Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben"

Transkript

1 Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde Aufgabe (G) Kantonschule Aarau, Maturaprüfung 2008, siehe Seite 3 2 (G) Gymnasium St. Antonius, Appenzell, Maturaprüfung 20, siehe Seite 4 3 (G/F/E) Kantonschule Zofingen, Aargau, Maturaprüfung 20, siehe Seite 5 4 (G/F/E) Kantonschule Zofingen, Aargau, Maturaprüfung 20, siehe Seite 5 2 (E) Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 20, siehe Seite 6 2 (G/F/E) Kantonsschule am Burggraben, St. Gallen, Maturaprüfung 2009, siehe Seite 7 3 (F) Kantonschule Reussbühl, Luzern, Maturaprüfung 20, siehe Seite 8 4 (E) Kantonschule Aarau, Maturaprüfung 2008, siehe Seite 9

2 Empfohlene Bearbeitungsreihenfolge für eigenständiges Lösen: Block Stunde Aufgabe (G) Kantonschule Reussbühl, Luzern, Maturaprüfung 203, siehe Seite 0 2 (F) Kantonsschule Romanshorn, Thurgau, Maturaprüfung 20, siehe Seite 3 (F) Gymnasium Muttenz, Baselland, Maturaprüfung 20, siehe Seite 2 4 (G/F/E) Gymnasium Muttenz, Basel, Maturaprüfung 20, siehe Seite 3 2 (E) Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 202, siehe Seite 4 2 (E) Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 202, siehe Seite gebrauchte Formeln: a b = a a 2 b b 2 a 3 b 3 Vektorprodukt: a b = = a b + a 2 b 2 + a 3 b 3 = a b cos ϕ a a 2 b b 2 a 2 b 3 a 3 b 2 = a b 3 + a 3 b a 3 b 3 a b 2 a 2 b Abstand Punktes P mit r P von der Geraden g: r = r A + t r g : d = r g ( r P r A ) r g Abstand Punktes P mit r P von der Ebene E: n r k = 0: d = n r P k n Abstand zweier windschiefer Geraden g: r = r A + t r g und h: r = r B + t r h : d = ( r g r h ) ( r B r A ) r g r h 2

3 Kantonschule Aarau, Maturaprüfung 2008 Parallelogramm [(G)] Es sind die Punkte A(/9/ ), B(5/8/0) und D(2/ 2/0) gegeben. a) Ermitteln Sie die Koordinaten des Punktes C so, dass ABCD ein Parallelogramm ist. b) Ermitteln Sie den Flächeninhalt des Parallelogramms. c) Durch A wird eine Parallele zur Diagonalen DB gelegt. Wo durchstösst diese Parallele die xy-ebene? Lösung: a) C(6/ 3/), b) F 27.7 c) S(, 3/0/0) 3

4 Gymnasium St. Antonius, Appenzell, Maturaprüfung 20 Ebene, Gerade und Winkel [(G)] 2 3 Gegeben sei die Gerade g: r =, der Punkt P (2/3/ 4) sowie die Ebenen E: x + 2y 2z = 3 und F : x y + z = 3. a) Bestimmen Sie die Abstände der Ebene E vom Ursprung und vom Punkt P. b) Legen Sie eine parallele Ebene zu E durch P. c) Wie heisst die Koordinatengleichung der Ebene H: r = 3 + u 0 + v 0? 2 0 Beschreiben Sie die Lage von H. d) Berechnen Sie die Schnittgerade s und den Schnittwinkel α von E und F. e) Bestimmen Sie die Durchstosspunkte A und B der Geraden g mit den Ebenen E und F und berechnen Sie die Länge der Strecke AB. f) Wie gross ist der Einfallswinkel ϕ von g zur Ebene E? Lösung: a) d P =, d O = 3 3 b) E P : x + 2y 2z = 6 c) y = 3, y-achse d) s: r = 0 3 α 54.7o e) A(5/2/ 2), B(/4/ 4), d = 2 f) ϕ 44.7 o 0 4

5 Kantonschule Zofingen, Aargau, Maturaprüfung 20 Gerade und Ebene [(G): a) bis d) / (F): e) und f) / (E): g)] Gegeben sind die Punkte P (6/4/3), Q(8/9/ ), A(6/ 5/3) und die Gerade g durch die Punkte P und Q. a) Zeigen Sie, dass der Punkt A nicht auf der Geraden g liegt. b) Die Ebene E enthält den Punkt A und ist senkrecht zur Geraden g. Geben Sie die Koordinatengleichung von E an. c) Eine zweite Ebene F ist gegeben als F : x+3y 2z 7 = 0. Bestimmen Sie die Schnittgerade der beiden Ebenen. d) Bestimmen Sie den Winkel ϕ zwischen der Ebene F und der Geraden g. e) Die Gerade g und die z-achse sind windschief. Wie gross ist der kürzeste Abstand zwischen g und der z-achse? f) Gesucht sind die Koordinaten jenes Punktes C, der auf g liegt und von A den kürzesten Abstand hat. Wie gross ist dieser Abstand? g) Die Spitze S einer Pyramide mit der Grundfläche OAP (wobei O der Nullpunkt ist) liegt auf der Geraden g. Bestimmen Sie die Koordinaten von S so, dass das Volumen der Pyramide 90 beträgt. 0 2 Lösung: a) A / g b) E: 2x + 5y 4z + 25 = 0 c) r = d) ϕ 84.89o e) d == f) C(4/ /7), d = 6 g) S ( 2/4/ 5), S 2 ( 0/ 6/) 5

6 Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 20 Ebenen und Kugel [(E)] G H E F D C A B Von einem Quader ABCDEFGH kennt man die Eckpunkte A(3/2/) und C(/4/5). Geraden g: r = Der Punkt B liege auf der a) Berechnen Sie die Koordinaten von B. Verwenden Sie für die folgende Teilaufgabe nur den Punkt B mit der kleineren z-koordinate. Falls Sie bei a) den Punkt B nicht gefunden haben, verwenden Sie den falschen Punkt B ( 2//). b) Der Eckpunkt F liegt in der Ebene E: 4x + 8y + 5z 38 = 0. Berechnen Sie seine Koordinaten. Lösung: a) B ( 3 / 4 3 / 8 3 ) und B2(3/4/5) b) F (3/ / 86 ) [mit B2 gerechnet] 6

7 Kantonsschule am Burggraben, St. Gallen, Maturaprüfung 2009 Gerade und Ebene [(G( (F) (E)] Die Punkte A bis H sind die Ecken eines Quaders. a) Bestimme eine Koordinatengleichung der Ebene ɛ durch B, D und E. b) Berechne den Neigungswinkel der Körperdiagonalen AG gegenüber ɛ. c) Bestimme eine Koordinatengleichung der Ebene φ durch E, die senkrecht auf ED steht. Welche spezielle Lage hat φ? d) Ein von B ausgehender Laserstrahl trifft nach einer ersten Reflexion an der Deckfläche EF GH und nach einer zweiten an ɛ im Punkt H auf. Wie lang ist der Weg des Lichtes von B bis H? Lösung: a) ɛ : x y 2z = 0 b) 35, 26 o c) 2x + z 5 = 0, parallel zur y-achse d)

8 Kantonschule Reussbühl, Luzern, Maturaprüfung 20 Gerade und Ebene [(F)] Gegeben sind die drei Punkte A(9/5/ 8), B(/9/0) und C(6/2/4). a) Berechnen Sie den Dreieckswinkel α = BAC. b) Zeigen Sie, dass der Punkt H(3/8/ 2) Höhenfusspunkt der Höhe h c des Dreiecks ABC ist. c) Geben Sie eine Parametergleichung sowie eine Koordinatengleichung der Ebene E = (ABC) an. d) Spiegeln Sie den Punkt T (8//0) an der Ebene E. e) Bestimmen Sie zwei Punkte P und Q in der Ebene E so, dass das Viereck ABP Q ein Quadrat ist. Es muss für P und Q nur je eine Lösung angegeben werden. d)t Lösung: a) α = 45 o 9 2 b) AH CH = 0 c) r = 5 + u + v, 2x + 2y + z 20 = P (5//8) [zweite Lösung P(-3/7/-8) und Q(5/3/-6)] (0/3/ 4) e) Q(3/ 3/0) und 8

9 Kantonschule Aarau, Maturaprüfung 2008 Kugel, Gerade und Tangente [(E)] Gegeben sind die Kugel K: x 2 + y 2 + z 2 + 0x 0y + 2z + 5 = 0, die Geraden g a : r = 8 0 mit a R, a 0 sowie die Punkte A(/8/8), B(3/6/4), C(7/5/5), D(7/6/4) und E(9/7/3). a) Bestimmen Sie a so, dass die Geraden g a und BC einander schneiden. Geben Sie den Schnittpunkt S und den Schnittwinkel α an. b) Geben Sie eine Gleichung der Geraden s an, die sowohl CD als auch g 8 senkrecht schneidet. c) Eine Kugel K mit dem Mittelpunkt M auf g 5 soll CD und g 8 als Tangenten haben. Geben Sie Mittelpunkt und Radius dieser Kugel an. d) Die Kugel K wird von der Ebene F : 2x y 2z + 4 = 0 in einem Kreis k geschnitten. Berechnen Sie dessen Mittelpunkt und Radius. Lösung: a) a = 2, S( 5/8/2), α 9.47 o b) r = r k = c) M( /8/5 oder M( /8/5. r = 3 d) Mk ( 3/4/ 3), 8 9

10 Kantonschule Reussbühl, Luzern, Maturaprüfung 203 Gerade und Ebene [(G)] 3 2 Gegeben sind die vier Punkte: A(3 6 5), B(2 2 4), C( 2 5), P (3 2 7) und die Gerade h: r = 2 2. a) Bestimmen Sie die Koordinatengleichung der Ebene E, welche die Punkte A, B und C enthält. Falls Sie die Gleichung von E unter Teilaufgabe a) nicht bestimmen konnten, lösen Sie die Teilaufgaben b) und c) mit der Ebenengleichung F : 2x y + 2z 4 = 0 anstelle von E. b) Gesucht ist die Gleichung der zu E parallelen Ebene H, welche durch den Punkt P geht. c) Bestimmen Sie die Koordinaten des Durchstosspunktes D der Geraden h mit der Ebene E. d) Bestimmen Sie den Abstand des Punktes P von der Geraden h. e) Die Gerade g verläuft durch die Punkte A und C. Zeigen Sie, dass die Geraden g und h windschief sind. Lösung: a) E: 2x y + 2z 0 = 0 b) H: 2x y + 2z 22 = 0 c) D(3/4/4) d) d = 6 e) g h = {} 0

11 Kantonsschule Romanshorn, Thurgau, Maturaprüfung 20) Kugel, Ebene und Gerade [(F)] Auf der Ebene E: 4x 3z + 5 = 0 liegt eine Kugel K mit dem Mittelpunkt M(5 4 5). a) Zeigen Sie, dass der Radius der Kugel r = 0 beträgt. b) Berechnen Sie irgend einen Punkt auf der Kugeloberfläche. c) Die Kugel wird an der Ebene E gespiegelt. Berechnen Sie den Mittelpunkt M der gespiegelten Kugel. 0 d) Beurteilen Sie rechnerisch, ob die Gerade g: r = 2 2 die Kugel schneidet oder berührt. 7 2 e) Geben Sie die Gleichung K der gespiegelten Kugel. f) Bestimmen Sie die fehlende y Koordinate des Punkts P (3 y 5), welcher auf der Kugeloberfläche K liegt. g) Berechnen Sie eine Koordinatengleichung der Tangentialebene T im Punkt Q( 4 3) der Kugeloberfläche K. Lösung: a) b) c) d) e) f) g)

12 Gymnasium Muttenz, Baselland, Maturaprüfung 20 Gerade und Ebene [(F)] 3 0 Gegeben sind die Gerade g: r = 7 und die Ebene E durch die Punkte K(// ), L(2/0/3) und 8 M(2//). a) Bestimmen sie k so, dass E: 2x + 2y + z + k = 0 eine Koordinatengleichung der Ebene E ist. b) Berechnen Sie die Koordinaten des Durchstosspunktes F der Geraden g mit der Ebene E. c) Der Punkt P (3/ 7/ 8) wird an der Ebene E gespiegelt. Berechnen Sie die Koordinaten des Spiegelpunktes P. d) Zeigen Sie rechnerisch, dass das gleichschenklige Dreieck P F P beim Punkt F einen rechten Winkel hat. e) Bestimmen Sie rechnerisch die Koordinaten des Punktes R so, dass das Viereck P F P R ein Quadrat ist. f) Das Quadrat P F P R ist die Grundfläche einer geraden Pyramide mit der Spitze S(0/5/ ). Berechen sie das Volumen dieser Pyramide. Lösung: a) b) c) d) e) f) 2

13 Gymnasium Muttenz, Basel, Maturaprüfung 20 Gerade und Ebene [(G): a) / (F): b) / (E): c)] Gegeben ist der Würfel ABCDEF GH mit den Eckpunkten A(6/0/0), B(6/6/0), C(0/6/0), D(0/0/0) und H(0/0/6). Der Punkt P liegt auf der Raumdiagonalen BH. a) Berechnen Sie eine Parametergleichung der Raumdiagonalen BH. b) Berechnen Sie die Koordinaten des Punktes P so, dass das Dreieck ACP bei P rechtwinklig ist. c) Berechnen Sie die Koordinaten des Punktes P so, dass das Dreieck ACP den Flächeninhalt F = 9 2 hat. Lösung: a) b) c) 3

14 Kantonsschule Heerbrugg, St. Gallen, Maturaprüfung 202) Gerade und Ebene [(E)] 9 2 Gegeben sind die Punkte A(3/ 4/7), B( 5 8 3) und die Gerade g: r = a) Zeige, dass die Gerade durch A und B und die Gerade g parallel, aber nicht identisch sind. b) Bestimme auf g die Punkte C und D, sodass ABCD ein gleichschenkliges Trapez ist mit AB = 2 CD. Die Pyramide ABCD hat das Volumen V = 250. Die Grundfläche ABC ist ein gleichschenklig-rechtwinkliges Dreieck mit der Ecke A(37/20/6) und der Ecke C(0/0/0), wo sich der rechte Winkel befindet. Die Ecke B liegt in der Ebene z = 3. a) Berechne die Koordinaten von B (es ist nur die Lösung mit ganzzahligen Koordinaten anzugeben). Wer Aufgabe a) nicht lösen konnte, löse die Aufgabe b) mit B(32/80/26). b) Das Lot von der Spitze D auf die Ebene ABC geht durch den Schwerpunkt S des Dreiecks ABC. Berechne die Koordinaten von D (die Angabe einer Lösung genügt). Lösung: a) b) a) b) 4

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :

Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 : Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden

Mehr

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22. Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK

Mehr

Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Vektorrechnung Raumgeometrie

Vektorrechnung Raumgeometrie Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Erweiterte Beispiele 1 1/1

Erweiterte Beispiele 1 1/1 Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks

Mehr

Berufsmaturitätsprüfung 2009 Mathematik

Berufsmaturitätsprüfung 2009 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2009 Mathematik Zeit: 180 Minuten Hilfsmittel: Formel- und Tabellensammlung ohne gelöste Beispiele, Taschenrechner

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Übersicht Analytische metrie und astik-abituraufgaben 2004-2015 Hauptprüfung 2015 Pflicht A6 a) Gegeben sind drei Punkte A, B, C. Zeige, dass das Dreieck ABC gleichschenklig ist b) Berechnung eines Punktes

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Mündliche Matura-Aufgaben: Analysis

Mündliche Matura-Aufgaben: Analysis Mündliche Matura-Aufgaben: Analsis A1) Schreiben Sie mit dem Summenzeichen. 15 + 19 + 23 +... + 87 A2) Berechnen Sie: lim x x 3 + 3x 5 x x 3 A3) Welches Glied der Folge 8, 24, 72, 216,... ist das erste,

Mehr

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015

Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015 Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 3: Analytische Geometrie Das Modell einer Gartenlaterne kann als Stumpf einer regelmäßigen quadratischen

Mehr

b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 a b a b a 1 b 1 a 2 b 2 a 3 b 3

b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 a b a b a 1 b 1 a 2 b 2 a 3 b 3 1. Rechnen mit Vektoren Skalarprodukt a b a b cos a 1 a 2 a 3 b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 b a 1. Betrag Länge eines Vektors: a a a a 2 1 a 2 2 a 2 3 2. Winkel zwischen 2 Vektoren: cos a b a b a

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

Analytische Geometrie Aufgaben und Lösungen

Analytische Geometrie Aufgaben und Lösungen Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................

Mehr

1 0.5h Gymnasium St. Antonius, Appenzell, Maturaprüfung 2011, Seite h Kantonsschule Romanshorn, Thurgau, Maturaprüfung 2013, Seite 6

1 0.5h Gymnasium St. Antonius, Appenzell, Maturaprüfung 2011, Seite h Kantonsschule Romanshorn, Thurgau, Maturaprüfung 2013, Seite 6 Analysis Vorzeigeaufgaben: Block Zeit Aufgabe 1 0.5h Gymnasium St. Antonius, Appenzell, Maturaprüfung 2011, Seite 2 0.5h Kantonsschule Romanshorn, Thurgau, Maturaprüfung 2013, Seite 3 0.5h Kantonsschule

Mehr

Passerelle Mathematik Frühling 2005 bis Herbst 2006

Passerelle Mathematik Frühling 2005 bis Herbst 2006 Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch info@mathenachhilfe.ch 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Aufgabe E 1 (8 Punkte)

Aufgabe E 1 (8 Punkte) Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene 5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:

Mehr

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.

a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen. und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

7.7. Aufgaben zu Abständen und Winkeln

7.7. Aufgaben zu Abständen und Winkeln 7.7. Aufgaben zu Abständen und Winkeln Aufgabe : Schnittwinkel zwischen Geraden Bestimmen Sie die Innenwinkel und ihre Summe für das Viereck ABCD. Berechnen Sie auch die Koordinatengleichung der Trägerebene,

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1

Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a

a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

1. Bestimmen Sie b so, dass die Punkte A(1 2 b), B(2 b 4), C(5 6 7) auf einer Geraden liegen.

1. Bestimmen Sie b so, dass die Punkte A(1 2 b), B(2 b 4), C(5 6 7) auf einer Geraden liegen. Aufgaben Vektorrechnung 1. Bestimmen Sie b so, dass die Punkte A(1 b), B( b 4), C(5 6 7) auf einer Geraden liegen.. Gegeben sind die Gerade g: x = 7 4 + λ 4 und der Punkt M( 4 ). a) Wie lautet die Gleichung

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

Matura Mathematik schriftlich

Matura Mathematik schriftlich Kantonsschule Zofingen Matura 014 Mathematik schriftlich Abteilungen 4ABCD Hilfsmittel: Formelsammlung Taschenrechner TI84 Zeit: vier Stunden, d.h. 40 Minuten Bewertung: Aufgabe 1 16 Punkte (++3+3+6) Aufgabe

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

Analytische Geometrie / Vektorgeometrie

Analytische Geometrie / Vektorgeometrie Analytische Geometrie / Vektorgeometrie. Bedingung Unter welchen Voraussetzungen gilt:. s + t + u = s + t + u. Gleiche Abstände Welcher Punkt der yz-ebene mit der y-koordinate hat vom Ursprung (= Nullpunkt)

Mehr

Übungsblatt

Übungsblatt Übungsblatt 6..7 ) Zeigen Sie die Gültigkeit der folgenden Sätze durch Verwendung abstrakter Vektoren (ohne Bezug auf konkrete Komponenten), deren Addition bzw. Subtraktion und Multiplikation mit Skalaren:

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide

Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Projektionskurve Abiturprüfung LK Bayern 2003

Projektionskurve Abiturprüfung LK Bayern 2003 Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 7 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7

Mehr

K2 ÜBUNGSBLATT 2 F. LEMMERMEYER

K2 ÜBUNGSBLATT 2 F. LEMMERMEYER K2 ÜBUNGSBLATT 2 F. LEMMERMEYER Aufgabe 1. Hier ein knappes Beispiel, wie man einen Punkt P an einer Geraden g spiegelt (Wer sich gerne was merkt: Lotfußpunkte auf Ebene mit Lotgerade, Lotfußpunkte auf

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Lösungen der 1. Lektion

Lösungen der 1. Lektion Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und.

. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und. Abitur BW 2 Aufgabe Lösungslogik a) Gleichschenkliges Dreieck : Zwei Dreiecksseiten müssen gleich lang sein. Koordinaten des Punktes : Berechnung der Koordinaten von über Vektoraddition. Innenwinkel der

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Ich wünsche euch allen viel Erfolg!

Ich wünsche euch allen viel Erfolg! Klasse 6B, 007 Allgemeine Bemerkungen Im Prüfungsmäppchen sollen enthalten sein: Prüfung bestehend aus diesem Titelblatt und 4 weiteren Seiten Formelsammlung Schreibpapier Bemerkungen zur Prüfung Erlaubte

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1 Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender

Mehr

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren Vektoren Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail:

Mehr

Trigonometrische Berechnungen

Trigonometrische Berechnungen Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Oktaeder. Bernhard Möller. 22. Dezember 2010

Oktaeder. Bernhard Möller. 22. Dezember 2010 Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben

Mehr

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter 8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr