Übungsaufgaben zur Investitionsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben zur Investitionsrechnung"

Transkript

1 Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide Maschie bekat: A B Aschaffugsauszahlug. 9. Nutzugsdauer (Nd) 5 J 6 J Restwert am Ede der Nd.. Kapazität (pro Jahr) 4. 8 Verkaufspreis 5,- 6,5 Fixkoste pro Jahr Materialkoste pro Eiheit,,8 Lohkoste pro Eiheit,8,75 Kalkulatioszissatz i % % Etscheide Sie mit Hilfe der Gewivergleichsrechug, welche Maschie zu wähle ist! Übugsaufgabe (Statische Ivestitiosrechug): Nee Sie jeweils zwei zetrale Verfahre der Wirtschaftlichkeitsrechug im weitere Sie (statische Ivestitiosrechugsverfahre) ud der Wirtschaftlichkeitsrechug im egere Sie (dyamische Ivestitiosrecheverfahre). Übugsaufgabe 3 (Statische Ivestitiosrechug): Welche geerelle Nachteile sid mit de statistische Ivestitiosrechugsverfahre verbude? Übugsaufgabe 4 (Kapitalwert): Eie Ivestitiosalterative mit der Aschaffugsauszahlug A =. ist durch die folgede weitere Zahluge gekezeichet: d =. d = 6. d 3 = 6. d 4 = 8. d 5 =. Ei Restverkaufserlös am Ede der Periode 5 etsteht icht. Der Kalkulatioszissatz wird mit i =,8 agegebe. Bestimme Sie de Kapitalwerte für de Zeitpukt t. Übugsaufgabe 5 (Kapitalwert): Eie Ivestitio über. führt ewig zu jährliche Eizahlugsüberschüsse vo 9. Bereche Sie die Kapitalwerte bei eiem Kalkulatioszissatz vo i = % ud i = 7 %. Übugsaufgabe 6 (Iterer Zisfuß): Ei Uterehmer ka die Ivestitioe mit de folgede Zahlugsreihe realisiere: Periode t t t Ivestitio A 5. (A ). (egativ!!) 9.6 Ivestitio B 4. (A ) 8 5.

2 Eie Restverkaufserlös ergibt sich bei beide Ivestitiosprojekte icht. Der Kalkulatioszissatz beträgt i=,. a) Bestimme Sie die Ragfolge der Ivestitioe ahad der Methode des itere Zisfußes! b) Welche isbesodere für die Bewertug alterativer Sachivestitioe bedeutede implizite Prämisse ethält die Methode des itere Zisfußes? Übugsaufgabe 7 (Optimale Nutzugsdauer): Ei Aufsteller vo Geträkeautomate hat am.. i der Mesa eie eue Automate istalliert, der Geträkeflasche verkauft. Für diese Automate gelte folgede Zahlugsreihe: Jahr 3 4 Aschaffugsauszahlug Eizahlugsüberschuss Restverkaufserlös Der Kalkulatioszissatz betrage i=% Bereche Sie die Kapitalwerte für uterschiedliche Nutzugsdauer des Automate. Wie lautet die optimale Nutzugsdauer uter der Aahme, die Aufstellug des Automate sei eie eimalige Ivestitio? (3 Pukte) Übugsaufgabe 8 (Optimale Nutzugsdauer): Ei Uterehmer erwirbt für seie Produktiosbetrieb für A = 5. eie eue Alage mit folgeder Zahlugsreihe: Periode t t t t 3 t 4 Eizahlugsüberschuss Restverkaufserlös Er beabsichtigt, diese Ivestitio eimalig durchzuführe. Für die Kalkulatio rechet der Uterehmer mit eiem Zisfuß vo i=8%. a) Bestimme Sie die optimale Nutzugsdauer der Ivestitio ahad des Grezkalküls! b) Nee Sie verschiedee Ursache dafür, dass eie Alage ur zeitliche begrezt eisatzfähig ist! Übugsaufgabe : Führe eie Gewivergleich durch :. Schritt : Kostevergleich. Schritt : Erlöse bereche 3. Schritt : Gewi bereche. Kostevergleich AfA : Lösuge:

3 A Zise : A R.. = = 6 A : 4. B : R i.+. A :, = = B : 5. 5 Additio der Koste : A B AfA Zise. 5.5 Var...4 Koste Fixe Koste Erlöse Verkaufspreis x Mege = Erlöse A : 5 x 4. =. B : 6,5 x 8. = Gewi G = E K A :. 7. = 8.8 B : = 6. Ergebis Maschie A wird gewählt, da der Gewi höher ist. Übugsaufgabe (Statische Ivestitiosrechug): -> s. Folie 6: Wirtschaftlichkeitsrechug i.w.s. (statische Verfahre) - Kostevergleich - Gewivergleich - Retabilitätsvergleich Wirtschaftlichkeitsrechug i.e.s. (dyamische Verfahr.) - Kapitalwertmethode - Itere-Zisfuß-Methode

4 - Auitäte-Methode Übugsaufgabe 3 (Statische Ivestitiosrechug): -> siehe Folie 8 ( Kritik a statische Ivestitiosrecheverfahre ) Übugsaufgabe 4 (Kapitalwert):. Der Kapitalwert der Ivestitio zum Zeitpukt t lautet: Somit: C C = A + d 4 t ( i) + R ( ) = A + d i t t = + d ( i) + d ( i) + d ( i) 3 4 ( i) + d ( i) 5 5 C = -. +.*, *, *, *, *,686 C = 9.85,6 >. Um de Kapitalwert zum Zeitpukt t zu bestimme, köe verschiedee Rechewege Awedug fide: I. Trasformatio jeder eizele Zahlug der Ivestitio auf de Zeitpukt t : Zahluge der Zeitpukte t, t 3, t 4, t 5 werde auf t abgezist, die Zahlug zum Zeitpukt t wird auf de Zeitpukt t aufgezist, Zahlug t bleibt uverädert. C = A + d 3 ( ) ( ) ( ) ( ) * i + d i + d i + d3 i 3 ( i) + d ( i) C = -. *,8 +. * + 6. *, *, *, ,735 C =.439,6 > II. Der zum Zeitpukt t berechete Kapitalwert C wird auf de Zeitpukt t aufgezist. C =C * (i) C =.439,73 > Die Rechewege führe zum gleiche Ergebis ud sid äquivalet. Die gerige Abweichuge sid auf Ruduge zurückzuführe. Übugsaufgabe 5 (Kapitalwert): für i = %: C= Lösug für i = 7 % C= 85,7 Übugsaufgabe 6 (Iterer Zisfuß): a) Bestimme Sie die Ragfolge der Ivestitioe ahad der Methode des itere Zisfußes!

5 t = t= It. Zisfuß r: C =! D.h.: C = A + d t ( + r) Ivestitio A: = 5 ( ( 96 5 = + ( ( 5( 5( r + r 5 + r + 5r 5r r +, 4r, 5 = r =, ± + r 6 = (, 5 ) ra =, oder ( r =, 6 ) + 96 ( = r + 96 ) = r + 96, 4 Ivestitio B: = ( 4( 4( r + r 4 + 8r + 4r 4r r + 8, r, 45 = r =, 9 ± 8 ( 5 4 = + ( ( + 7r 8 = = 8 + 8r + 5 (, 45 ) + + r 96 = + 5 ( ( ) = 8 + 8r + 5 8, 8 8r 5 = rb =, oder ( r =, ) Ivestitio B besser als Ivestitio A, da r B >r A! b) Welche isbesodere für die Bewertug alterativer Sachivestitioe bedeutede implizite Prämisse ethält die Methode des itere Zisfußes? Verzisug der Eizahlugsüberschüsse zum itere Zisfuß. I diesem Fall: Zusätzlich beötigtes Kapital i Ivestitio A i Periode muss zum itere Zisfuß beschafft werde. Übugsaufgabe 7 (Optimale Nutzugsdauer): C t = A + dt ( i) + R ( + i) t= Jahr A d t d t (i) -t Σd t (i) -t R R (i) -t C

6 Optimale Nutzugsdauer: 3 Jahre, da Kapitalwert bei =3 maximal (,5 Pukte) Übugsaufgabe 8 (Optimale Nutzugsdauer): a) Bestimme Sie die optimale Nutzugsdauer der Ivestitio ahad des Grezkalküls! Wirtschaftliche Nutzugsdauer erreicht, we gilt: d = i*r - + [R - -R ] Zeitpukt R i*r - R - -R Summe d t <6. t <46. t >3. t >6. Optimale Nutzugsdauer bei = Jahre! b) Nee Sie verschiedee Ursache dafür, dass eie Alage ur zeitliche begrezt eisatzfähig ist! Verschleiß: - ruheder Verschleiß (Verwitter, Verroste) - Abutzugsbedigter Verschleiß (mechaische Abutzug durch Beutze der Alage im Produktiosprozess) Techischer Fortschritt (techisch bessere Ersatzalage bedigt vorzeitige Ersatz der Altalage) Wirtschaftliche Überholug (z.b. Äderug der Absatzlage -> auf Alage gefertigtes Produkt icht mehr absetzbar ; oder Loherhöhug -> Ersatz der arbeitsitesive Alage durch stärker automatisierte Alage)

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10.

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10. Aufgabe Der Vechtaer Esse auf Räder -Service beötigt eie eue Küche zur Zubereitug der Mahlzeite. Sie köe zwische de Modelle A ud B wähle. Die Eiahme durch die Auslieferug der Esse sid uabhägig davo, welche

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 3 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 37 - 2.1 Strategiewahl als Ivestitiosobjekt Prof. Dr. Raier Elsche - 38 - Ivestitiosobjekte eizele Gegestäde des Uterehmugsvermöges

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Investitions- und Wirtschaftlichkeitsrechnung. Investitionsrechnungsmodelle bei Sicherheit. Kapitalwertmethode. Kostenvergleich

Investitions- und Wirtschaftlichkeitsrechnung. Investitionsrechnungsmodelle bei Sicherheit. Kapitalwertmethode. Kostenvergleich Ivestitiosrechugsmodelle bei Sicherheit Notwedige Formel fide Sie i der Formelsammlug (Dowload) Ivestitios- ud Statische Verfahre (Eiperiodemodelle) Dyamische Verfahre (Mehrperiodemodelle) Kostevergleich

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Dynamische Investitionsrechnung

Dynamische Investitionsrechnung Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Dyamische Ivestitiosrechug - berücksichtigt mehrere oder alle Ivestitioe eier Periode (bei statisch wird ur mit eier Periode gerechet,

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Klausur Investition und Finanzierung

Klausur Investition und Finanzierung Fachhochschule Südwestfale Fachhochschule Müster Hochschule Bochum Verbudstudiegag Techische Betriebswirtschaft Hochschule Bochum Hochschule für Techik ud Wirtschaft Prof. Dr. W. Hufagel Prof. Dr. W. Rimmele

Mehr

Investitionsrechnung: Übungsserie I

Investitionsrechnung: Übungsserie I Thema Dokumetart Ivestitiosrechug: Übugsserie I Lösuge Theorie im Buch "Itegrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Fiazmaagemet 3 Ivestitio Ivestitiosrechug: Übugsserie I Aufgabe 1 Die BAU AG

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Südwestfale Fachhochschule Müster Hochschule Bochum Verbudstudiegag Techische Betriebswirtschaft Hochschule Bochum Hochschule für Techik ud Wirtschaft Prof. Dr. W. Hufagel Prof. Dr. W. Rimmele

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum Fachhochschule Müster Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Der Wald als Vermögen. und seine finanzmathematische Darstellung

Der Wald als Vermögen. und seine finanzmathematische Darstellung Der Wald als Vermöge ud seie fiazmathematische Darstellug 1. Wald als Vermöge 2. Ziseszisrechug 3. Reterechug 4. Zusammefassug Wald als Vermöge? 1. Wälder sid Quelle vo Eikomme => Vermöge 2. Dadurch sid

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung 2 Ivestitio 2.1 Grudlage der Ivestitiosrechug Lerziele Dieses Kapitel vermittelt: Die grudsätzliche Aufgabe der Ivestitiosrechug Uterschiedliche Verfahre der Ivestitiosrechug 2.1.1 Ivestitiosbegriffe ud

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Aufbaustudium Grüdugscotrollig Lösugshiweise zur 3. Musterklausur Lösugshiweise

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Klausur Grundlagen der Investition und Finanzierung Neue DPO

Klausur Grundlagen der Investition und Finanzierung Neue DPO Istitut für Verbudstudie der Fachhochschule Nordrhei-Westfales IV NRW Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. W. Hufagel / Prof. Dr. Wifried Rimmele Fachhochschule Bochum Hochschule für

Mehr

Mengenbegriff und Mengendarstellung

Mengenbegriff und Mengendarstellung R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Aufgabe 2 : (Programmplanung II; Investitionsrechnung) (60 Punkte)

Aufgabe 2 : (Programmplanung II; Investitionsrechnung) (60 Punkte) 4 Aufgabe 2 : (Programmplaug II; Ivestitiosrechug) (6 Pukte) Ei Nebeerwerbsladwirt ud seie mitarbeitede Ehefrau möchte ihre erhebliche Arbeitsbelastug durch Aufgebe der Milchviehhaltug verriger ud als

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN:

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik ISBN: Leseprobe Wolfgag Eichholz, Eberhard Vilker Taschebuch der Wirtschaftsmathematik ISN: 978-3-446-41775-5 Weitere Iformatioe oder estelluge uter http://www.haser.de/978-3-446-41775-5 sowie im uchhadel. Carl

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Investitionsrechnung

Investitionsrechnung Ivestitiosrechug Gliederug: 1. Grudlage der Ivestitiosrechug 2. Statistische Ivestitiosrechug 3. Dyamische Ivestitiosrechug 4. Ivestitiosetscheiduge mit Gewisteuer 5. Ivestitiosetscheiduge uter Usicherheit

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

Übungen zu QM III Mindeststichprobenumfang

Übungen zu QM III Mindeststichprobenumfang Techische Hochschule Köl Fakultät für Wirtschafts- ud Rechtswisseschafte Prof. Dr. Arreberg Raum 221, Tel. 39 14 jutta.arreberg@th-koel.de Übuge zu QM III Mideststichprobeumfag Aufgabe 12.1 Sie arbeite

Mehr

4.3 Auswertung von Reaktionsgleichungen

4.3 Auswertung von Reaktionsgleichungen 76 Stoffmegerelatioe. Auswertug vo eaktiosgleichuge Durch eie chemische eaktio werde eaktate (Ausgagsstoffe i bestimmte eaktiosprodukte umgewadelt. Dieser Umsatz wird durch die betreffede eaktiosgleichug

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Der Abteilung Controlling liegen aus dem Montage Werk Mülheim die folgenden Daten für das Jahr 2007 vor:

Der Abteilung Controlling liegen aus dem Montage Werk Mülheim die folgenden Daten für das Jahr 2007 vor: LK Betriebwirtschaftslehre mit Rechugswese 12/2 Nr. 1 Klasse: Datum: Dauer: 4 bis 5 Uterrichtsstude Die TROLLER AG wurde vo dem Iformatikigeieur Thomas TROLLER 1992 als Eizeluterehme gegrüdet. Ihr Geschäftsfeld

Mehr

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet . Zusammehag zwische Kurs ud Redite Kurs P = Preis für de Akauf vo Zahlugsverpflichtuge (z.b. Wertpapiere/Aleihe), wird auch als Marktwert bezeichet Nomialwert NW = Newert (oder Rückzahlugsbetrag) der

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

Der Geschäftsführer hat zwei Handlungsalternativen (Entscheidungsknoten gelbe Kästchen):

Der Geschäftsführer hat zwei Handlungsalternativen (Entscheidungsknoten gelbe Kästchen): MODUL G Lösuge Aufgabe G.1 Lösug a. A Priori Aalyse Der Geschäftsführer hat zwei Hadlugsalterative (Etscheidugskote gelbe Kästche): A 1: Bohre eies Brues vor Ort 10 Mio. A : Bau eier Pipelie zur Wasserversorgug

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

Ausarbeitung. Wirtschaftliche Losgröße nach Andler

Ausarbeitung. Wirtschaftliche Losgröße nach Andler Berufskolleg Werther Brücke - Fachschule für Techik - Ausarbeitug Wirtschaftliche Losgröße ach Adler Fach: Fachlehrer: Produktiosplaug ud Steuerug Herr Schuljahr: 00 / 00 Datum: 03.07.00 lasse: FTA-90

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001 Aufgabe C/4 Eie apitalalage verzise sich im erste Jahr mit 5 %, daach immt der Zisfuß jährlich um,1 Prozetpukte ab. Nach wie viele Jahre verdoppelt sich das apital bei jährlicher Verzisug mit a eifache

Mehr

Deckungsbeitragsrechnung als Kostenträgerzeitrechnung im Mehrproduktunternehmen

Deckungsbeitragsrechnung als Kostenträgerzeitrechnung im Mehrproduktunternehmen KLR als Mittel zur Aalyse ud Bewertug der Wertschöpfugsprozesse (Lerfeld 4) 6.3.3 Deckugsbeitragsrechug als Kosteträgerzeitrechug im Mehrproduktuterehme Situatio Aus de Zahle vo Seite 258 soll im Uterehme

Mehr

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Übersicht über die Vorlesug Solareergie Vorläufige Termiplaug Vorlesug Solareergie WS 2005/2006 Stad: 10.11.2005 Termi Thema Dozet Di. 25.10. Wirtschaftliche Lemmer/Heerig Aspekte/Eergiequelle Soe Fr.

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

Finanzmathematische Modelle

Finanzmathematische Modelle Fiazmathematische Modelle Zum Zeitpukt der Erstellug dieses apitels Afag 7 war das absolute Zistief. Bei Guthabezissätze i der Größeordug vo, % macht die Betrachtug vieler asoste wichtiger fiazmathematischer

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung

III. Grundlagen der Lebensversicherungsmathematik III.2. Grundlagen der Zinsrechnung III. Grudlage der Lebesversicherugsmathematik III.2. Grudlage der Zisrechug Uiversität Basel Herbstsemester 2015 Dr. Ruprecht Witzel ruprecht.witzel@aktuariat-witzel.ch www.aktuariat-witzel.ch III.2. Grudlage

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

VAIO-Link Kundenservice Broschüre

VAIO-Link Kundenservice Broschüre VAIO-Lik Kudeservice Broschüre Wir widme us jedem eizele Kude mit der gebührede Aufmerksamkeit, mit großer Achtug ud Respekt. Wir hoffe damit, de Erwartuge jedes Eizele a das VAIO-Lik Kudeservice-Zetrum

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

In der Industrie zählt Zuverlässigkeit und Schnelligkeit. Mit MM1018 werden Toleranzen vor Ort und in einem Arbeitsschritt ausgeglichen.

In der Industrie zählt Zuverlässigkeit und Schnelligkeit. Mit MM1018 werden Toleranzen vor Ort und in einem Arbeitsschritt ausgeglichen. I der Idustrie zählt Zuverlässigkeit ud Schelligkeit. Mit MM1018 werde Toleraze vor Ort ud i eiem Arbeitsschritt ausgegliche." Verbudbrücke Megyeri, Budapest Brücke zähle zu de fasziieredste Bauwerke

Mehr

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de Drucklufttechik Poteziale zur Eergieeisparug www.eergieagetur.rw.de 2 Drucklufttechik optimiere ud Eergieverluste miimiere I fast jeder Produktiosstätte wird Druckluft geutzt. Die Eisatzgebiete reiche

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Wertorientiertes Management ein Vergleich von Shareholder Value und Economic Value Added (von Prof. Dr. Wolfgang Schmid-Grotjohann, Lörrach)

Wertorientiertes Management ein Vergleich von Shareholder Value und Economic Value Added (von Prof. Dr. Wolfgang Schmid-Grotjohann, Lörrach) Wertorietiertes Maagemet ei Vergleich vo Shareholder Value ud Ecoomic Value Added (vo Prof. Dr. Wolfgag Schmid-Grotjoha, Lörrach) Eileitug Die Diskussio darüber, was ma uter eiem erfolgreiche Uterehme

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Sicherheitspreis Baden-Württemberg

Sicherheitspreis Baden-Württemberg Sicherheitspreis Bade-Württemberg www.sicherheitsforum-bw.de Bewerbugsuterlage Bitte reiche Sie Ihre vollstädige Bewerbugsuterlage zum Sicherheitspreis bis zum 17.01.2015 (Poststempel) ei: Sicherheitsforum

Mehr

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Vertiefugsstudium Modul XI: Volkswirtschaftslehre Lösugshiweise zur 1. Musterklausur

Mehr

s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1

s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1 Fiazmathematik Folge Arithmetische Geometrische Rekursiosformel a 1 =a d a 1 =a q N-tes Glied a =a 1 1 d a =a 1 q 1 N-te Partialsummer Prozetreche Grudwert, Bezugsgrösse Prozetfuss Prozetsatz i p s = 2

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr