LERN-ONLINE.NET AUFGABENBLATT MATHEMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "LERN-ONLINE.NET AUFGABENBLATT MATHEMATIK"

Transkript

1 LERN-ONLINE.NET AUFGENBLATT MATHEMATIK THEMA: KOORDINATENGEOMETRIE (EINSTIEG) Voreslaene Areitszeit: Sonstie Hinweise: Hilfsittel: Minuten Die letzte Aufae ist a Zeitintensivsten Tasenrener (nit proraierar, nit rapikfäi) Hinweis: Die Lösunen finden si na den Aufaenstellunen. A Ende des Dokuents efinden si die Bewertunskriterien. Zur Lösun der Aufaen ist es eenfalls erforderli, alleeine Foreln aufzustellen!

2 Lern-Online.net Inforatikportal Aufaenlatt Aufaen Auf. Aufaenstellun Punkte. Geeen sind die drei Geraden : f() ; : Gerade dur die - Punkte P( ) und Q( ), : Gerade it der Steiun, dur den Punkt R( )..a Bestien Sie alle nit eeenen Funktionsleiunen! 8. Berenen Sie den Snittpunkt S der eiden Geraden und!. Geen Sie die Gleiun der Ortoonalen zu an, die dur R et..d Berenen Sie den Steiunswinkel der Geraden.. - Geeen sei die Funktion : f()..a Eritteln Sie den Steiunswinkel der Geraden.. Berenen Sie die Nullstelle.. Die ortoonale Gerade soll dur den Punkt A( ) een. Geen Sie deren Funktionsleiun an..d Eritteln Sie die zu parallele Gerade i dur den Punkt B( )!. Geeen sei das Dreiek C it A( ), B( ) und C( ) -.a Zeinen Sie das Dreiek in ein eeinetes Koordinatensste!. Berenen Sie die Läne der Dreieksseite.. Wie lan ist die Seitenalierende der Seite?.d Die Gerade s sei die Seitenalierende der Seite. Eritteln Sie deren Funktionsleiun..e Berenen Sie den Fläeninalt des Dreieks Kevin Kaatz. Alle Rete vorealten.

3 Lern-Online.net Inforatikportal Aufaenlatt Lösunen Auf. Lösun(svorsla) Punkte.a Die Geraden und aen keine Funktionsleiun. Zur Geraden : : f(). 6 -Asenasnitt : 6 : f() 6 Zur Geraden : : f() : f(), -Asenasnitt :,, : f(),,!, u den Snittpunkt erauszufinden. Also:,,,, 6,0 Den -Wert aen wir, felt nur no der -Wert. U in zu ekoen, üssen wir den -Wert in eine der eiden Geradenleiunen einsetzen:, 6,0,,6. Der Snittpunkt ist also S ( 6,0,6). : f(),.d.a : f(), α artan() artan α 68,0 α artan() artan α,6. Zur Nullstellenerenun ist es notwendi, die Funktionsleiun, zw. den -Wert, lei Null zu setzen. Es erit si also: Kevin Kaatz. Alle Rete vorealten.

4 Lern-Online.net Inforatikportal Aufaenlatt. 0 6 Die Nullstelle ist also N(6 0). : f() 8.d : f() 8 i i : f() i : f().a. ( ) ( ) ( ) ( ) 6. Die Seitenalierende der Seite et dur den Punkt C und den Mittelpunkt der Streke. Zunäst enötien wir also M : M M M ( ) Da die Seitenalierende dur M und C et, können wir slussfolern: Kevin Kaatz. Alle Rete vorealten.

5 Lern-Online.net Inforatikportal Aufaenlatt Kevin Kaatz. Alle Rete vorealten. ( ) ( ) ( ) ( ) ( ) ( ) C M C M.d Die Gerade s et dur die Punkte M und C. Soit erit si für ire Steiun: 0 Die Division dur Null ist nit erlaut, also at die Gerade sozusaen keine Steiun. So foruliert ist das aer fals, die Gerade ist nur parallel zur -Ase, also keine Funktion na Definition. Darestellt wird so etwas üriens zw. () f.e Sauen wir uns zuerst einal die alleeine Forel für den Fläeninalt eines Dreieks an: A (woei der Seite entsprit und die Höe dieser Seite ist) (üernoen aus.) f() : f() : Die Höe der Seite et dur den Punkt C: f() : f() : U die Läne zu erenen, rauen wir den Snittpunkt von Höe und Seite, also: 0 Der -Wert erit si dur Einsetzen: Der Snittpunkt ist also S( ). Läne von : ( ) ( ) ( ) ( ) 8 Soit: A

6 Lern-Online.net Inforatikportal Aufaenlatt Bewertunskriterien Erreite Punktzal Notenpunkte Note Ser ut plus ( ) Ser ut () 0 8 Ser ut inus ( - ) 6 Gut plus ( ) Gut () 0 0 Gut inus ( - ) Befriediend plus ( ) 6 8 Befriediend () Befriediend inus ( - ) 0 6 Ausreiend plus ( ) 8 6 Ausreiend () Ausreiend inus ( - ) Manelaft plus ( ) 8 Manelaft () Manelaft inus ( - ) Unenüend (6) Hellrüner Berei: Ein tolles Erenis! Weiter so!!! Grüner Berei: Keineswes zu veraten! Eine ute Leistun, au wenn leite Wissenslüken esteen. Helloraner Berei: Die Grundlaen esteen auf jeden Fall, es uss ledili sorfältier elernt zu werden. Es epfielt si, au al i Foru (ttp:// voreizusauen. Oranener Berei: Es estet ret oer Naoledarf. Wiederolen Sie die Kapitel, in denen Sie Feler eat aen und versuen Sie si no al an diesen Aufaen!!! Roter Berei: Sie sollten si noals alle iser eandelten Kapitel enau durlesen. Eine Hilfe sind ier Notizen. Diese sollten Sie natürli nit ei der Aufaenewältiun enutzen. Sauen Sie si au i Foru u! Wie werden die Punkte verteilt? Die Aufaen sind für die Punkte ausslaeend. Neen der Aufaenstellun finden Sie ier die erreiare Punktzal. In der Lösun werden Sie au enauer seen, wofür es Punkte a. Da Sie alleine areiten, ist es unsinni, si selst er Punkte zu een, als eientli edat. Es it keine Sonderpunkte, wenn Sie die Aufaen in esondere Maße erfüllt aen. Seien Sie erli zu si selst Kevin Kaatz. Alle Rete vorealten.

Kugelfallmethode nach Stokes

Kugelfallmethode nach Stokes Phyikaliche Grunrakiku Veruch 09 Veruchrookolle alf Erlebach uelfallehoe nach Soke Aufaben. Meen er Fallzeien on ieren Sahlkueln in izinuöl.. Berechnen er ynaichen Vikoiä e Öl.. Berechnen er kineaichen

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: HOOKEsches Gesetz

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: HOOKEsches Gesetz Übungsaufgaben Physik http://physik.lern-online.net http://www.lern-online.net THEMA: HOOKEsches Gesetz Vorgeschlagene Arbeitszeit: Vorgeschlagene Hilfsittel: Bewertung: 0 Minuten Taschenrechner (nicht

Mehr

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob Bestiun der Molaren Masse nach Duas (MO Gruppe 8 Sione initz, Sebastian Jakob 1. Grundlaen In diese ersuch wird nach de erfahren von Duas die Molare Masse von hlorofor bestit. Dazu wird anenoen, daß hlorofor

Mehr

Dünne Linsen und Spiegel

Dünne Linsen und Spiegel Versuch 005 Dünne Linsen und Spieel Ral Erleach Auaen. Charakterisieren der drei eeenen Linsen mittels Bildweiten-, Bessel- und Autokollimationsverahren.. Bestätien der Linsenleichun. 3. Bestimmen des

Mehr

5.5. Prüfungsaufgaben zur Integralrechnung

5.5. Prüfungsaufgaben zur Integralrechnung .. Prüfunsufen zur Interlrechnun Aufe : Beriffe zur Interlrechnun () Erklären Sie die folenden Beriffe: Änderunsrte, Interl, Interlfunktion und Stmmfunktion. Lösun Die Änderunsrte n der Stelle ist leich

Mehr

Grundlagen der Mathematik Formeln umstellen Dirk Paulsen, DD5DP 1 / 5

Grundlagen der Mathematik Formeln umstellen Dirk Paulsen, DD5DP 1 / 5 Grundlagen der Matheatik Foreln ustellen Dirk Paulsen, DD5DP 1 / 5 Foreln ustellen Das Forelustellen ist eine Sache, die an beherrschen sollte. Man ist dann in der Lage, aus einer bekannten Forel die anderen

Mehr

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1 Aufaben zu Ipul. Zwei Kueln it den Maen 5,0 k und 0 k toßen it den Gecwindikeiten 5,0 / und 8,0 / erade eeneinander. Wie cnell ind die Kueln nac de Stoß, wenn dieer a) elatic b) unelatic it? c) Wieiel

Mehr

Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind.

Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind. Vieeke. Pllelogmm Ein Vieek eißt Pllelogmm, wenn ie egenseiten jeweils pllel sin. D C Stz: Ein Vieek ist genu nn punktsymmetis (zum Digonlensnittpunkt), wenn es ein Pllelogmm ist. Ein Vieek ist genu nn

Mehr

1. Lineare Funktionen

1. Lineare Funktionen Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Sammellinse Zerstreuungslinse Abb. 6 - Linsen

Sammellinse Zerstreuungslinse Abb. 6 - Linsen PS - PTIK P. Rendulić 2007 LINSEN 3 LINSEN 3. Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus las oder transparentem Kunststo herestellt ist. Die Linse ist von zwei Kuellächen

Mehr

L 4. Das Fernsehprogramm. Um wie viel Uhr. Um 19.30 Uhr. Fernsehprogramm. 1. Suchen Sie im Fernsehprogramm die Uhrzeiten folgender Sendungen:

L 4. Das Fernsehprogramm. Um wie viel Uhr. Um 19.30 Uhr. Fernsehprogramm. 1. Suchen Sie im Fernsehprogramm die Uhrzeiten folgender Sendungen: Das Fernsehprogramm L 4 Dienstag, 19. August Fernsehprogramm 1. Suchen Sie im Fernsehprogramm die Uhrzeiten folgender Sendungen: (1) Morgenmagazin: 06.00 Uhr (2) Tischtennis: (3) Sportschau: (4) Das Wetter:

Mehr

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE

FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE FLÄCHENBERECHNUNG FLÄCHE/ UMFANG VOLUMEN/ OBERFLÄCHE Für die Berenung von Fläen git es für die versiedenen Figuren Formeln, die mn kennen sollte. Mit ein pr kleinen Triks mt mn si ds Leen llerdings viel

Mehr

1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll

1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll 1000 Dinge, an die zu denken ist, wenn Microsoft Office SharePoint Server 2007 implementiert werden soll 1 0 0 0 Di n g e, a n di e z u d e n k e n ist, w e n n M i c r o s o f t O f f i c e S h a r e

Mehr

Aus Textaufgaben mit Angabe des Grundwertes und Prozentsatzes den Prozentwert berechnen.

Aus Textaufgaben mit Angabe des Grundwertes und Prozentsatzes den Prozentwert berechnen. Vorereitung uf die 3. Sulreit: MATHEMATI L.: M3/I. - S. 5.. Aus Textufgen mit Ange des Grundwertes und Prozentstzes den Prozentwert erenen. Grundwert G... ds Gnze ( oder vom Gnzen $ % oder % Prozentnteil

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

B06A DAMPFDRUCK VON WASSER B06A

B06A DAMPFDRUCK VON WASSER B06A B06A DAMPFDRUCK VON WASSER B06A 1. ZIELE Wir aten euchtere Lut aus als ein. Müssen wir daür Enerie auwenden? Waru werden die Kartoeln in eine Dapdrucktop schneller ar? Was passiert, wenn Wasser verdapt?

Mehr

Klar wir ham mal irgendwann gesacht Im Juni 2012 wird das Ding aufgemacht Wir hams ja selber gedacht. Doch auf einmal Brandschutzprobleme...

Klar wir ham mal irgendwann gesacht Im Juni 2012 wird das Ding aufgemacht Wir hams ja selber gedacht. Doch auf einmal Brandschutzprobleme... Berlin ir Text u Musik: Thoas Pigor GM Werknr: 13131021 Verlag: roofusic Mr Wowereit, open this gate! Branbur Sand Setzen ent Den ir Wil Seid al ein bisschen tolerant Und nervt ru it de Terin Die Müh ah

Mehr

Lineare Funktionen systematisch erkunden. Arbeitsblatt 1

Lineare Funktionen systematisch erkunden. Arbeitsblatt 1 Areitslatt 1 Vorereitung: Öffne die EXCEL-Taelle linfunk.xls und dort das erste Taellenlatt it de Naen x fest. Du siehst dort (vgl. A.1): Ein festes Koordinatensyste it einer Geraden Einen Schieeregler,

Mehr

Optik. Was ist ein Modell? Strahlenoptik. Gliederung. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl. Licht und Schatten

Optik. Was ist ein Modell? Strahlenoptik. Gliederung. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl. Licht und Schatten liederun Optik Strahlenoptik Modell Lihttrahl Reflexion rehun Totalreflexion ildenttehun an Linen Optihe eräte Aufaben Link Quellen Löunen Modelle in der Phyik Modell Lihttrahl vereinfahte Dartellunen

Mehr

Versuch 320. Linsen, Linsensysteme und Projektionsapparat. 320.1 Erläuterungen. 320.1.1 Bildkonstruktion PN1101

Versuch 320. Linsen, Linsensysteme und Projektionsapparat. 320.1 Erläuterungen. 320.1.1 Bildkonstruktion PN1101 Versuch 30 Linsen, Linsensysteme und Projektionsapparat Lernziel: Der praktische Uman mit Linsen und Linsensystemen soll eüt werden. Die Näherunskonzepte der eometrischen Optik sollen ür dünne Linsen,

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Analytische Geometrie

Analytische Geometrie nalytisce Geometrie. Vektoren Mitte einer Strecke B M B Verbindunsvektor B B B Mittelwert der zwei Ortsvektoren ( 6 ) B( 5 ) m B ( a + b) M( ( ) ( + 5) ( + 6) M( ) Spitze nfan: B b a ( 6 ) B( 5 ) 6 B Scwerpunkt

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Silbenmosaike. KapB_Silbenmosaike

Silbenmosaike. KapB_Silbenmosaike Silbenmosaike Sie können die hier abgebildeten Silbenmosaike, so wie sie sind, im Unterricht einsetzen. Drucken Sie die Silbenmosaike aus. Um sie mehrmals zu verwenden, bietet es sich an, die Silbenmosaike

Mehr

Prof. V. Prediger: Aufgaben zur Lehrveranstaltung Kinematik und Kinetik 1. 4. Kinetik des Massenpunktes. 4.1 Prinzip von D`Àlambert

Prof. V. Prediger: Aufgaben zur Lehrveranstaltung Kinematik und Kinetik 1. 4. Kinetik des Massenpunktes. 4.1 Prinzip von D`Àlambert Pof. V. Pedie: ufaen zu Lehveanstaltun Kineatik und Kinetik 4. Kinetik des Massenpunktes 4. Pinzip von D`Àlaet ufae 4.: Ein PKW fäht auf ein staes Hindenis zu. Es elint de Fahe vo de ufpall, seine Geshwindikeit

Mehr

1. Flächen und Räume (Buch Seite 69-71)

1. Flächen und Räume (Buch Seite 69-71) Löungen zu Teraining Texaufgaben Hee/Scrader. Fläcen und Räue (Buc Seie 69-7) Aufgabe Größe eine Pflaerein A Sein : ASein = 0c 0c= 0, 0, = 0, 0 Wie iele Pflaereine brauc die Fira nun für den Plaz? 500

Mehr

LASER-SEAM-STEPPER LSS1/ C-GUN

LASER-SEAM-STEPPER LSS1/ C-GUN LASER-SEAM-STEPPER LSS1/ C-GUN Effizientes Lasersweißen mit dem IPG Laser Seam Stepper LSS1 one aufwändige Spanntenik mit vertretbaren Vorritungskosten öere Prozessgeswindigkeit gegenüber Widerstandspunktsweißen

Mehr

absolute Feuchtigkeit relative Feuchtigkeit = x 100 % maximale Feuchtigkeit

absolute Feuchtigkeit relative Feuchtigkeit = x 100 % maximale Feuchtigkeit Luftfeutigkeit Die Luftfeutigkeit at einen großen Einfluss auf das Laufveralten von Kolebürsten, da sie den Reibwert von Kolebürstenwerkstoffen auf untersiedlien Gegenlaufwerkstoffen entseidend verändert.

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

4 Ähnlichkeitsabbildungen

4 Ähnlichkeitsabbildungen EINFÜHRUNG IN DIE GEOMETRIE SS 05 41 DEISSLER 4 Ähnlichkeitsaildungen eispiele Verkleinerungen, Vergrößerungen ijektive, geradentreue ildungen, ei denen die Winkel erhalten werden, aer nicht notwendig

Mehr

11.1 Allgemeine Theorie

11.1 Allgemeine Theorie Kapitel Linsen .. ALLGEMEINE THEORIE 3. Allemeine Theorie.. Geometrische Optik Die eometrische Optik (oder Strahlenoptik) umfasst denjenien Bereich der Optik, welcher durch die Vernachlässiun der endlichen

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1

Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Lösungen: Quadratische Funktionen Kompetenzorientiertes Üben 1 Aufgabe 1.: 6,0 5,0,0 3,0,0 1,0 0,0 1,0,0 3,0,0 5,0 6,0 7,0 f() 31,0,5 15,0 8,5 3,0 1,5 5,0 7,5 9,0 9,5 9,0 7,5 5,0 1,5 g(),0 9,0 18,0 9,0,0

Mehr

Schrägbilder und Berechnungen an Körpern 1 Schrägbilder 22 2 Berechnungen an Körpern 25 3 Weiterführende Aufgaben 27 Probe-Prüfungsaufgaben 28

Schrägbilder und Berechnungen an Körpern 1 Schrägbilder 22 2 Berechnungen an Körpern 25 3 Weiterführende Aufgaben 27 Probe-Prüfungsaufgaben 28 Inlt Eene Geometrie: Dreieke 1 Seitenlängen und Winkelmße in retwinkligen Dreieken 6 erenungen in llgemeinen Dreieken 8 3 Weiterfürende ufgen 10 Proe-Prüfungsufgen 1 Eene Geometrie: Viereke und ndere Figuren

Mehr

0 3 0 4 J 0 3 0 4 J 0 3 0 4 0 4. 0 4 J. j 0 4. 0 7. 0 3 j 0 4 0 4. 0 4. 0 4 0 3 J 0 3 J

0 3 0 4 J 0 3 0 4 J 0 3 0 4 0 4. 0 4 J. j 0 4. 0 7. 0 3 j 0 4 0 4. 0 4. 0 4 0 3 J 0 3 J 1 318 Architektur in deutschland Text und MuSIK: Bodo WARtke rechtwinklig resolut (q = ca 136 ) /B b /A m/a b 7 12 8 К 1 7 1 7 1 7 12 8 12 8 К b B b 2 B n 5 1 7 0 7 Ich find a, К К Deutsch - land ent-wi-ckelt

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Der Geburtstags-Blues

Der Geburtstags-Blues Der eburtstags-blues Wolfgang Schmitz alle singen oder sprechen: Heu - te wird ge - feiert, - heu - te ist was los, wir trom - meln mal ge - mein - sam für Mar - ti - na(1) ein - en Blues. Heu - te wird

Mehr

Technische Mechanik III Übungsblatt Nr. 3

Technische Mechanik III Übungsblatt Nr. 3 Institut für Technische Mechanik Prof. Dr.-In. C. Proppe Prof. Dr.-In. W. Seeann Nae: Testat: Terin: (jew. 19:00 Uhr) Vornae: Di., 25.11.2008 Matr. Nr.: Technische Mechanik III Übunsblatt Nr. 3 Thea: Newtonsches

Mehr

Annette-Kolb-Gymnasium Traunstein Grundwissen der 9. Klasse für das Fach Chemie Aufgaben und Antworten

Annette-Kolb-Gymnasium Traunstein Grundwissen der 9. Klasse für das Fach Chemie Aufgaben und Antworten 1 Erkläre den Aufbau von Atomen und Ionen aus den Elementarteilchen: (Bsp. 23 Na, 1 H, 35 Cl - ). 2 Erläutere den Beriff Edelaskonfiuration und beschreibe, welche verschiedenen Mölichkeiten die Elemente

Mehr

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4.

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4. Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Das Geodreieck zielt üben Anforderunen des ch Geometrie erfüllen wichtie Inhalte und leiten zuleich Ihre eiten trotz unterschiedlicher Lern

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

(Kl)eine Harmonielehre

(Kl)eine Harmonielehre (Kl)eine Harmonielehre Bernd Scheurer, JMS Erzhausen Einleitung...3 Tonleitern...5 Intervalle...9 Akkorde...3 Quintenzirkel...7 der Begriff Harmonielehre ruft ei manch einem vielleicht unangenehme Erinnerungen

Mehr

Aufgabensammlung: Winkelfunktionen

Aufgabensammlung: Winkelfunktionen Gewereshule Aufgaensalung: Aufgaensalung Allgemeine Aufgaen 1 Ermitteln Sie ie gesuhten Größen mithilfe von rehtwinkligen Dreieken. 1 a Gartentüre Breite l es Tores. 4 Regelmäßige Vieleke 4 a Vierkant

Mehr

Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen

Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen Integral-Iterationsverfahren und die exakten Lösungen der partiellen Differentialgleichungen Dr. rer. nat. Kuang-lai Chao Göttingen, den 16. Juni 2007 Abstract The integral iterative ethod and exact solutions

Mehr

Angebotene Schulformen an der BBS II Osterode am Harz - Standorte Leege und Neustädter Tor

Angebotene Schulformen an der BBS II Osterode am Harz - Standorte Leege und Neustädter Tor Angebotene Sulformen an der BBS II Osterode am Harz - Standorte Leege und Neustädter Tor Sulform Ziel Angebot an der BBS II Berufsvorbereitungsjar Berufseinstiegsklasse Einjärige Berufsfasule Einjärige

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Deutsche Rentenversicherung Deutsche Sozialversicherung und Europarecht im H inb lick auf und ausländische d ie A l terssicherung W anderarb eitnehm er/ innen m o b il er W issenscha f tl er Aktuelle Entwicklungen

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

Wir preisen dich, o Gott

Wir preisen dich, o Gott reisen dich, o Gott (Te Deum Laudamus) deutscher Text: ClemensM. B. Malecha (2004) Charles Villiers Stord (1852 1924) SPRAN ALT TNR BASS h = 80 RGL 8 reisen dich, o wir kennen dich als sern reisen dich,

Mehr

Gewählt wird eine viersträngige Seilführung mit oberer Ausgleichsrolle (siehe Skript Blatt 4.4-10).

Gewählt wird eine viersträngige Seilführung mit oberer Ausgleichsrolle (siehe Skript Blatt 4.4-10). Zahlenbeispiel - erechnung und Entwurf eis ubwerks a) Anordnung (siehe Skript latt 0a) Das ubwerk hat die auptbaugruppen otor, TK Troelkupplung, K elastische Kupplung it resscheibe, T Seiltroel, echanische

Mehr

Der zweiundzwanzigste Psalm ¹ ¹. Ich heu le, a ber mei ne Hül fe ist fern Recit. Recit. Ï. Tutti

Der zweiundzwanzigste Psalm ¹ ¹. Ich heu le, a ber mei ne Hül fe ist fern Recit. Recit. Ï. Tutti mein gott arum hast.myr 1/12 Mercoledì 27 Giugno 2012, 23:49:46 Soran 1 Alt 1 Tenor 1 Bass 1 Soran 2 Alt 2 Tenor 2 Bass 2 Der zeiundzanzigste Psalm O. 78 Nr. 3 1809-1847 Andante Ich heu le, a ber mei ne

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Aildung A e 2 a e Wir üerziehen die Eene neen dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen Maschen

Mehr

Preisliste w a r e A u f t r a g 8. V e r t r b 8. P C K a s s e 8. _ D a t a n o r m 8. _ F I B U 8. O P O S 8. _ K a s s a b u c h 8. L o h n 8. L e t u n g 8. _ w a r e D n s t l e t u n g e n S c h

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Versuch: Siedediagramm

Versuch: Siedediagramm Versuch: Siedediara Das Verhaten vn Füssikeitseischen bei Destiieren ässt sich anhand vn Kurven übersehen, die entweder bei knstanter eperatur den Dapfdruck der Mischun in bhänikeit der Knzentratin, der

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

ACHTUNDZWANZIG LACHGESCHICHTEN

ACHTUNDZWANZIG LACHGESCHICHTEN Ursula Wölfel ACHTUNDZWANZIG LACHGESCHICHTEN Mit Bildern von Bettina Wölfel Thienemann Die Ge schichte vom Kind, das im mer lachen musste Ein mal war ein Kind so lus tig, dass es im mer la chen musste.

Mehr

Weche Größen beeinflussen die Schwingungsdauer eines Federpendels?

Weche Größen beeinflussen die Schwingungsdauer eines Federpendels? 1.1.5.1 Weche Größen beeinflussen die S In diese Versuch wird ein Federpendel betrachtet, welches aus einer Schraubenfeder it der Federkonstanten D und einer daran angehängten Masse besteht. Wird das Pendel

Mehr

Endliche Automaten. aus. Abbildung 1: Modell eines einfachen Lichtschalters

Endliche Automaten. aus. Abbildung 1: Modell eines einfachen Lichtschalters Endliche Automaten In der ersten Vorlesungswoche wollen wir uns mit endlichen Automaten eschäftigen. Um uns diesen zu nähern, etrachten wir zunächst einen einfachen Lichtschalter. Dieser kann an oder aus

Mehr

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen. Aufben Arbei und Enerie 547. Ein Tnk oll i Hilfe einer Pupe i Wer efüll werden. Der Tnk für den Scluc zwei Anclüe, oben und unen. Wie eräl e ic i der durc die Pupe zu erriceen Arbei, u den Tnk olländi

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

Atombau, Periodensystem der Elemente

Atombau, Periodensystem der Elemente Seminar zum Brückenkurs Chemie 2015 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 21.09.2015 1. Aufbau des Atomkerns und radioaktiver Zerfall - Erläutern Sie den Aufbau der Atomkerne

Mehr

Aufgabensammlung. Kurzbeschreibung. Aufgabe. x ) ax 4 + b und a,b IR beschrieben werden, die Form der Oberseite durch eine quadratische Funktion g.

Aufgabensammlung. Kurzbeschreibung. Aufgabe. x ) ax 4 + b und a,b IR beschrieben werden, die Form der Oberseite durch eine quadratische Funktion g. Geeinsae Abituraufgabenpools der Länder Aufgabensalung Aufgabe für das Fach Matheatik Die Aufgabe zeigt exeplarisch die Anforderungen einer Aufgabe in einer eigenständigen Abiturprüfung zur Fachrichtung

Mehr

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5.

5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. 5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. Atomradien 5.6. Atomvolumina 5.7. Dichte der Elemente 5.8. Schmelzpunkte

Mehr

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten

Fluß. Flußnetzwerk. Definition 6.2. Es sei N = (G, c, s, t) ein Flußnetzwerk. Für einen Knoten 6. Flüe un Zuornungen Fluß In ieem Kapiel weren Bewerungen von Kanen al maximale Kapaziäen inerpreier, ie üer iee Kane pro Zeieinhei ranporier weren können. Wir können un einen Graphen al Verorgungnezwerk

Mehr

E Einleitung E.1 Aufbau der Referenz

E Einleitung E.1 Aufbau der Referenz PHP ist eine serverseitige, in HTML eingeettete Skriptsprache. Was PHP von clientseitigen Sprachen wie z.b. JavaScript unterscheidet, ist, dass der Code vom Server ausgeführt wird. Wird ein Skript auf

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Wissenswertes über Fledermäuse

Wissenswertes über Fledermäuse Wissenswertes über Fledermäuse Fledermäuse sind für viele immer noch seltsame, ja, mitunter unheimliche Geschöpfe, die lautlos durch die Nacht huschen, mit den Ohren sehen, den Händen fliegen und beim

Mehr

1. Übungsaufgabe zu Exponentialfunktionen

1. Übungsaufgabe zu Exponentialfunktionen 1. Übungsaufgabe zu Exponentialfunktionen Die folgende Funktion y = f(t) = 8 t e stellt die Konzentration eines Stoffes in einer Flüssigkeit dar. y ist die Konzentration des Stoffes in mg / Liter. t ist

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Ein Pendel führt in 2 Minuten 90 Schwingungen aus. Bestimmen Sie die Frequenz der Schwingung in Hz. (f=0,75hz)

Ein Pendel führt in 2 Minuten 90 Schwingungen aus. Bestimmen Sie die Frequenz der Schwingung in Hz. (f=0,75hz) in Pende ühr in inuen 90 Schwinunen au. Beien Sie die Frequenz der Schwinun in Hz. (0,75Hz Wie viee Schwinunen ühr ein Fadenpende in inuen au, wenn e eine Frequenz von 0,8 Hz beiz? (n Schw. Weche Schwindauer

Mehr

Getriebe und Übersetzungen Übungsaufgaben

Getriebe und Übersetzungen Übungsaufgaben Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen Quelle: Ai-Prüfungen des Lndes Bden-Württeerg 1 HP 1996/97-1 Shiffsufzug Bei der Bergfhrt uss von jeder Motor-Getrieeeinheit eine Krftdifferenz von

Mehr

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel?

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel? Schwerdruck, Auftrieb. In allen 5 Gefäßen teht die Flüikeit leich hoch. Verleiche folende Drücke a Boden der Gefäße iteinander: a) p, p, p b) p, p c) p, p 5. Ein U-Boot hat eine Autieöffnun it eine Durcheer

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Ein deutsches Requiem

Ein deutsches Requiem Ein deutsches Requiem nach Worten der Heiligen Schrift Johannes Brahms Op. 45 (1868) for soprano and baritone soli, SATB choir, and orchestra Arranged for organ by Andrew Raiskums Copyright 2006 Andrew

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

XML CSS XSL. Ex t en sib le Mar k u p Lan g u ag e. Einleitung DTD CSS XSL

XML CSS XSL. Ex t en sib le Mar k u p Lan g u ag e. Einleitung DTD CSS XSL XML Ex t en sib le Mar k u p Lan g u ag e W as ist XML? Untermenge von SGML (Standard Generalized Markup Language) XML definiert eigene Auszeichnungssprachen Definition eigener Tags Definition eigener

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen. Didaktikpool

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen. Didaktikpool Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Periodensystem der Elemente für blinde und hochgradig sehgeschädigte Laptop-Benutzer Reinhard Apelt 2008 Technische

Mehr

CultureWaves weltweite kulturübergreifende Unterstützung

CultureWaves weltweite kulturübergreifende Unterstützung Unternehmensprofil CultureWaves weltweite kulturübergreifende Unterstützung Seit 1999 unterstützt CultureWaves Unternehmen in ihrer internationalen Zusammenarbeit sowie bei Veränderungs- und Internationalisierungsprozessen.

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Checkliste zur Standortaufnahme für eine PV-Anlage

Checkliste zur Standortaufnahme für eine PV-Anlage Ceckise zur Sandoraufname für eine PV-Anage Adresse, Sandor, Bereier, eeiige Gewerke Name des Aufraggeers Kunden-Nr.: Sraße, Hausnummer PLZ, Or Te. (priva) Te. (diensic) Fax E-Mai Anscrif Bausee (nur fas

Mehr

Fotodoppelseiten Lektion 2: Faszination

Fotodoppelseiten Lektion 2: Faszination Anmerkungen zum Areitslatt 1 Einsatz: Im Kurs Das Areitslatt ezieht sich auf den Hörtext 1.15 18, Seite 36 im Kursuch. Sie enötigen für jede Teilnehmerin / jeden Teilnehmer (TN) eine Kopie des Areitslatts.

Mehr

ETS-4308 I. Programmierhandbuch zum Elektronischen Telefon-System

ETS-4308 I. Programmierhandbuch zum Elektronischen Telefon-System ETS-4308 I Programmieranduc zum Elektroniscen Telefon-System Lieferumfang 1 Grundgerät ETS-4308 I 1 Erweiterungsmodul S 0 E-4308 (walweise als 1. int. S 0 -Port oder 2. ext. S 0 -Port steckar) 2 ISDN-Ansclusskael,

Mehr

1 F r e q u e n t l y A s k e d Q u e s t i o n s Was ist der Global Partner Event Calendar (GPEC)? D e r g l o b a l e V e r a n s t a l t u n g s k a l e n d e r f ü r P a r t n e r i s t e i n w i c

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter I knn I knn Mte I knn Mte lernen Mtemtik - Areitslätter M Wiederolung 1 2 4 5 8 Gnze und rtionle Zlen 1 2 4 5 6 7 8 9 47 Ds retwinklige Koordintensystem 1 2 49 Potenzen 1 2 4 5 Anwendung der Prozentrenung

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3.

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3. Teorie Kineatik Kineatik (griec.: κíνεω (kineo) bewegen ; [Kino bewegte Bilder]) Lere on den Bewegungen. Die Kineatik becränkt ic auf die geoetrice Becreibung der Bewegungabläufe durc die Angabe on Ort,

Mehr

Therapiebegleiter Kopfschmerztagebuch

Therapiebegleiter Kopfschmerztagebuch Vornme & Nchnme Therpieegleiter Kopfschmerztgeuch Liee Ptientin, lieer Ptient, Wie Können sie helfen? Bitte führen Sie regelmäßig euch m esten täglich. Trgen Sie in die Splten die jeweiligen Informtionen

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

essen Mache es nun umgekehrt. Schreibe immer einen Buchstaben weniger, bis das Wort ganz verschwunden ist. Sprich wieder (leise) dazu.

essen Mache es nun umgekehrt. Schreibe immer einen Buchstaben weniger, bis das Wort ganz verschwunden ist. Sprich wieder (leise) dazu. een Füge Buchtabe an Buchtabe bi du da ganze Wort vor dir ieht. Sprich dazu! Beachte: Da e wird kurz geprochen. Daher kommt danach ein Doppel! Mache e nun umgekehrt. Schreibe immer einen Buchtaben weniger,

Mehr