 2013. Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Bewertungseinheiten: / 21

BMT8 2013. Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Bewertungseinheiten: / 21 BMT8 2013 A Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien Name: Note: Klasse: Bewertungseinheiten: 1 Aufgabe 1 Gib diejenige Zahl an, mit der man 1000 multiplizieren muss, um 250 zu

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.

Mehr

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag.

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag. 49. Mathematik-Olympiade Regionalrunde Olympiadeklasse 6 c 2013 nausschuss des Mathematik-Olympiaden e.v. Barbara ist Kandidatin in einer mathematischen Quizshow und hat bis jetzt alle n richtig gelöst.

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Durchstoßpunkt Gerade Ebene. Vorkurs Darstellende Geometrie. Erstprojizierende Hilfsebene ν durch g. Teil I. Lösung mit erstprojizierender Hilfsebene

Durchstoßpunkt Gerade Ebene. Vorkurs Darstellende Geometrie. Erstprojizierende Hilfsebene ν durch g. Teil I. Lösung mit erstprojizierender Hilfsebene Durchstoßpunkt Gerade Ebene Vorkurs Darstellende Geometrie Durchstoßpunkt Gerade Ebene Bestimmen Sie den Durchstoßpunkt D der Geraden g mit der Ebene ε. Hans-Peter Schröcker Arbeitsbereich Geometrie und

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind?

a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind? Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Pythagoras, Kathetensatz, Höhensatz

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Netz von Pyramide und Würfel; Anfertigen von Körpern. Schrägbilder zu Pyramide und Würfel erstellen; Parametergleichungen von Geraden aufstellen

Netz von Pyramide und Würfel; Anfertigen von Körpern. Schrägbilder zu Pyramide und Würfel erstellen; Parametergleichungen von Geraden aufstellen Stationsarbeit: Punkte und Geraden im Raum Aufgabentyp Pflichtaufgabe 1 P 1 Material Thema / Lernziel Netz von Pyramide und Würfel; Anfertigen von Körpern Zeit in Min. Soll Ist 1 Datum Pflichtaufgabe 2

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus Schuljahr 008/009 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung Mathematik

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Geradengleichungen. Anna Heynkes. 21.9.2005, Aachen

Geradengleichungen. Anna Heynkes. 21.9.2005, Aachen Geradengleichungen Anna Heynkes 21.9.2005, Aachen Wegen des Überspringens einer Jahrgangsstufe habe ich den Mathematik- Unterricht verpasst, in dem die Geradengleichungen behandelt wurden. Deshalb musste

Mehr

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007 Workshops zur VO Einfu hrung in das mathematische Arbeiten im SS 2007 Kegelschnitte Evelina Erlacher 13. & 14. M arz 2007 Denken wir uns einen Drehkegel, der nach oben als auch nach unten unbegrenzt ist.

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Kegelschnitte. Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. 14. April 2004

Kegelschnitte. Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. 14. April 2004 Kegelschnitte Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 14. April 004 In diesem Artikel untersuchen wir eine Reihe von Kurven, die unter dem Überbegriff Kegelschnitte zusammengefasst werden.

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Vektorgeometrie - Teil 1

Vektorgeometrie - Teil 1 Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der

Mehr

Ebene Geometrie. Auf jeder Seite von ABC liegt eine Ecke von DEF Die Seiten von DEF verhalten sich wie 2 : 3 : 4.

Ebene Geometrie. Auf jeder Seite von ABC liegt eine Ecke von DEF Die Seiten von DEF verhalten sich wie 2 : 3 : 4. Ebene Geometrie 1. Gleich weit, aber nicht zu weit! Gegeben sind die drei beliebigen Punkte A, B, C. Es sind jene Punkte zu konstruieren, die von B und C gleich weit entfernt sind und von A nicht weiter

Mehr

MATHEMATIK 6. Schulstufe Schularbeiten

MATHEMATIK 6. Schulstufe Schularbeiten MATHEMATIK 6. Schulstufe Schularbeiten 1. Schularbeit Gleichungen Teilbarkeitsregeln Primzahlen ggt kgv Rechnen mit Bruchzahlen Löse die Gleichungen und mache die Probe durch Einsetzen! a) 24 x + 1 = 313

Mehr

Formeln für Flächen und Körper

Formeln für Flächen und Körper Formeln für Flächen und Körper FLÄCHENBERECHNUNG... QUADRAT... RECHTECK... 3 PARALLELOGRAMM... 3 DREIECK... 4 GLEICHSCHENKLIGES DREIECK... 5 GLEICHSEITIGES DREIECK... 6 TRAPEZ... 7 GLEICHSCHENKLIGES TRAPEZ...

Mehr

Bestimmung von Schwerpunkten

Bestimmung von Schwerpunkten Bestimmung von Schwerpunkten Jeder Körper hat einen Punkt, in dem man sich sämtliche Massekräfte als seine gesamte Eigenlast vereinigt denken kann. Dieser Massemittelpunkt ist der Angriffspunkt der gesamten

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

3 Ziele und Aufgaben Klasse 12

3 Ziele und Aufgaben Klasse 12 118 Planungsvorschlag Klasse 1 3 Ziele und Aufgaben Klasse 1 3.1 Planungsvorschlag für die Klasse 1 Analytische Geometrie und Vektorrrechnung Vorbemerkungen: Im Vordergrund stehen die praktischen Bedeutungen

Mehr

Realschulabschluss Schuljahr 2005/2006. Mathematik

Realschulabschluss Schuljahr 2005/2006. Mathematik Prüfungstag: Montag, 12. Juni 2006 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2005/2006 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

WAchhalten und DIagnostizieren

WAchhalten und DIagnostizieren Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Tübingen WAchhalten und DIagnostizieren von Grundkenntnissen und Grundfertigkeiten im Fach Mathematik Klassenstufe 7/8 Teil Heidi Buck Rolf

Mehr

Trigonometrie - Sinussatz, Kosinussatz

Trigonometrie - Sinussatz, Kosinussatz Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse 10 1. Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene

3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene Kapitel 3: Deckabbildungen von Figuren - Symmetrie 3.1 Die Gruppe (K,o) aller Kongruenzabbildungen einer Ebene K ist die Menge aller Kongruenzabbildungen E E; o ist die Hintereinanderausführung von Abbildungen

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

Anwendungen 1 - Lösungen

Anwendungen 1 - Lösungen Für alle Aufgaben gilt: 1. Winkel und Strecken sind auf eine, Winkelfunktionen auf 4 Nachkommastellen zu runden; nehmen Sie für Zwischenresultate mit denen Sie weiterrechnen eine Stelle mehr. Erstellen

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Name:... Vorname:...

Name:... Vorname:... Zentrale Aufnahmeprüfung 2012 für die Kurzgymnasien des Kantons Zürich Mathematik, 2./3. Sekundarschule Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 1 14./15. 11. 2013 SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 1 14./15. 11. 2013 Programm Entwicklung des Geometrieunterricht bis zu Bildungsstandards und Rahmenplänen Ein

Mehr

Leitprogramm Vektorgeometrie

Leitprogramm Vektorgeometrie Leitprogramm Vektorgeometrie Torsten Linnemann Pädagogische Hochschule FHNW Gymnasium Oberwil E-mail:torsten.linnemann@fhnw.ch 18. September 2011 Dank: Ich danke der Klasse 4aL, Kantonsschule Solothurn,

Mehr

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12 Sachsen-Anhalt neue Aufgabenstruktur - erstmalig 2011/12 SCHRIFTLICHE ABSCHLUSSPRÜFUNG Pflichtteil 2 und Wahlpflichtteil In diesem Teil der Abschlussprüfung sind die Hilfsmittel Taschenrechner und Tafelwerk

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1998 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr