10.Einführung in die Festkörperphysik

Größe: px
Ab Seite anzeigen:

Download "10.Einführung in die Festkörperphysik"

Transkript

1 1.1 1.Einführung in die Festkörperphysik Die Festkörperphysik ist ein Zweig der modernen Physik, in dem mittlerweile ca. 5% aller Physiker arbeiten. Viele moderne Anwendungen insbesondere im Bereich der Informationstechnologien stammen aus dem Bereich er Festkörperphysik. Pauli: Ich mag den festen Körper nicht, obwohl ich ihn erfunden habe Festkörper waren am Beginn des 2. Jahrhunderts weitgehend unverstanden. Einzelne Phänomene wie Ferromagnetismus waren bekannt, aber es gab kein tieferes Verständnis. Mit klassischen Gesetzen ist die Stabilität von Atomen nicht zu verstehen, geschweige denn die Stabilität von Festkörpern? Warum bilden sich Festkörper, welche atomaren Kräfte sind dafür verantwortlich? Warum leiten Metalle den elektrischen Strom so gut? Was unterscheidet Metalle und Isolatoren? 1.1 Elektronen in Metallen Festkörper sind aus einer periodischen Anordnung von Atomen aufgebaut. Diese Atome bilden ein Kristallgitter. Typischerweise gibt jedes Atom ein oder mehrere Elektronen für die Bindung ab, d.h. es gibt positiv geladene Ionenrümpfe und negative Elektronen, die für den Ladungstransport sorgen. Die Elektronen spüren eine Coulomb-Wechselwirkung mit den positiv geladenen Kernen. Führt eine solche Wechselwirkung jedes Mal zu einem Streuereignis? Warum kann ein Metall trotzdem einen kleinen elektrischen Widerstand haben? Modell freier Elektronen (Lorenz und Fermi) Beginn: einfachst möglicher Fall, Wechselwirkung der Elektronen mit dem Gitter wird vollkommen vernachlässigt Sieht zunächst wie eine schlechte Näherung aus, liefert aber erstaunliche Ergebnisse Quantenmechanik: Aufenthaltswahrscheinlichkeit der Elektronen im Kristall wird durch das Quadrat der Wellenfunktion beschrieben, 2 Beschreibt Materiewelle De Broglie: Zusammenhang zwischen Wellenlänge und Impuls, = h p

2 1.2 Kinetische Energie der (freien) Elektronen: E = p2 2m = 2 k 2 2m Betrachte freie Elektronen, keine Wechselwirkung mit den positiv geladenen Atomen des Gitters Material ist endlich, d.h. Elektronen befinden sich in einem Gebiet der Kantenlänge L Viele derartige Gebiete bilden den Festkörper Schrödingergleichung: 2 k 2 2 k + 2 k + 2 k = E 2m x 2 y 2 z 2 k k für ein freies Elektron Lösungen der Schrödingergleichung sind von der folgenden Form: k e i k r Richtung des Wellenvektors k gibt Laufrichtung der Welle an Periodische Randbedingungen: (x + L, y,z) =(x, y,z), genauso für y und z Ergibt Bedingungen für k : k x =,± 2 L,± 4 L, entsprechend für k y,k z Wellenvektor nimmt diskrete Werte an -> Energie ist gequantelt Fläche konstanter Energie im k-raum ist eine Kugel Komponenten des Wellenzahlvektors sind in ganzzahligen Vielfachen von 2 Volumen eines Zustands im k-raum: L 3 2 L gequantelt Dieses Volumen bietet Platz für zwei Zustände (spin up und spin down) aufgrund des Pauli- Prinzips Betrachte Kristall vom Volumen L 3 Alle möglichen Energiezustände werden ausgehend vom untersten besetzt, bis alle N Teilchen untergebracht sind Fermi-Energie Höchster besetzter Energiezustand wird Fermi-Energie genannt.

3 1.3 Zugehörige Energiefläche im k-raum mit E= wird Fermifläche genannt Die Fermifläche ist eine Kugel im k-raum mit Radius k F Volumen 4 3 k 3 F bietet Platz für N Teilchen 4 3 k 3 F = N 2 L = N 2 ( 2) 3 V N Wellenzahl an der Kugeloberfläche, bzw. Fermi-Wellenvektor: k F = 3 2 V Fermi-Energie: = 2 2m 3 N 2 V Elektronen an der Oberfläche haben maximale Geschwindigkeit v F Impuls-Geschwindigkeit: p F = mv F = k F, v F = m 3 N 2 V 1 3 Alle Parameter des Fermi-Systems hängen von der Konzentration der freien Elektronen n=n/v ab Jetzt kennen wir die höchst mögliche Energie eines Elektrons in Abhängigkeit von der Elektronenkonzentration Beispiel Li, Alkalimetall, 1 freies Elektron pro Atom Elektronenkonzentration: n = cm 3 Fermi-Energie: = 4.7 ev Fermi-Geschwindigkeit: v F = cm s Das sind typische Zahlen für alle Metalle, die zum Schluss nur von der Elektronenkonzentration abhängen

4 1.4 Fermi-Energie ist viel grösser als kt, bei Raumtemperatur, k B 3 K = 25 mev d.h. für Elektronen nahe an der Fermi-Energie ist die Wärmebewegung praktisch irrelevant Fragestellung: wie viele Ladungsträger nehmen beim Leitfähigkeitsprozess teil? Zustände, die weit unterhalb der Fermi-Energie liegen, können sich nicht bewegen, weil alle Zustände darunter und darüber eingesperrt sind Nur Ladungsträger, die sich nahe an der Fermi-Energie befinden, können durch kleine Energien angeregt werden Kleine Energien sind zum Beispiel kleine elektrische Spannungen, die man anlegt, damit ein Strom fliessen kann. Frage: wie viele Elektronen gibt es an der Fermi-Energie? Zustandsdichte Betrachte Kugelschale der Dicke k um mittleren Wellenvektor k Beschreibt gleichzeitig Energieintervall E um mittlere Energie E Volumen der Kugelschale: 4k 2 k Zahl der Zustände in diesem Volumen im k-raum: dn = 2 4k 2 dk ( 2 L ) 3 Zur Erinnerung, Volumen eines Zustands: ( 2 L) 3 Mit E = 2 k 2 2m folgt k = 2mE Daraus folgt dn = V 3 2m 2 E de Definition der Zustandsdichte: D(E) = und damit dk = 1 dn de V = Zahl der Zustände pro Energieintervall pro Volumen. 2m 2 m 2E de 3 2 E Fermi-Dirac Verteilung Welchen Einfluss hat die Temperatur auf die Besetzung der Zustände? Klassisches System (kein Spin, kein Pauliprinzip): thermische Besetzung wird über Boltzmann-Verteilung bestimmt

5 1.5 Fermionen mit spin : Fermi-Dirac Verteilung f (E) = 1 ( )/ kt +1 e E Limes T : Fermi-Verteilung wird zur Stufenfunktion, f (E) = 1 für E < für E > T>: Fermi-Verteilung verliert harte Stufe, wird aufgeweicht über Breite 4 kt Für E >> kt folgt f (E) = e ( E )/ kt = e E / kt e + / kt, d.h. Boltzmann-Verteilung im klassischen Limes 1.2 Wärmekapazität des freien Elektronengases Anwendung von Zustandsdichte und Fermi-Dirac-Verteilung Freies (klassisches) Gas: jedes punktförmige Teilchen hat die mittlere kinetische Energie E kin = 3 2 kt Damit ergibt sich für die Wärmekapazität pro Mol: C mol = 3 2 R m Experiment: Wärmekapazität eines freien Elektronengases ist ca. 1 mal kleiner Erklärung: nicht jedes Elektron kann thermische Energie aufnehmen, sondern nur die Elektronen an der Fermi-Energie Wieviele Elektronen gibt es von dieser Sorte: Aufweichung der Fermi-Dirac-Verteilung an der Fermi-Energie ca. von der Breite kt: N N = kt = T TF Diese Elektronen nehmen im Mittel die Energie 3 kt auf 2 Änderung der innere Energie der Elektronen näherungsweise: U el = N 3 2 kt 3 2 N T T F kt

6 1.6 Beitrag zur molaren Wärmekapazität: C mol,el = du el dt = 3N T T F k 3R m Exaktes Ergebnis Aufheizen des Elektronengases -> Erhöhung der inneren Energie pro Einheitsvolumen durch Energiebetrag U Gesamte Änderung der inneren Energie: U(T) = de E D(E) f (E,T) de E D(E) innere Energie bei T = T T F Ausdruck für die Gesamtdichte: n = de D(E) f (E,T), n=konzentration aller Elektronen Wärmekapazität: c V = U T = T de E D(E) f (E,T) = de E D(E) Fermi-Energie und Ladungsträgerdichte hängen nicht von der Temperatur ab: = T (E n) = E n F F T = E f (E,T) F D(E) de T Subtraktion der beiden Gleichungen: c V = U T = Die Funktion f (E,T) T f (E,T) T de E E f (E,T) ( F ) D(E) T ist nur im ausgeschmierten Bereich um ±2kT verschieden von Null. Zustandsdichte verändert sich in diesem Energie-Bereich nur sehr wenig, d.h. kann durch f (E,T) D( ) angenähert werden: c V = D( ) de ( E ) T f(e) ist bekannt, daher ergibt sich für die Ableitung: Abkürzung: x = (E )/kt f (E,T) T = E kt 2 e (EEF )/kt e (E ( )/kt +1) 2

7 1.7 Damit ergibt sich für die vorige Gleichung->c V = k 2 T D( ) / kt x 2 e x dx ( e x +1) 2 Der Term e x wird für x < /kt verschwindend klein, d.h. untere Integrationsgrenze kann gegen verschoben werden Integraltabelle: x 2 e x dx = 2 e x +1 3 ( ) 2 Gesamtausdruck für spezifische Wärme eines Elektronengases: c V k 2 T D( ) 2 3 Dieser Ausdruck ist unabhängig von der spezifischen Form der Zustandsdichte D(E), d.h. Gleichung ist auch gültig, wenn die Zustandsdichte von derjenigen eines freien Elektronengases abweicht, was für die meisten Fälle zutrifft Metalle: elektronische Wärmekapazität wird benutzt um die Zustandsdichte an der Fermi- Energie zu bestimmen Metalle mit T<<T F : n = D(E) de, wobei D(E) = D( ) E Rechnung ergibt: n = 2 3 D( ) Spezifische Wärme: c V = 2 Abschätzung: Vorfaktor ist 3 2 n k kt = 2 2 n k T T F Exaktes Ergebnis: 2 2 Lineare Temperaturabhängigkeit ist experimentell bestätigt, ebenfalls die Grössenordnung! Messungen müssen bei sehr tiefen Temperaturen erfolgen, damit nicht andere Beiträge zur spezifischen Wärme (Gitterschwingungen) dominant sind. Experimentell: c V = T, wobei = 2 2 n k 2 Metall exp (1 3 J/Mol K 2 ) exp / theo Li K Cu Al Fe

8 1.8

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Opto-elektronische. Materialeigenschaften VL # 3

Opto-elektronische. Materialeigenschaften VL # 3 Opto-elektronische Materialeigenschaften VL # 3 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

2.4 Erste Anwendungen der Fermiverteilung

2.4 Erste Anwendungen der Fermiverteilung .4 Erste Anwendungen der Fermiverteilung.4. Wärmekapazität des freien Elektronengases Definition der Wärmekapazität Mit dem Modell des freien Elektrongases und der Fermiverteilung haben wir bereits ausreichende

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 8 Vladimir yakonov Lehrstuhl Experimentelle Physik VI VL5 4-6-8 el. 9/888 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 5. as freie Elektronengas 5.

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Kapitel 6: Freie Elektronen im Festkörper

Kapitel 6: Freie Elektronen im Festkörper Kapitel 6: Freie Elektronen im Festkörper Doktorandenseminar 2004 Festkörperphysik Stefan E. Müller 12. Juli 2004 Inhalt: Ein-Elektron-Näherung im Potentialtopf Fermi-Gas bei T = 0K Fermi-Gas bei T > 0K

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten.

Beschreibe die wesentlichen Unterschiede zwischen den einzelnen Anregungsmöglichkeiten. Erkläre den Begriff Anregung eines Atoms Unter Anregung eines Atoms versteht man die Zufuhr von Energie an ein Atom, welche dieses vom Grundzustand in einen höheren Energiezustand, auf ein höheres Energieniveau,

Mehr

Ferromagnetismus: Heisenberg-Modell

Ferromagnetismus: Heisenberg-Modell Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!

Mehr

5.4.2 Was man wissen muss

5.4.2 Was man wissen muss 5.4.2 Was man wissen muss Begriffe wie System, Ensemble mindestens die drei Beispiele (Gas, Kritall-Atome; Kristall-Elektronen) sollte man nachvollziehen können. Den Begriff des thermodynamischen Gleichgewichts.

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

Physik IV Übung 4

Physik IV Übung 4 Physik IV 0 - Übung 4 8. März 0. Fermi-Bose-Boltzmann Verteilung Ein ideales Gas befinde sich in einer Box mit Volumen V = L 3. Das Gas besteht entweder aus Teilchen, die die Bose-Einstein oder Fermi-Dirac

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

5. Energetik der Elektronen 5.1 Elektrische Leitfähigkeit kondensierter Materie

5. Energetik der Elektronen 5.1 Elektrische Leitfähigkeit kondensierter Materie 5. Energetik der Elektronen 5.1 Elektrische Leitfähigkeit kondensierter Materie Elektrische Leitfähigkeit verschiedener Stoffe bei Raumtemperatur W -1 cm -1 10 6 10 3 1 10-3 10-6 10-9 10-12 10-15 10-18

Mehr

Thermoemission von Elektronen

Thermoemission von Elektronen Physikalisches Praktikum für Fortgeschrittene Versuchsbericht Versuch A3 Thermoemission von Elektronen Christian Haake Matthias Timmer Versuchstag: 08.07.2004 Betreuer: Herr Kury I Grundlagen I.1 Elektronen

Mehr

Elektrische Leitung. Leitung in Flüssigkeit

Elektrische Leitung. Leitung in Flüssigkeit Elektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) Eigen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

2.5. Fermi Dirac Verteilung

2.5. Fermi Dirac Verteilung .5. ermi Dirac Verteilung Eletronen und Löcher sind ermionen (Spin / bzw. 3/ => Pauli Prinzip: Nur ein Teilchen pro Zustand, ermi-dirac Verteilungsfuntion (Abb..5. E E exp T Abbildung.5.: ermi-dirac Verteilung

Mehr

Ableitung der Zustandsdichte

Ableitung der Zustandsdichte .. Zustandsdichte des freien Elektronengases Ableitung der Zustandsdichte Im vorherigen Unterkapitel haben wir die möglichen Zustände des Elektrons und die möglichen Energien des Elektrons bestimmt. Im

Mehr

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K

Bild 1.4 Wärmeschwingung des Kristallgitters bei T > 0K Bild 1.2 Das ideale Silizium-Gitter (Diamantgitterstruktur). Die großen Kugeln sind die Atomrümpfe; die kleinen Kugeln stellen die Valenzelektronen dar, von denen je zwei eine Elektronenpaarbrücke zwischen

Mehr

1. Neutronen zur Untersuchung von Festkoerpern

1. Neutronen zur Untersuchung von Festkoerpern 1. Neutronen zur Untersuchung von Festkoerpern Fragen: -warum eigenen sich Neutronen besonders gut fuer Strukturuntersuchungen, welche Elemente sind besonders gut sichtbar? -welche Vorteile haben Neutronen

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

- 145 - - 146 - - 147 - - 148 - - 149 - - 150 - - 151 - - 152 - - 153 - - 154 - - 155 - - 156 - - 157 - - 158 - - 159 - - 160 - - 161 - - 162 - - 163 - - 164 - - 165 - - 166 - - 167 - - 168 - - 169 - -

Mehr

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor:

A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor: Prof. Dr. O. Dopfer Prof. Dr. A. Hese Priv. Doz. Dr. S. Kröger Cand.-Phys. A. Kochan Technische Universität Berlin A. Erhaltungsgrößen (17 Punkte) 1. Unter welcher Bedingung bleiben a) der Impuls b) der

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband 8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Erkläre kurz die BCS-Theorie

Erkläre kurz die BCS-Theorie Aufgabe Thema Erkläre kurz die BCS-Theorie Ich schlage vor: Verteile die Texte. Jede(r) liest etwa 5 Minuten. Dann 5 Minuten diskutieren, und 5 Minuten um das Ergebnis der Diskussion aufzuschreiben, sodass

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7

Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7 Montag, 10.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 7 Spezifische Wärmekapazität des Wassers 1 Inhaltsverzeichnis 1 Problemstellung

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

Atome und ihre Eigenschaften

Atome und ihre Eigenschaften Atome und ihre Eigenschaften Vom Atomkern zum Atom - von der Kernphysik zur Chemie Die Chemie beginnt dort, wo die Temperaturen soweit gefallen sind, daß die positiv geladenen Atomkerne freie Elektronen

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Skript zur Vorlesung

Skript zur Vorlesung Skript zur Vorlesung 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz:

Schnellkurs Ohmsches Gesetz Reihen- und Parallelschaltung von Widerständen. Jeder kennt aus der Schule das Ohmsche Gesetz: Schnellkurs Ohmsches Gesetz eihen- und Parallelschaltung von Widerständen Jeder kennt aus der Schule das Ohmsche Gesetz: = Aber was bedeutet es? Strom (el. Stromstärke) Spannung Widerstand Vorbemerkung:

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D

Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D Exp. Phys. 5, WS16/17 Denninger skript_3_1_016_b Dies ist die Sammlung des Materials von Dienstag, 16.1. bis Freitag 3.1.016. Inhalt: 1. fcc_struktur.pdf Seite Bilder von ausgewählten Oberflächen. bragg_beugung.pdf

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

3. Magnetostatik 3.1. Grundbegriffe

3. Magnetostatik 3.1. Grundbegriffe 3. Magnetostatik 3.1. Grundbegriffe In der Natur existieren magnetische Felder. Es gibt allerdings keine Quellen des magnetischen Feldes, d. h. es wurden noch nie magnetischen Ladungen (magnetische Monopole)

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

( ) ( ) ( ) Beginnend mit der größten Wellenlänge λ1= L sind auf Abb hierzu Beispiele gegeben.

( ) ( ) ( ) Beginnend mit der größten Wellenlänge λ1= L sind auf Abb hierzu Beispiele gegeben. 16 5.3.3. Das reale Elektronengas (in der Vorlesung nicht behandelt, nicht prüfungsrelevant; weiter bei 5.3.4.) 5.3.3.1. Periodische Randbedingungen Im folgenden soll die Wechselwirkung der Elektronen

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen.

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. 22. April 2010 In diesem Text werden die in der Tabelle properties of free fermions angeführten Ergebnisse erklärt und einige Zwischenschritte

Mehr

Aufgabe Σ Punkte Max

Aufgabe Σ Punkte Max Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Klausur 20. September 2005 Name:........................................

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie

Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Einführung in die Physikalische Chemie Teil 1: Mikrostruktur der Materie Kapitel 1: Quantenmechanik Kapitel 2: Atome Kapitel 3: Moleküle Mathematische Grundlagen Schrödingergleichung Einfache Beispiele

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti.

Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti. (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 10. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik Universität Ulm (c) Ulm University p.

Mehr

Wärmeleitung - Versuchsprotokoll

Wärmeleitung - Versuchsprotokoll Gruppe 13: René Laquai Jan Morasch Rudolf Seiler Praktikum Materialwissenschaften II Wärmeleitung - Versuchsprotokoll Betreuerin: Silke Schaab 1. Einleitung: In diesem Versuch wird die Wärmeleitung verschiedener

Mehr

Das Modell der freien Elektronen

Das Modell der freien Elektronen Kapitel 6 Das Modell der freien lektronen Die physikalischen igenschaften eines Festkörpers können weitgehend entweder durch die Gitter-Dynamik oder durch das Verhalten der lektronen (allg. Ladungsträger)

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e Rutherford Streuung Historisch: Allgemein: Streuung von α-teilchen an Metallfolien Ernest Rutherford, 96 Streuung geladener Teilchen an anderen geladenen Teilchen unter der Wirkung der Coulomb-Kraft. F

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund

Einführung in die Boltzmann-Gleichung. Flavius Guiaş Universität Dortmund Einführung in die Boltzmann-Gleichung Flavius Guiaş Universität Dortmund Antrittsvorlesung, 19.04.2007 INHALT 1 Herleitung der Boltzmann-Gleichung 2 Boltzmann-Ungleichung und Maxwell-Verteilung 3 H-Theorem

Mehr

4.6 Stöße mit Phononen

4.6 Stöße mit Phononen Physik der kondensierten Materie WS 00/0 05..00 ii) Wie viele mögliche k-vektoren gibt es in der ersten Brillouinzone? Wir betrachten eine Kette mit N Atomen unter periodischen Randbedingungen, d.h. für

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale

8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale 8.1 8. Die Schrödinger-Gleichung und ein-dimensionale Potentiale 8.1 Mathematische Form der Schrödinger-Gleichung Newton sche Bewegungsgleichungen: partielle Differential-Gleichungen für Ort und Impuls,

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG. Versuch: Elektrische Leitfähigkeit (Sekundarstufe I) Moduli: Physikalische Eigenschaften TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Schülerlabor Science meets School Werkstoffe & Technologien in Freiberg Versuch: (Sekundarstufe I) Moduli: Physikalische Eigenschaften 1 Versuchsziel Die Messung

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

Einführung in Werkstoffkunde Phasenumwandlungen

Einführung in Werkstoffkunde Phasenumwandlungen Einführung in Werkstoffkunde Phasenumwandlungen Magnesium Innovations Center (MagIC) GKSS Forschungszentrum Geesthacht GmbH Dr.-Ing. Norbert Hort norbert.hort@gkss.de Inhalte Über mich Einführung Aufbau

Mehr

Was ist Physik? Modell der Natur universell es war schon immer so

Was ist Physik? Modell der Natur universell es war schon immer so Was ist Physik? Modell der Natur universell es war schon immer so Kultur Aus was sind wir gemacht? Ursprung und Aufbau der Materie Von wo/was kommen wir? Ursprung und Aufbau von Raum und Zeit Wirtschaft

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation

Mehr

Das Bohrsche Atommodell

Das Bohrsche Atommodell Das Bohrsche Atommodell Auf ein Elektron, welches im elektrischen Feld eines Atomkerns kreist wirkt ein magnetisches Feld. Der Abstand zum Atomkern ist das Ergebnis, der elektrostatischen Coulomb-Anziehung

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

5 Anwendung der Dichtefunktionaltheorie

5 Anwendung der Dichtefunktionaltheorie 5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial

Mehr

Statistische Mechanik

Statistische Mechanik David H. Trevena Statistische Mechanik Eine Einführung '«WO«.»vmo i; Übersetzt von Thomas Filk VCH Weinheim New York Basel Cambridge Tokyo Inhaltsverzeichnis Vorwort von H. N. V. Temperley Vorwort des

Mehr

Advanced Physics of Nanosystems

Advanced Physics of Nanosystems Graphen ist ein Material mit einer Reihe außergewöhnlicher Eigenschaften. Einige davon werden in K. S. Novoselov et al., Nature 438, 197 (2005) vorgestellt, darunter auch der Quanten-Hall-Effekt. a) Was

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version Grundlagen-Vertiefung PW10 Ladungstransport und Leitfähigkeit Version 2007-10-11 Inhaltsverzeichnis 1 1.1 Klassische Theorie des Ladungstransports.................. 1 1.2 Temperaturabhängigkeit der elektrischen

Mehr

10. Spezielle Relativitätstheorie

10. Spezielle Relativitätstheorie 10. Spezielle Relativitätstheorie Die Masse eines Teilchens ist abhängig von seiner Geschwindigkeit. m = m = γ m γ = 1, 1 v c 0 = 1 1 β 1 m 0 v β = c v c c: Lichtgeschwindigkeit im Vakuum mo: Ruhemasse

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr