Vektoren und Matrizen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vektoren und Matrizen"

Transkript

1 Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen, daß für n 3 der R n keine Multiplikation zuläßt, die R n zu einem Körper macht Allerdings haben wir noch in jedem R n eine Addition (wir schreiben n Tupel als Spalten: x x 2 und eine Multiplikation mit λ R : Es gilt: V v + w w + v V2 ( v + w + u v + ( w + u V3 V : + v v + λ V4 zu v existiert v mit v + ( v V5 (α + β v α v + β v V6 (αβ v α(β v V7 α ( v + w α v + α w V8 v v Weiter hat jeder Vektor x x x 2 x x 2 y y 2 y n : : x 2 + x x2 n Der Abstand von x und y ist λx λx 2 λ x + y x 2 + y 2 + y 2 (wie bei den komplexen Zahlen eine Länge x : d( x, y : y x Es gilt: λ x (λx (λ λ 2 (x x2 n λ x Beispiel: Für Vektoren x und y ist x+ y 2 der Mittelpunkt

2 Grund: x + 2 x+ y ( y x 2 Wir betrachten zu x den Ausdruck y t x 2 : x 2 y t x 2 (y tx (y n ty n 2 { t x } y + + y 2 n x 2 + x 2 y 2 (x y + + y n 2 x 2 Grund: Die rechte Seite der Gleichung ist: x 2 t 2 + (x y + + y n 2 x 2 2t (x y + + y n + y 2 (x y + + y n 2 x 2 x 2 t 2 2t (x y + + y n + y 2 Diese Gleichung zeigt uns: n k (y i tx i 2 Der Ausdruck wird minimal für t x y ++ y n x 2 Es ist x 2 y 2 (x y ++ y n 2 x 2, also x 2 y 2 (x y + + y n 2 x 2 y 2 x y + + y n 2 { x y x y + + y n } { x y + x y + + y n } Daher ist x y x y + + y n x y x y + + y n und schließlich: x y + + y n x y + + y n x y

3 Satz: Dreiecksungleichung: x + y x + y Grund: x + y 2 (x + y ( + y n 2 x x2 n + y y2 n + 2(x y + + y n Definition: i Für zwei Vektoren x als: x 2 + y 2 + 2(x y + + y n x 2 + y x y ( x + y 2 x x y :, y n x i y i k y y n ist das Skalarprodukt definiert ii cos ( ( x, y : x y x y speziell ist also für x y Folgerung: Ist einer der beiden am Skalarprodukt beteiligten Vektoren ein Einheitsvektor, so ist das Skalarprodukt die Länge der Projektion auf den Einheitsvektor 2 x y x y Satz (Eigenschaften des Skalarproduktes, Teil I: Für alle x, y, z R n und λ, µ R gilt: x x x und x x x 2 x y y x 3 ( x + y z ( x z + ( y z : x z + y z λ( x z (λ x z x (λ z : λ x z 4 x ± y 2 x 2 + y 2 ± 2 x y 5 x y x y (Cauchy-Schwarzsche Ungleichung x y x y Grund: - 4 Nachrechnen, 5 haben wir oben gezeigt Erinnerung: In C lassen sich Drehungen beschreiben durch Multiplikation mit einer komplexen Zahl z e iϕ, mit z Ist nämlich y re iψ, so gilt yz re iψ e iφ re i(ψ+ϕ Das Ergebnis hat also wieder die Länge r und schließt mit der positiven x Achse den Winkel ψ + ϕ ein

4 Definition: i Eine Matrix ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet x x 2 ii Für einen Vektor x und eine Matrix A ist das Matrix-Vektor-Produkt definiert als: A x : x a + + a n ( cos(ψ sin(ψ Beispiel: Wir betrachten die Matrix D ψ : sin(ψ cos(ψ Dann gilt: ( cos(ψ sin(ψ sin(ψ cos(ψ ( cos(ϕ r sin(ϕ ( cos(ψ r cos(ϕ sin(ψ ( cos(ϕ cos(ψ sin(ϕ sin(ψ r cos(ϕ sin(ψ + sin(ϕ cos(ψ ( sin(ψ + r sin(ϕ cos(ψ ( cos(ϕ + ψ r sin(ϕ + ψ Das Ergebnis ist also, daß der Vektor um den Winkel ψ gedreht wird 2 Es ist ( 2 5 ( x y ( 2x 5y Der Vektor wird also in x Richtung um den Faktor 2 und in y Richtung um den Faktor 5 gestreckt 3 Die Matrix cos(ψ sin(ψ sin(ψ cos(ψ dreht in der x y Ebene und läßt die z Achse unverändert Satz: Für eine m n Matrix A und Vektoren x, y R n und λ R gilt: A ( x + y A x + A y A (λ x λ(a x Grund: A( x + y (x + y a + + ( + y n a n x a + + a n + y a + + y n a n A x + A y und A(λ x (λx a + + (λ a n λ(x a + + a n λ(a x

5 Bemerkung: Führen wir das Matrix-Vektor-Produkt nacheinander mit den Matrizen A und B durch, so erhalten wir B (A x B(x a + + a n Nach obigem Satz ist das gleich x B a + + B a n Ist nun C (B a,, B a n die Matrix, deren Spalten aus den Vektoren B a,, B a n, so ist obiger Ausdruck gleich C x Es gilt also für alle x R n : B (A x C x Definition: Für eine m n-matrix A und eine n k Matrix B ist das Matrizenprodukt die folgende m k Matrix: B A : (B a,, B a n Bemerkung: Praktischerweise gilt also: B (A x (B A x Satz: Das Matrizenprodukt ist assoziativ Grund: C (B A C (B a,, B a n (C (B a,, C (B a n Wegen der obigen Bemerkung ist das gleich ((C B a, (C B a n, was nichts anderes ist, als (C B A Achtung: Das Matrizenprodukt ist nicht kommutativ: ( ( ( 2 und ( ( ( 2 Definition: Die Transponierte einer Matrix ist gegeben durch ( A t ij A ji Es werden also Zeilen und Spalten vertauscht Beispiel: ( t Satz: Für eine n m Matrix A und eine m p Matrix B gilt: (A B t B t A t

6 Achtung: Die Reihenfolge vertauscht sich Grund: Es ist (A B ij m k A ik B kj, also (A B t ji m k Bt jk At ki (Bt A t ji Satz: (A + B t A t + B t für Matrizen A, B passender Größe Definition: Eine n n Matrix A heißt invertierbar, wenn es eine n n Matrix A gibt, mit A A A A E n Beispiel:2x2 Matrizen ( a b c d ( d ad bc ad bc b ad bc c a ad bc ad bc ( d b c a 3 3 Matrizen a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 a 22 a 33 a 23 a 32 a 3 a 32 a 2 a 33 a 2 a 23 a 3 a 22 a 23 a 3 a 2 a 33 a a 33 a 3 a 3 a 3 a 2 a a 23 a 2 a 32 a 22 a 3 a 2 a 3 a a 32 a a 22 a 2 a 2 (a a 22 a 2 a 2 a 33 + (a 3 a 2 a a 23 a 32 + (a 2 a 23 a 3 a 22 a 3 Satz: Die Inversen von Matrizen sind (wenn sie existieren eindeutig Grund: Wir nehmen an es gäbe zwei Inverse, A und A Dann ist A A E n A A Multiplizieren wir diese Gleichung von rechts mit A, so gilt: A } A {{ A } A } A {{ A } E n E n also Satz: A A (A B B A Achtung: Die Reihenfolge vertauscht sich Grund: Es ist (A B B A A E n A A A E n und genauso umgekehrt Definition: Eine Diagonalmatrix ist eine n n Matrix der Gestalt λ λ 2 : diag(λ,, λ n λ n

7 Satz: Diagonalmatrizen sind einfach: Ist D diag(λ,, λ n, so gilt: D m diag(λ m,, λm n für alle m Z Speziell: und es ist D diag(/λ,, /λ n, falls alle λ i D e i λ i e i für e i (,, }{{},, t Diagonalmatrizen stauchen, strecken oder spiegeln also i te Stelle entlang der Standardbasisvektoren, insbesondere wird nichts gedreht Beispiel: , , Weiter gilt: ( p,, p n D (λ p,, λ n p n wenn ( p,, p n die Matrix bezeichnet, die die Spalten p,, p n hat Definition: Eine n n Matrix A heißt orthogonal, wenn A A t A t A E n gilt Für orthogonale Matrizen ist also die Transponierte gleich der Inversen Beispiel: ( cos ϕ sin ϕ D ϕ : sin ϕ cos ϕ ( x Die Matrix D ϕ angewandt auf einen Vektor dreht diesen Vektor um den Winkel ϕ y (gegen den Uhrzeigersinn: ( ( x r cos ψ Ist die Darstellung in Polarkoordinaten, so gilt: y r sin ψ r D ϕ ( x y ( cos ϕ sin ϕ sin ϕ cos ϕ ( cos ϕ cos ψ sin ϕ sin ψ sin ϕ cos ψ + cos ϕ sin ψ r ( r cos ψ r sin ψ ( cos(ϕ + ψ sin(ϕ + ψ Die letzte Gleichung stammt von den Additionstheoremen von sin und cos Die Inverse Matrix zu D ϕ ist die Matrix, die um den Winkel ϕ dreht ( ( cos( ϕ sin( ϕ cos(ϕ sin(ϕ D ϕ D ϕ D t ϕ sin( ϕ cos(ϕ sin(ϕ cos(ϕ

8 also ist D ϕ eine orthogonal Matrix Bemerkung: Orthogonale Matrizen verändern Längen von Vektoren nicht: Es ist O x 2 (O x t (O x x t O t O x x t x x 2 Auch die Winkel zwischen Vektoren x und y bleiben erhalten: cos α xt y x y xt O t O y O x O y (O xt (O x O x O y also schließen O x und O y denselben Winkel ein wie x und y Definition: Eine n n Matrix heißt diagonalisierbar, wenn es eine invertierbare n n Matrix P und eine Diagonalmatrix D gibt, mit P A P D A heißt orthogonal diagonalisierbar, wenn A diagonalisierbar mit orthogonalem P ist Bemerkung: Diagonalmatrizen sind diagonalisierbar mit P E n 2 Für m N gilt: ( m A m P D P P D } P {{ P } D P P D P (m-mal E n 3 Definieren wir v i : P e i, so ist: P D m P A v i A P e i P D e i P λ i e i λ i P e i λ i v i Diagonalisierbare Matrizen strecken, stauchen oder spiegeln, statt wie Diagonalmatrizen entlang der Standardbasen, entlang der Vektoren v i Definition: Eine n n Matrix ist symmetrisch, wenn gilt: A t A Beispiel: Jede Diagonalmatrix ist symmetrisch 2 Für eine beliebige (nicht notwendig quadratische Matrix A sind A t A und A A t symmetrisch, denn (A t A t A t (A t t A t A und (A A t t (A t t A t A A t 3 A+At 2 ist symmetrisch Bemerkung: Eine orthogonal diagonalisierbare Matrix ist notwendig symmetrisch, denn es ist (P t D P t P t D t (P t t P t D P Definition: Eine symmetrische Matrix A heißt positiv definit (semidefinit, wenn gilt und negativ definit (semidefinit, falls v t A v > ( für alle v v t A v < ( für alle v

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

1 Vektoren, Vektorräume, Abstände: 2D

1 Vektoren, Vektorräume, Abstände: 2D Vektoren, Vektorräume, Astände: D Definition: Die Menge aller (geordneten Paare reeller Zahlen (oder allgemeiner: Elemente eines elieigen Körpers, als Spalten geschrieen, ezeichnen wir als Vektoren: R

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c)

Komplexe Zahlen. (a, b) + (c, d) := (a + c, b + d) (a, b) (c, d) := (a c b d, a d + b c) Komplexe Zahlen Wir betrachten Zahlenpaare (a, b, (c, d R und definieren eine Addition und eine Multiplikation wie folgt: (a, b + (c, d := (a + c, b + d (a, b (c, d := (a c b d, a d + b c Satz: R mit dieser

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen Matrizen 28. November 2007 Summe & Produkt Beispiel: Einwohnerzahlen Beispiel Addition Multiplikation Inverse Addition & Multiplikation Anwendung

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. & 26. November 2008 Definition, Summe & Produkt Transponierte Beispiel: Einwohnerzahlen Leslie-Populationsmodell Beispiel Addition Multiplikation

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

44 Orthogonale Matrizen

44 Orthogonale Matrizen 44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2...

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2... MATRIZEN Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn A ist eine m n Matrix, dh: A hat m Zeilen und n Spalten A besitzt

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a). Aufgabe Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = Es gilt det(λa = (λ n det(a det I n = n? Nein (außer für n = Es gilt deti n = det(ab = det A det B? Ja det(a =

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014

Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014 Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................

Mehr

5. Matrizen und Determinanten

5. Matrizen und Determinanten technische universität dortmund Dortmund, im Januar 01 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 1 und Matrizen und

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.

Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h. Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003 Komplexe Zahlen Axel Schüler, Leipzig schueler@mathematikuni-leipzigde Juli 2003 Da die komplexen Zahlen nicht mehr im Lehrplan stehen, sollen hier die Grundlagen gelegt werden Eine sehr schöne Einführung

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

8 Lineare Abbildungen

8 Lineare Abbildungen 80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Lineare Algebra. Beni Keller SJ 16/17

Lineare Algebra. Beni Keller SJ 16/17 Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen

4.3 Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen 196 KAPITEL 4. VEKTORRÄUME MIT SKALARPRODUKT 4. Reelle Skalarprodukte, Hermitesche Formen, Orthonormalbasen In diesem Abschnitt betrachten wir Vektorräume über IR und über C. Ziel ist es, in solchen Vektorräumen

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

LINEARE ALGEBRA UND GEOMETRIE VERSION 14. Dezember s = oder in Komponenten:

LINEARE ALGEBRA UND GEOMETRIE VERSION 14. Dezember s = oder in Komponenten: LINEARE ALGEBRA UND GEOMETRIE VERSION 4. Dezember 07 LISIBACH ANDRÉ.. Lineare Unabhängigkeit.... Linearkombination. Seien u, u,..., u n eine Menge von Vektoren. Eine Linearkombination der Vektoren u, u,...,

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 1 (WS 2010/2011) Abgabetermin: Donnerstag, 21. Oktober.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 1 (WS 2010/2011) Abgabetermin: Donnerstag, 21. Oktober. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 1 (WS 2010/2011) Abgabetermin: Donnerstag, 21. Oktober http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen an die Vorlesung: Im Folgenden werden einige

Mehr