Contents. Datenanalysemethoden im analytischen CRM. Data Warehouse - OLAP Version: July 17, Datenanalysemethoden im analytischen CRM

Größe: px
Ab Seite anzeigen:

Download "Contents. Datenanalysemethoden im analytischen CRM. Data Warehouse - OLAP Version: July 17, 2007. 1 Datenanalysemethoden im analytischen CRM"

Transkript

1 Contents Data Warehouse - OLAP Version: July 17, 7 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude Rechenzentrum, 1. Stock, Zi. 169 Universität Karlsruhe (TH) D Karlsruhe Tel: Fax: Sprechstunde nach Vereinbarung ( ) Contents 1 Datenanalysemethoden im analytischen CRM 3 2 OLAP System: Übersicht OLAP Definition OLTP OLAP Funktionalität I (Codd 1993) OLAP Funktionalität II OLAP Funktionalität III FASMI Anforderungen an OLAP System Eigenschaften von mehrdimensionalen DBs Verdichtung von Werten Skalenniveaus OLAP Visualisierung von Hypercubes 14 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 1 Contents Datenanalysemethoden im analytischen CRM 5.1 Visualisierung von mehr als drei Dimensionen Operationen auf mehrdimensionalen DBs Drill-Down und Roll-Up Rotation Slice and Dice Datenanalysemethoden im analytischen CRM OLAP (On-Line Analytical Processing) (siehe Data Mining (Prediction, Sequence, Association) Statistik (Cluster, PCA, Regression, Testing,...) Personalisierung und Collaboratives Filtern Clickstream Analyse - Wo und wieso verlassen Kunden eine Webseite? - Analyse verlassener Warenkörbe + Einkünfte aus verlassenen Warenkörben + enthaltene Produkte profitabel? + gleiche Produkte in anderen Körben + Anzahl und Produktkategorien in Körben + Wo wurden Warenkorb verlassen? + Verkauf von verlassenen Körben verglichen mit tatsächlichen Verkäufen + Analyse der Kundennavigation Persönlich zugeschnittene Discounts! Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 2 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 3

2 OLAP System: Übersicht OLAP Definition 2 OLAP System: Übersicht Ein OLAP System gibt Usern mehrdimensionale und logische Sicht der Daten im Data Warehouse ermöglicht interaktive Anfragen und komplexe Analysen für den User ermöglicht Usern Navigieren entlang der Hierarchien der Dimensionstabellen (drill-down für genauere Details und roll-up für Aggregation von Daten bei einzelnen oder mehreren Dimensionen) ermöglicht das Ausführen schwieriger Berechnungen und Vergleiche stellt Ergebnisse auf verschiedene Art und Weise dar, z.b. Tabellen, Schaubilder, etc. 2.1 OLAP Definition OLAP enables analysts, managers, and executives to gain insight into data through fast, consistent, interactive access to a wide variety of possible views of information. OLAP transforms raw data so that it reflects the real dimensionality of the enterprise as understood by the user. [Cou97] Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 4 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 5 OLTP OLAP Funktionalität I (Codd 1993) 2.2 OLTP Gegensatz zu OLAP: On-Line Transaction Processing (OLTP) nutzt operative Systeme kurze, wiederkehrende, isolierte Anfragen, Abarbeitung von Transaktionen schnelle Bearbeitungsgeschwindigkeit wichtig Häufige Updates von Daten Aktuelle und detaillierte Daten vonnöten, Historie meist unwichtig dient dem Tagesgeschäft mit operativen Systemen wichtig: Transaktionssicherheit, Parallelität und Performance 3 OLAP Funktionalität I (Codd 1993) Anforderungen an ein OLAP-Tool nach Codd: Mehrdimensionale konzeptuelle Sicht auf die Daten (User haben mehrdimensionale Sicht Modell auch) Intuitive Datenmanipulation (z.b. drill down via einfachem point-and-click) Benutzbarkeit (nur 1 logische Sicht pro Benutzer) batch (Stapelverarb.) und interactive Modus OLAP Analyse Modelle (4 Stück) 1. Parameterisierte statische Berichte 2. Slice, Dice, Drill-Down, Roll-Up 3. What-If Analyse (Was wäre wenn?) (Spreadsheet Evaluation) 4. Ziel suchende Modelle (Goal-Seeking Models) (Prolog-Evaluation) skalierbare Client/Server Architektur Transparenz (Benutzerschnittstelle unabhängig vom Architektur) Mehrbenutzer Support (concurrent read-write) Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 6 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 7

3 OLAP Funktionalität II OLAP Funktionalität III 3.1 OLAP Funktionalität II 3.2 OLAP Funktionalität III Spezial: Behandlung nicht-normalisierter Daten (externe Daten werden nicht verändert!) Speicherung von OLAP Ergebnissen Erkennen von fehlenden Werten Behandlung fehlender Werte Dynamische Handhabung dünn besetzter Matrizen (dynamische Speicherstrukturanpassung) Reporting: Flexible Reporterstellung (entlang der Hypercube-Dimensionen) Konsistente (gleichbleibende) Report-Performance Automatisches Anpassen von Werten auf physikalischem Niveau Dimensionskontrolle: Generische Dimensionalität (alle Dimensionen in Struktur einheitlich; Berichte ändern sich, wenn sich Basisdaten ändern) Unbegrenzte Dimensions- und Aggregationslevel Unbeschränkte cross-dimensionale Operationen (mit korrekter Reihenfolge auch bei Parallelisierung) Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 8 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 9 FASMI Anforderungen an OLAP System Eigenschaften von mehrdimensionalen DBs 3.3 FASMI Anforderungen an OLAP System Als Basis für Vergleiche verschiedener OLAP-Tools 1. Fast: durchschnittlich 5 Sek. pro Abfrage, einfache Abfragen 1 Sek., komplexe 20 Sek. 2. Analysis: Analysemöglichkeiten (logische Operationen) vorhanden, mit wenig Aufwand anzugeben 3. Shared: Mehrbenutzerbetrieb, Zugriffsschutzmechanismen 4. Multidimensional: mehrdimensionale Datenstruktur, Unterstützung der Dimensionshierarchien 5. Information: Menge der Daten und Information, die ein OLAP-Tool verarbeiten kann [PC97] 4 Eigenschaften von mehrdimensionalen DBs Dimensionen Hypercubes (sparsely filled) Hierarchien (z.b. Produktklassen) abgeleitete Werte: sichergehen, dass (z.b. beim Update) Berechnung konsistent erfolgt (korrekte Reihenfolge von Operationen) Links connect hyper cubes with data sources Automatisches Update der Daten (data propagation) kann sehr sophisticated sein (80% der Arbeit) Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 10 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 11

4 Verdichtung von Werten Skalenniveaus 4.1 Verdichtung von Werten 4.2 Skalenniveaus Grundlage der OLAP-Analyse sind Kennzahlen (Maße, Metriken) Bsp: Umsatz, Anzahl verkaufter Einheiten, Lagerbestand,... Werte lassen sich verdichten oder aggregieren: Summe Mittelwert oder Median Maximum oder Minimum prozentuale Anteile logische Operationen Zulässige Verdichtungen sind abhängig von Skala der Kennzahl Nominalskalierte Werte z.b. Namen etc.; keine Berechnungen möglich Ordinalskalierte Werte (partielle) Ordnung ist auf den Werten definiert, Sortierung möglich Median, Maximum, Minimum berechenbar Kardinalskalierte Werte numerische Werte, Interpretation der Abstände möglich mathematische Berechnungen möglich Boolesche Werte logische Operationen möglich Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 12 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 13 OLAP Visualisierung von Hypercubes OLAP Visualisierung von Hypercubes 5 OLAP Visualisierung von Hypercubes Beispiel Starschema: 3 Dimensionen: Zeit, Produkt, Kennzahlen Darstellung als Würfel, mit Dimensionen auf den Kanten die Tabellenseite ist eine Scheibe/slice des Würfels durch ein einzelnes Produkt mit den anderen beiden Dimensionen als Spalten und Reihen Coats P r o d u c t s Metrics Months Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 14 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 15

5 OLAP Visualisierung von Hypercubes Visualisierung von mehr als drei Dimensionen Darstellung von drei Dimensionen als Tabelle 5.1 Visualisierung von mehr als drei Dimensionen Darstellung als multidimensional domain structure (MDS): Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 16 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 17 Visualisierung von mehr als drei Dimensionen Visualisierung von mehr als drei Dimensionen Hinzunahme einer weiteren Dimension: Stores Darstellung von mehreren Dimensionen als Tabelle: Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 18 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 19

6 Visualisierung von mehr als drei Dimensionen Operationen auf mehrdimensionalen DBs Bei mehr als vier Dimensionen: Kombination von Dimensionen sowohl bei Zeilen, Spalten und Seiten Tabelle erweiterbar auf bis zu sechs Dimensionen mehr Dimensionen möglich, aber unübersichtlich... 6 Operationen auf mehrdimensionalen DBs OLAP-Operationen rollup (auf nächsthöherer Hierarchiestufe Aggregat bilden) drill-down (Geg. von rollup, Gruppierung auflösen) slice (vertikale Projektion in Fakt-Tabelle) dice (selektion auf Fakt-Tabelle, z.b. best. Zeit,...) pivot (Dimension ändern, z.b. andere Aggregation sehen) Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 20 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 21 Drill-Down und Roll-Up Drill-Down und Roll-Up 6.1 Drill-Down und Roll-Up Beispiel: Drei-dimensionale Anzeige mit roll-up OLAP Aggregation Level Sales in one month in one store Another instance of OLAP Drillacross to another OLAP instance Bsp: drei-dimensionale Ansicht für Einzelprodukte: Store: New York PAGES: STORE dimension Products COLUMNS: PRODUCT dimension Hats Coats Jackets Dresses Shirts Slacks Months Jan Feb Department 300,000 Mar Product Line Category Sub-category Product 60,000 15,000 5,000 1, Drilldown / Rollup Drillthrough to detail ROWS: TIME dimension Apr May Jun Jul Aug Sep Detailed Data Detailed Data Summary Data DATA WAREHOUSE Oct Nov Dec Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 22 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 23

7 Drill-Down und Roll-Up Drill-Down und Roll-Up Roll-up auf Produktkategorien: Store: New York Sub-categories Roll-up auf Produktkategorien und Quartale: PAGES: STORE dimension COLUMNS: PRODUCT dimension Outer Dress Casual Months Jan 1,100 1, Feb 1,080 1,040 Mar 1, Apr 970 1,000 ROWS: TIME dimension May Jun Jul 1, ,080 1,100 1, Aug 960 1, Sep 870 1,280 Oct 910 1,240 Nov 980 1, Dec 1,080 1, Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 24 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 25 Rotation Slice and Dice 6.2 Rotation 6.3 Slice and Dice Rotieren des Würfels: Attribute wechseln die Achsen: S t o r e s (Z) Products (X) Months (Y) Products (Z) Stores (Y) M o n t h s (X) P r o d u c t s (Y) Stores (X) Months (Z) Selektion einer bestimmten Teilmenge von Daten Selektionsbedingungen auf Untermenge der Dimensionen (page dimensions) page dimensions werden nicht mehr explizit angezeigt entspricht Herausschneiden einer Scheibe aus dem Hypercube Dimensionalität der Daten wird reduziert z.b. zeige nur Daten zum Store New York X-Axis: Columns Y-Axis: Rows Z-Axis: Pages Store: New York Product: Hats Month: January Hats Coats Jackets Jan Feb Mar NY Boston San J. Jan 350 NY 190 Hats 130 Feb 390 Boston 240 Coats Mar San J Jackets Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 26 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 27

8 References References [Cou97] OLAP Council. What is olap? Technical report, [PC97] Nigel Pendse and Richard Creeth. The olap report, Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 28

Vertrautmachen mit Daten

Vertrautmachen mit Daten Kapitel III Vertrautmachen mit Daten 2004 AIFB / FZI 1 III Vertrautmachen mit Daten (see also Data Preparation ) 2004 AIFB / FZI 2 III Vertrautmachen mit Daten III.1 OLAP III.1.1 Einführung in OLAP Wie

Mehr

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier Realisierung von OLAP Operatoren in einem visuellen Analysetool Vortrag von Alexander Spachmann und Thomas Lindemeier Gliederung Ausgangssituation/Motivation Was ist OLAP? Anwendungen Was sind Operatoren?

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4 Contents Data Warehouse - ETL Prozess Version: July 10, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

SAP Business Intelligence

SAP Business Intelligence SAP Business Intelligence Helmut Roos Diplom-Ingenieur Unternehmensberater Grundlagen zu Netweaver 7.0 D-67067 Ludwigshafen +49 (621) 5 29 44 65 Data Acquisition Common Read / Write Interface Open Interface

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Jens Zwer. End-to-End Monitoring für Web-, SOA- und Oracle Applikationen

Jens Zwer. End-to-End Monitoring für Web-, SOA- und Oracle Applikationen Jens Zwer Applications & Systems Management Solutions End-to-End Monitoring für Web-, SOA- und Oracle Applikationen Mai 2010 Kosten Online-Applikation vs. Nutzen & Kundenzufriedenheit? Entwicklung Test

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Inhalt. 4.1 Motivation. 4.2 Datenintegration. 4.3 Konzeptuelle Modellierung. 4.4 Anfragen an Data Warehouses. 4.5 Implementierungsaspekte

Inhalt. 4.1 Motivation. 4.2 Datenintegration. 4.3 Konzeptuelle Modellierung. 4.4 Anfragen an Data Warehouses. 4.5 Implementierungsaspekte 4. Data Warehouses Inhalt 4.1 Motivation 4.2 Datenintegration 4.3 Konzeptuelle Modellierung 4.4 Anfragen an Data Warehouses 4.5 Implementierungsaspekte 2 Literatur V. Köppen, G. Saake und K.-U. Sattler:

Mehr

On-Line Analytical Processing

On-Line Analytical Processing OLAP und Data Mining ƒ OLAP Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen ƒ Data Mining Begriff und Prozeß Verfahren Vorlesung Data-Warehouse-Technologien 9-1 On-Line Analytical Processing

Mehr

OLAP und Data Mining. On-Line Analytical Processing. Coddsche Regeln OLAP. Data Mining. Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen

OLAP und Data Mining. On-Line Analytical Processing. Coddsche Regeln OLAP. Data Mining. Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen OLAP und Data Mining OLAP Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen Data Mining Begriff und Prozeß Verfahren Vorlesung Data-Warehouse-Technologien 9-1 On-Line Analytical Processing

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE. 1. Konferenz der SAS Benutzer in Forschung und Entwicklung

Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE. 1. Konferenz der SAS Benutzer in Forschung und Entwicklung Data Warehousing und anderetrends beim Einsatz der SAS Software in Unternehmen KSFE 1. Konferenz der SAS Benutzer in Forschung und Entwicklung Unterschiedliche Geschäftsprozesse Operativer Dispositve Geschäftsbetrieb

Mehr

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 24. Juni 2014 Agenda Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

VDoc Report auf Basis BIRT. Ihr Business Intelligence und Reporting Tool

VDoc Report auf Basis BIRT. Ihr Business Intelligence und Reporting Tool VDoc Report auf Basis BIRT Ihr Business Intelligence und Reporting Tool Was ist Business Intelligence? Business Intelligence ist der Sammelbegriff für Data Warehouse, OLAP und Data Mining. Im weiteren

Mehr

Logische Modelle für OLAP. Burkhard Schäfer

Logische Modelle für OLAP. Burkhard Schäfer Logische Modelle für OLAP Burkhard Schäfer Übersicht Einführung in OLAP Multidimensionale Daten: Hypercubes Operationen Formale Grundlagen Zusammenfassung Einführung in OLAP Verfahren zur Analyse großer

Mehr

Schnellste Realtime Segmentierung weltweit

Schnellste Realtime Segmentierung weltweit Schnellste Realtime Segmentierung weltweit powered by 1 Über Webtrekk Gegründet 2004 in Berlin Einer der führenden europäischen Webanalyseanbieter 45 Mitarbeiter 2 2nd only to Omniture 3 Referenzen Kunden

Mehr

Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002)

Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Betrifft Autör: GROUPING_ID Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem Oracle9i Data Warehousing Guide und den Kursen New Features Oracle9i

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Eine Einführung in OLAP

Eine Einführung in OLAP Eine Einführung in OLAP Einleitung... 1 Wofür wird OLAP benötigt?... 1 Was ist OLAP?... 3 OLAP Charakteristika... 3 Dimensionen... 3 Hierarchien... 3 Flexible Präsentation... 4 OLAP und Data Warehousing...

Mehr

OLTP: Online Transaction Processing

OLTP: Online Transaction Processing Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing (bisheriger Fokus) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele Agenda Definition Ziele Methoden Werkzeuge Herausforderungen Kosten Nutzen Hype oder Mehrwert Definition / Ziele Google Suche: define:business Intelligence Mit Business Intelligence können alle informationstechnischen

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Veräußerung von Emissionsberechtigungen in Deutschland

Veräußerung von Emissionsberechtigungen in Deutschland Veräußerung von Emissionsberechtigungen in Deutschland Monatsbericht September 2008 Berichtsmonat September 2008 Die KfW hat im Zeitraum vom 1. September 2008 bis zum 30. September 2008 3,95 Mio. EU-Emissionsberechtigungen

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

OLAP und der MS SQL Server

OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP-Systeme werden wie umfangreiche Berichtssysteme heute nicht mehr von Grund auf neu entwickelt. Stattdessen konzentriert man sich auf die individuellen

Mehr

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude 20.20 Rechenzentrum,

Mehr

alea iacta est Würfel (nicht nur) am Beispiel von PROC OLAP

alea iacta est Würfel (nicht nur) am Beispiel von PROC OLAP Multidimensionale Probleme alea iacta est Würfel (nicht nur) am Beispiel von PROC OLAP Christian Kothenschulte LBS Westdeutsche Landesbausparkasse Himmelreichallee 40 48149 Münster christian.kothenschulte@lbswest.de

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH Management Cockpits Business Intelligence für Entscheider Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH email: oliver.roeniger@oracle.com Tel.: 0211 / 74839-588 DOAG, Mannheim, 15.

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Performanceaspekte in der SAP BI Modellierung

Performanceaspekte in der SAP BI Modellierung Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Anfragen gegen das DataWarehouse

Anfragen gegen das DataWarehouse Anfragen gegen das DataWarehouse Sebastian Kuhs Seminar Data Warehousing und analytische Datenbanken Gliederung 1. Benutzergruppen 2. interaktives OLAP 3. MDX 4. XML-Analysis 5.Produkte 1. Benutzergruppen

Mehr

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011 Roundtable Dashboards und Management Information Rüdiger Felke / Christian Baumgarten 29.11.2011 Agenda Behind the Dashboards Was ist ein Dashboard und was ist es nicht? SAP BusinessObjects Dashboards

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Das multidimensionale Datenmodell Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Vom Spreadsheet zum Würfel Multidimensionales Datenmodell (MDDM)

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

SAP HANA ist schnell erklärt. TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag

SAP HANA ist schnell erklärt. TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag SAP HANA ist schnell erklärt TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag Ihr Referent Steckbrief Name: Miroslav Antolovic Jahrgang: 1975 Stationen: SAP, Walldorf 1999-2004 Realtech, Walldorf

Mehr

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition BI für Jedermann Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition Wolfgang Rütter Bereichsleiter Informationssysteme OPITZ CONSULTING Gummersbach GmbH 1 Warum BI für Jedermann? 1. Historie

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Multidimensionales Datenmodell

Multidimensionales Datenmodell Multidimensionales Datenmodell Grundbegriffe fi Fakten, Dimensionen, Würfel Analyseoperationen fi Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung fi ME/R, ADAPT Relationale

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Cognos 8.4 Whats new Anwendungserfahrungen

Cognos 8.4 Whats new Anwendungserfahrungen Technik- Workshop Stuttgart 17 März 2009 Cognos 84 Whats new Anwendungserfahrungen Ralf Roeber Agenda 1 2 3 4 Kommentarfunktion Datenherkunft / Data Lineage Sonstige Read only Administrator - 2 - Kommentarfunktion

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Kapitel 6 Managementunterstützungssysteme und Business Intelligence

Kapitel 6 Managementunterstützungssysteme und Business Intelligence ProKSy - EBSS Institut AIFB WS 2013/2014 Programmierung kommerzieller Systeme Einsatz betrieblicher Standardsoftware (ProKSy EBSS) Kapitel 6 Managementunterstützungssysteme und Business Intelligence Institut

Mehr

Business Intelligence in Office 2010 und SharePoint Server 2010

Business Intelligence in Office 2010 und SharePoint Server 2010 Business Intelligence in Office 2010 und SharePoint Server 2010 Markus Thomanek, Oliver Goletz, Martin Vach Technologie- und Lösungsberater Microsoft Deutschland GmbH http://blogs.technet.com/sqlteamgermany

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Webanalyse Praxiswissen

Webanalyse Praxiswissen Webanalyse Praxiswissen Webanalyse Allgemein (konzeptionell) Webanalyse Allgemein (konzeptionell) Ziel und Zweck Webanalyse Allgemein (konzeptionell) Ziel und Zweck Fragestellungen beantworten, z.b. :

Mehr

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis DOAG Konferenz 2010 Claus Jordan Senior Consultant, Trivadis GmbH 16.11.2010 Basel Bern Lausanne Zürich Düsseldorf

Mehr

Innovative Ansätze für den Gesundheitsmarkt. Mainz, 10. Mai 2011

Innovative Ansätze für den Gesundheitsmarkt. Mainz, 10. Mai 2011 Business Intelligence und Geovisualisierung Innovative Ansätze für den Gesundheitsmarkt Mainz, 10. Mai 2011 Prof. Dr. Anett Mehler-Bicher Prof. Dr. Klaus Böhm Inhalt Ausgangssituation und Motivation Motivation

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Essbase und Oracle Database OLAP Option zwei OLAP-Lösungen von Oracle. Andreas Wegehaupt Principal Solution Consultant BI Oracle Deutschland GmbH

Essbase und Oracle Database OLAP Option zwei OLAP-Lösungen von Oracle. Andreas Wegehaupt Principal Solution Consultant BI Oracle Deutschland GmbH Essbase und Oracle Database OLAP Option zwei OLAP-Lösungen von Oracle Andreas Wegehaupt Principal Solution Consultant BI Oracle Deutschland GmbH Agenda Business Intelligence und die

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 2004-2005 14.00-16.00 Uhr PD Dr. Peter Gluchowski Folie 1 Gliederung MSS WS 04/05 1. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

Inhaltsverzeichnis. Motivation. Analytisches CRM: Einführung. Version: 31. Juli 2009. 1 Motivation. Andreas Geyer-Schulz und Andreas Neumann

Inhaltsverzeichnis. Motivation. Analytisches CRM: Einführung. Version: 31. Juli 2009. 1 Motivation. Andreas Geyer-Schulz und Andreas Neumann Analytisches CRM: Einführung. Version: 31. Juli 2009 Andreas Geyer-Schulz und Andreas Neumann Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr