GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik"

Transkript

1 GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik

2 GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen Zhlen: N = {1; 2; 3;...} Menge der ntürlichen Zhlen und der Zhl Null: N0 = {0; 1; 2; 3;...} Menge der gnzen Zhlen: Z = {...; -3; -2; -1; 0; 1; 2; 3;...} Die Zhl -2 ist eine gnze Zhl, ber keine ntürliche Zhl. Mn schreibt: -2 Z, -2 N Mn spricht: Die Zhl -2 ist ein Element der Menge der gnzen Zhlen, die Zhl -2 ist kein Element der Menge der ntürlichen Zhlen. Zhlen mit besonderen Eigenschften: Eine Primzhl ist eine Zhl, die genu zwei Teiler besitzt, z.. 2, 3, 5, 7, 11, 13, 17 usw. Die Zhl 1 ist keine Primzhl, denn sie ht nur einen Teiler. Eine Qudrtzhl ist eine Zhl, die entsteht, wenn mn eine ntürliche Zhl mit sich selbst multipliziert, z.. 1, 4, 9, 16, 25, 36, 49 usw. nordnung der gnzen Zhlen: Von zwei gnzen Zhlen ist diejenige kleiner, die uf der Zhlengerde weiter links liegt. Mn schreibt: -4 < -1 ( -4 ist kleiner ls -1 ) 3 > 0 ( 3 ist größer ls 0 ) etrg einer Zhl: Die Entfernung einer Zhl vom Nullpunkt der Zhlengerden heißt etrg der Zhl. Die Zhl +4 ht den etrg 4, die Zhl -6 ht den etrg 6. Die Zhlen -5 und +5 hben beide den gleichen etrg. Sie unterscheiden sich nur durch ihr Vorzeichen. Solche Zhlen heißen Gegenzhlen. 2

3 GM 5.2 Rechnen mit gnzen Zhlen Terme sind Rechenusdrücke. Mn unterscheidet vier Rechenrten und somit uch vier Termrten: ddition = 16 Der Term ist eine Summe. 12 heißt 1. Summnd, 4 heißt 2. Summnd, 16 heißt Wert der Summe. Subtrktion 12 4 = 8 Der Term 12 4 ist eine Differenz. 12 heißt Minuend, 4 heißt Subtrhend, 8 heißt Wert der Differenz. Multipliktion 12 4 = 48 Der Term 12 4 ist ein Produkt. 12 heißt 1. Fktor, 4 heißt 2. Fktor, 48 heißt Wert des Produkts. Division 12 : 4 = 3 Der Term 12 : 4 ist ein Quotient. 12 heißt Dividend, 4 heißt Divisor, 3 heißt Wert des Quotienten. ddieren gnzer Zhlen: Hben beide Summnden ds gleiche Vorzeichen, so wird ds gemeinsme Vorzeichen beibehlten und die eträge der Summnden ddiert. (+3) + (+8) = + (3 + 8) = +11 ( 5) + ( 7) = (5 + 7) = 12 Hben die zwei Summnden verschiedene Vorzeichen, so übernimmt mn ds Vorzeichen des Summnden mit dem größeren etrg und bildet die Differenz us dem größeren und dem kleineren etrg. (+3) + ( 8) = (8 3) = 5 ( 11) + (+6) = (11 6) = 5 Subtrhieren gnzer Zhlen: Eine Zhl wird subtrhiert, indem mn ihre Gegenzhl ddiert. (+5) (+8) = (+5) + ( 8) = (8 5) = 3 (+3) ( 11) = (+3) + (+11) = + (3 + 11) = +14 Kurzschreibweise beim ddieren und Subtrhieren: Schreibt mn einen Term so, dss ls Rechenzeichen nur ds Pluszeichen uftritt, dnn knn mn lle Rechenzeichen und lle Zhlenklmmern weglssen. ußerdem knn mn beim ersten Summnden ds Vorzeichen weglssen, flls es sich um ein Pluszeichen hndelt. (+5) + ( 3) ( 8) (+7) = (+5) + ( 3) + (+8) + ( 7) = Multiplizieren gnzer Zhlen: Hben beide Fktoren ds gleiche Vorzeichen, so ist der Produktwert positiv. (+3) (+8) = + (3 8) = +24 ( 5) ( 7) = + (5 7) = +35 Hben die beiden Fktoren verschiedene Vorzeichen, so ist der Produktwert negtiv. (+3) ( 8) = (8 3) = 24 ( 11) (+6) = (11 6) = 66 Dividieren gnzer Zhlen: Hben Dividend und Divisor ds gleiche Vorzeichen, so ist der Quotientwert positiv. (+18) : (+6) = + (18 : 6) = +3 ( 18) : ( 6) = + (18 : 6) = + 3 Hben Dividend und Divisor verschiedene Vorzeichen, so ist der Quotientwert negtiv. (+18) : ( 6) = (18 : 6) = 3 ( 18) : (+6) = (18 : 6) = 3 3

4 Rechengesetze: Kommuttivgesetz der ddition (Multipliktion) Innerhlb einer Summe (eines Produkts) drf mn die Summnden (Fktoren) beliebig vertuschen = = = = = = 2600 Dies gilt nicht für die Subtrktion und die Division! ssozitivgesetz der ddition (Multipliktion) Innerhlb einer Summe (eines Produkts) drf mn Klmmern beliebig setzen oder weglssen ( ) + 27 = = ( ) = = 467 (72 25) 4 = = 72 (25 4) = = 7200 Rechenregeln: Punkt vor Strich: Punktrechnungen werden vor Strichrechnungen usgeführt. f l s c h: = = 1200 r i c h t i g: = = 213 Klmmern zuerst: Terme, die in Klmmern stehen, werden zuerst berechnet. f l s c h: (53 8) 6 = = = 5 r i c h t i g: (53 8) 6 = 45 6 = 270 Die Rechenregeln legen die Reihenfolge fest, in der die einzelnen Rechenopertion eines Term usgeführt werden. Die Rechenopertion, die ls letzte usgeführt wird, legt den Termnmen fest. Der Term ist eine Differenz. Der Term (53 8) 6 ist ein Produkt. Ws noch nicht zum Rechnen drn, schreibt mn unverändert n: Nch einem Gleichheitszeichen dürfen weder Termbestndteile weggelssen noch hinzugefügt werden. f l s c h: = = = 409 r i c h t i g: = = = 409 4

5 GM 5.3 Größen und ihre Einheiten Größen bestehen us einer Mßzhl und einer Mßeinheit. Größen der gleichen rt knn mn uch in unterschiedlichen Einheiten oder mehrfch bennnt ngeben. ei der Größe 250 cm ist 250 die Mßzhl und cm die Mßeinheit. Sttt 250 cm knn mn uch 25 dm oder 2,5 m schreiben. Schreibt mn 2 m 50 cm, so ht mn die Größe mehrfch bennnt bzw. in gemischten Einheiten ngegeben. Längen werden zumeist in den Einheiten Millimeter (mm), Zentimeter (cm), Dezimeter (dm), Meter (m) und Kilometer (km) ngegeben. Die Umrechnungszhl zwischen benchbrten Einheiten ist km = 1000 m 1 m = 10 dm = 100 cm = 1000 mm 1 dm = 10 cm = 100 mm 1 cm = 10 mm 1 mm = 0,1 cm = 0,01 dm = 0,001 m 1 cm = 0,1 dm = 0,01 m 1 dm = 0,1 m 1 m = 0,001 km Flächen werden zumeist in den Einheiten Qudrtmillimeter (mm²), Qudrtzentimeter (cm²), Qudrtdezimeter (dm²), Qudrtmeter (m²), r (), Hektr (h) und Qudrtkilometer (km²) ngegeben. Die Umrechnungszhl zwischen benchbrten Einheiten ist km² = 100 h = = m² 1 h = 100 = m² 1 = 100 m² 1 m² = 100 dm² = cm² = mm² 1 dm² = 100 cm² = mm² 1 cm² = 100 mm² Mssen werden zumeist in den Einheiten Tonnen (t), Kilogrmm (kg), Grmm (g) und Milligrmm (mg) ngegeben. 1 t = 1000 kg 1 kg = 1000 g 1 g = 1000 mg 1 mg = 0,001 g 1 g = 0,001 kg 1 kg = 0,001 t Zeiten werden zumeist in den Einheiten Tge (d), Stunden (h), Minuten (min) und Sekunden (s) ngegeben. 1 d = 24 h 1 h = 60 min = 3600 s 1 min = 60 s 5

6 GM 5.4 Rechnen mit Größen ddieren von Größen: Größen knn mn ddieren (subtrhieren), indem mn sie in der gleichen Mßeinheit ngibt und dnn ihre Mßzhlen ddiert (subtrhiert). 1,3 m + 52 dm + 18 cm = 130 cm cm + 18 cm = 668 cm Multipliktion und Division: Eine Größe wird mit einer ntürlichen Zhl multipliziert, indem mn die Mßzhl mit der ntürlichen Zhl multipliziert und die Einheit beibehält. 125 g 4 = 500 g 1 m 40 cm 7 = 140 cm 7 = 980 cm = 9 m 80 cm Eine Größe wird durch eine ntürliche Zhl dividiert, indem mn die Mßzhl durch die ntürliche Zhl dividiert und die Einheit beibehält. ei der Division einer Größe durch eine Zhl ergibt sich wieder eine Größe. 620 cm² : 20 = 31 cm² 3 m : 12 = 300 cm : 12 = 25 cm Eine Größe wird durch eine ndere Größe dividiert, indem mn gleiche Einheiten herstellt und dnn die Mßzhlen dividiert. Mn erhält eine Zhl (ohne Einheit). 12 m : 30 cm = 1200 m : 30 cm = 40 oder 12 m : 30 cm = 120 dm : 3 dm = 40 8 min : 24 s = 480 s : 24 s = 20 6

7 GM 5.5 Geometrische Grundbegriffe Strecke, Hlbgerde, Gerde Eine Strecke ist die gerde Verbindungslinie zweier Punkte und. Schreibweise: [] Schreibweise für die Länge einer Strecke: = 4cm Eine Hlbgerde entsteht durch Verlängerung einer Strecke über einen Endpunkt hinus. Schreibweise: [ Schreibweise: ] Eine Gerde entsteht durch Verlängerung einer Strecke über beide Endpunkte hinus. Schreibweise: Winkel entstehen durch Drehung einer Hlbgerden um ihren nfngspunkt. Der Punkt S ist der Scheitel, die Hlbgerde [S der erste Schenkel, die Hlbgerde [S der zweite Schenkel des Winkels. Mn schreibt uch S. S α Winkel werden meist mit kleinen griechischen uchstben bennnt: α (lph), β (bet), γ (gmm), δ (delt), ε (epsilon), ϕ (phi), τ (tu) u.. Die Größe eines Winkels wird in Grd gemessen. Dbei misst eine volle Umdrehung 360. Ein Winkel der Größe 180 ist ein gestreckter Winkel. Ein Winkel der Größe 90 wird ls rechter Winkel bezeichnet. β β = 90 Lgebeziehungen zweier Gerden Gerden, die miteinnder einen rechten Winkel bilden, stehen ufeinnder senkrecht. Schreibweise: k g, k h g Zwei Gerden g und h (in der Zeichenebene) heißen zueinnder prllel, wenn es eine dritte Gerde k gibt, die uf jeder der beiden senkrecht steht. Schreibweise: g h Die Länge der Strecke [] uf dem gemeinsmen Lot k heißt bstnd der Gerden g und h. Schreibweise: d = k h 7

8 GM 5.6 Figuren und Körper Geometrische Grundfiguren Qudrt Rechteck Rute Sechseck Dreieck Kreis Trpez Prllelogrmm Ein Viereck, ds zwei prllele Seiten besitzt, heißt Trpez. Ein Viereck, bei dem die gegenüberliegenden Seiten jeweils zueinnder prllel sind, heißt Prllelogrmm. Ein Viereck mit vier rechten Winkeln heißt Rechteck. Ein Viereck mit vier gleich lngen Seiten heißt Rute. Ein Viereck mit vier gleich lngen Seiten und vier rechten Winkeln heißt Qudrt. Qudrt und Rechteck Im Qudrt CD sind,, C und D die Eckpunkte. [] ist eine Seite. Die Seitenlänge ist mit bennnt. Umfngslänge des Qudrts: U = 4 Flächeninhlt des Qudrts: = = ² Die Strecke [C] ist eine Digonle des Qudrts. Im Rechteck PQRS sind die Seitenlängen und b eingetrgen. Umfngslänge des Rechtecks: U = b Flächeninhlt des Rechtecks: = b Kreis lle Punkte uf der Kreislinie hben vom Mittelpunkt M des Kreises die gleiche Entfernung. Diese Entfernung heißt Rdius r des Kreises. Verbindet mn zwei Punkte der Kreislinie so miteinnder, dss die Verbindungslinie durch den Mittelpunkt verläuft, so erhält mn den Durchmesser d des Kreises. Dbei gilt: d = 2 r S P b D M d C r b R Q Geometrische Grundkörper Kugel Kegel Prism Quder (dreiseitig, liegend) Zylinder Pyrmide Prism Würfel (sechsseitig, stehend) Ein Würfel besitzt 6 Flächen, 8 Ecken und 12 Knten. Ein Würfel der Kntenlänge ht den Oberflächeninhlt O = 6 ². Ein Quder mit den Kntenlängen l, b und h ht den Oberflächeninhlt O = 2 l b + 2 l h + 2 b h. 8

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel:

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel: 16 7 8 9 4 5 6 1 2 3 1 2 13 14 15 5 6 1 2 3 4 b c A B 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 C 13 14 15 16 9 10 11 12 7 8 2 2 2 erste binomische Formel: ( + b) + 2b + b 2 2 2 zweite binomische

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm

ARBEITSBLATT 1-13. Maßeinheiten. 1. Längenmaße. km m dm cm mm. Beispiel: Schreib mehrnamig: 2,032801 km Lösung: 2,032801 km = 2 km 32 m 8 dm 1 mm ARBEITSBLATT 1-13 13 Mßeinheiten 1. Längenmße 1000 10 10 10 km m dm cm mm Beispiel: Schreib mehrnmig:,03801 km Lösung:,03801 km = km 3 m 8 dm 1 mm Beispiel: Drücke in km us: 4 km 0 m 3 cm Lösung: 4 km

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Grundwissen Jahrgangsstufe 7

Grundwissen Jahrgangsstufe 7 GM 7.1 chsensymmetrie Grundwissen Jhrgngsstufe 7 Definition Zwei unkte liegen symmetrisch bezüglich einer chse, wenn ihre Verbindungsstrecke von der chse senkrecht hlbiert wird. M und liegen symmetrisch

Mehr

MB1 LU 5 und 12 Geometrische Grundbegriffe

MB1 LU 5 und 12 Geometrische Grundbegriffe M1 LU 5 und 12 Geometrische Grundbegriffe Ds Wort Geometrie ist ltgriechischen Ursprungs und setzt sich us den Wörtern geo = Erde und metron = messen zusmmen. Die Geometrie wr die Wissenschft, die sich

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Grundwissen Seite 1 von 11 Klasse5

Grundwissen Seite 1 von 11 Klasse5 Grundwissen Seite 1 von 11 Klasse5 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen Beispiele: 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1. Wihtie Symole Grundwissen Mthemtik 5/1 Wihtie Symole Rehenrten Qudrtzhlen IN Mene der ntürlihen Zhlen { 1; 2; 3; 4;... } IN 0 Mene der ntürlihen Zhlen einshließlih der Null {0; 1; 2; 3; 4;... } GI Grundmene

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Einführung in das Rechnen mit Zahlen. (elementare Algebra)

Einführung in das Rechnen mit Zahlen. (elementare Algebra) Ausgbe 2008-05 Einführung in ds Rechnen mit Zhlen (elementre Algebr) Algebr ist ein Teilgebiet der Mthemtik und beschäftigt sich mit der Verknüpfung von Zhlen durch Rechenopertionen 1. Rechenregeln der

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Natürliche Zahlen, besondere Zahlenmengen

Natürliche Zahlen, besondere Zahlenmengen Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,

Mehr

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, F 0 0, F und F n+ F n +F n- 0,,,,,, 8,,, 4,, N A U T I L U S Fiboncci - Zhlen S. Nutilus - Nmen gebend für ds berühmte U-Boot des Kpitäns Nemo us Jules Vernes Romn "0 000 Meilen unter dem Meer" - ist ein

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Grundwissen Mathematik 7II-III

Grundwissen Mathematik 7II-III Grundwissen themtik 7II-III ultipliktion und ivision in QI Rechenregeln c c c d : b d b d b d b c Vorzeichenregeln + + + + + + + : + + : + : + + : Potenzgesetze. Potenzgesetz n m n m + eispiel: 7 + Ü:

Mehr

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6

2 P a) Temperaturabnahme um 9 C b) Temperaturabnahme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 Gnze Zhlen 1 35 Ausgngstempertur +6 C... ) Temperturbnhme um 9 C b) Temperturbnhme um 12 C (+6) (+9) = 3 (+6) (+12) = 6 36 Ausgngstempertur 4 C... ) Temperturzunhme um 10 C b) Temperturzunhme um 21 C (

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Bruchrechnung Grundwissen Mthemtik 6/. Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zhl multiplizieren. Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Mathematik Thema Vielecke

Mathematik Thema Vielecke Them Vielecke Im Jnur 2006 Florin Vetter, Klsse 8, Riegelhof Relschule Seite 1 von 15 INHALTSVERZEICHNES 1. EINLEITUNG 3 2. ARTEN VON VIELECKEN 4 2.1. DREIECK 4 2.2. VIERECK 4 2.2.1. RECHTECK 4 2.2.2.

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K Grundwissen Mthemtik 10. Klsse Kreis Länge eines Kreisbogens b 360 r r r b Fläche eines Kreissektors 360 r r r Bogenmß Bogenmß des Winkels : Umrechnungsformel: b α Bogenmß r α Bogenmß π α 360 Grdmß Kugel

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11 Inhlt Seite Vorwort 5 1 3 4 5 6 7 8 9 10 Zhlenrten 6 10 Zhlenrten Grundrechenrten 7-11 Die vier Grundrechenrten Übungskiste C Übungskiste D Punktrechnung und Strichrechnungen Positive und negtive Zhlen

Mehr

Umfang und Fläche von Rechtecken

Umfang und Fläche von Rechtecken Umfang und Fläche von Rechtecken Herbert Paukert 1 Umfang und Fläche von Rechtecken Version 2.0 Herbert Paukert (1) Der Umfang von Rechtecken [02] Elemente der Geometrie [02] Fünf Übungsaufgaben [08] Das

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 5

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 5 RMG Hßfurt Grundwissen Mthemtik Jhrnsstufe 5 Reiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrnsstufe 5 Wissen und Können. Ntürliche und nze Zhlen Sicherer Umn mit den 4 Grundrechenrten, Ausnutzen

Mehr

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3

Aufgaben zur Vertiefung der Geometrie. WS 2005/06 5./6. Dezember 2005 Blatt 3 ufgben zur Vertiefung der Geometrie WS 2005/06 5./6. ezember 2005 ltt 3 1. Umkugel und Innenkugel eines Tetreders Leiten Sie die Formel für ds Volumen, die Oberfläche, den Rdius der umbeschriebenen und

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Training Abschlussprüfung Mathematik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Training Abschlussprüfung Mathematik. Das komplette Material finden Sie hier: Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Trining Abschlussprüfung Mthemtik Ds komplette Mteril finden Sie hier: School-Scout.de Bergedorfer Unterrichtsideen Mrco Bettner, Michel

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Zahlenmengen Menge der natürlichen Zahlen mit Null

Zahlenmengen Menge der natürlichen Zahlen mit Null Zahlenmenen N = {1,2,3,...} Mene der natürlichen Zahlen N o = {0,1,2,3,...} Mene der natürlichen Zahlen mit Null Z = {..., -3, -2, -1, 0, 1, 2, 3,...} Mene der anzen Zahlen Vielfachmenen eispiel: V(3)

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

2.6. Prüfungsaufgaben zu Kongruenzabbildungen

2.6. Prüfungsaufgaben zu Kongruenzabbildungen 2.6. Prüfungsufgben zu Kongruenzbbildungen Aufgbe 1: Kongruenzsätze Konstruiere die Dreiecke us den gegebenen Größen und ergänze die fehlenden Größen: Teil b c α β γ A ) 5 cm 7 cm 9 cm b) 5 cm 7 cm 30

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr