Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04."

Transkript

1 Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch :38:45 1

2 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei nach Berechnung der Steigung diese mit Hilfe der Punkt-Steigungs-Form bestimmt werden kann. f() 2

3 Differenzenquotient Man zeichne zunächst eine Sekante, die die Kurve im Punkte (,) und (+,+Δ) schneidet. Die Steigung beträgt dann f() Δ = f(+)-f() +Δ Δ + 3

4 Nun lassen wir gegen Null gehen. Differenzialrechnung Differenzenquotient f() +Δ Δ + 4

5 Differenzialquotient Gegeben sei ein Differenzenquotient Δ/. Der Differenzialquotient d/d ist der Grenzwert des Differenzenquotienten Δ/ für gegen Null. d d Δ f(+)-f() = f () Wenn dieser Grenzwert eistiert und für <0 und >0 gleich ist, so heißt die Funktion f differenzierbar an der Stelle. Die so erhaltene Funktion f nennt man Ableitung von f. 5 d Δ f(+)-f() = f ()

6 Differenzierbarkeit Die folgende Funktion g() ist an der Stelle nicht differenzierbar. g() 6

7 Differenzierbarkeit Wir versuchen uns mit einer Sekante von unten und mit einer von oben dem Punkte (,) zu nähern. g() +Δ Δ Δ -Δ - + 7

8 Differenzierbarkeit Nun lassen wir beide gegen Null gehen und erhalten zwei verschiedene Tangenten. g() +Δ Δ + 8

9 Beispiele für Differenzialquotienten: Differenzialrechnung Differenzialquotient f() = 2 f () = d d (+) = 2 9

10 Ableitungsregeln Die Ableitung einer konstanten Funktion f()=a ist Null. f() = a f () = d d f(+)-f() a-a = 0 10

11 Ableitungsregeln Ist eine Funktion f() Produkt einer Konstanten a mit einer Funktion g(), so ist die Ableitung f () Produkt derselben mit der Ableitung g (). f() = a g() f () = d d f(+)-f() a g(+)-a g() a (g(+)-g()) = a g () 11

12 Ableitungsregeln Ist eine Funktion f() Summe oder Differenz zweier Funktionen g() und h(), so ist auch die Ableitung f () Summe oder Differenz der Ableitungen g () und h (). f() = g() ± h() f () = d d f(+)-f() (g(+)±h(+))-(g()±h()) (g(+)-g())±(h(+)-h()) g(+)-g() ± lim h(+)-h() = g () ± h () 12

13 Produktregel Ist eine Funktion f() Produkt zweier Funktionen g() und h(), so ist die Ableitung gleich g ()h()+g()h (). f() = g() h() f () = d d f(+)-f() g(+) h(+)-g() h() =0* g(+) h(+)-g() h(+)+g() h(+)-g() h() ( g(+)-g() h(+) + g() h(+)-h() ) = g () h()+g() h () ingefügt. 13

14 Ableitungsregeln Ist eine Funktion f() Potenz n, so ist die Ableitung f () gleich n n-1. f() = n f () = d d = n n-1 1 (n + n 1 f(+)-f() () n-1 + n 2 (+) n - n () n n - n ) (() n n-1 + n 1 () n n-1 ) 2 14

15 Ableitungsregeln Die Ableitung einer Potenz n lässt sich auch mit Hilfe der Produktregel herleiten: f() = n f () = d d = (n ) = ( n-1 ) = ( n-1 ) + n-1 = (n-1) n-2 + n-1 1 = n n-1 15

16 Ableitungsregeln Ist eine Funktion f() das Reziproke 1/g() einer Funktion g() so ist die Ableitung gleich -g ()/g 2 (). f() = 1 g() f () = d d f(+)-f() ( ) g(+) g() g()-g(+) 1 g(+) g() - g(+)-g() 1 g(+) g() = - g () g 2 () 16

17 Quotientenregel Ist eine Funktion f() Quotient zweier Funktionen g() und h(), so ist die Ableitung gleich g ()h()-g()h ()/h 2 (). f() = g() h() = g() 1 h() f () = g () 1 h() - g() h () h 2 () = g () h()-g() h () h 2 () 17

18 Kettenregel Besteht eine Funktion f() aus der Hintereinanderausführung zweier Funktionen g(h()) und h(), so ist die Ableitung gleich h ()g (h()). f() = g(h()) Sei z = h(), dann ist Δz = h(+)-h() f () = d d g(z+δz)-g(z) g(z+δz)-g(z) Δz Δz * g(z+δz)-g(z) h(+)-h() Δz = g (h()) h () *: Erweiterung mit Δz 18

19 Beispiele für Ableitungen f() = sin Hier muss die Produktregel angewandt werden: f() = g() h() g() = g () = 1 h() = sin h () = cos f () = g () h() + g() h () = 1 sin + cos 19

20 Höhere Ableitungen Ist die Ableitung einer Funktion differenzierbar, so kann man weitere höhere Ableitungen bilden. Während die erste Ableitung die Steigung einer Funktion angibt, beschreibt die zweite die Krümmung. Wenn die Steigung zunimmt, spricht man von positiver wenn sie abnimmt von negativer Krümmung. f() f () <0 <0 >0 >0 =0 =0 <0 >0 =0 =0 =0 =0 f () <0 >0 <0 >0 <0 >0 =0 =0 =0 =0 =0 =0 (1) (2) (3) (3) (4) (4) (1) relatives Maimum, (2) relatives Minimum, (3) Wendepunkt, (4) Sattelpunkt 20

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Ableitung einer Betragsfunktion Differenzierbarkeit

Ableitung einer Betragsfunktion Differenzierbarkeit Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Differenzialrechnung Einführung 1

Differenzialrechnung Einführung 1 0.0.06 Änderungstendenz einer Funktion Differenzialrechnung Einführung Eines der wichtigsten Merkmale einer Funktion ist die Änderungstendenz, womit angegeben wird, wie stark die Funktionswerte f() zu-

Mehr

V.1 Konvergenz, Grenzwert und Häufungspunkte

V.1 Konvergenz, Grenzwert und Häufungspunkte V.1 Konvergenz, Grenzwert und Häufungspunkte S. 108 110 A. Bereits bekannt: Folge Extrem wichtig: Grenzwert bzw. Konvergenz: a n a oder lim n a n = a : ε R, ε > 0 n 0 N : a n a < ε n n 0 Begriffe: Fast

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 12 1. Dezember 2009 Kapitel 3. Differenzialrechnung einer Variablen (Fortsetzung) Satz 19. Es seien M und N zwei nichtleere Teilmengen von R,

Mehr

Lehrplanthemen Mathematik Einführungsphase (Klassenstufe 10)

Lehrplanthemen Mathematik Einführungsphase (Klassenstufe 10) Lehrplanthemen Mathematik Einführungsphase (Klassenstufe 0) I. Bereich: Differentialrechnung. Mittlere Änderungsrate Differenzenquotient einer Funktion, Sekantensteigung Um die Steilheit eines Funktionsgraphen

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

Differentialrechnung

Differentialrechnung Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Klasse11 Übungsblatt1 zu: Geraden, Steigung von Funktionsgraphen,Tangenten,Normalen

Klasse11 Übungsblatt1 zu: Geraden, Steigung von Funktionsgraphen,Tangenten,Normalen Klasse Übungsblatt zu: Geraden, Steigung von Funktionsgraphen,Tangenten,Normalen Aufgabe: Gegeben sind die Punkte A und B und die Zahl m a) Bestimme die Gleichung der Geraden g durch A und B b) Bestimme

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

I. Verfahren mit gebrochen rationalen Funktionen:

I. Verfahren mit gebrochen rationalen Funktionen: I. Verfahren mit gebrochen rationalen Funktionen: 1. Definitionslücken bestimmen: Nenner wird gleich 0 gesetzt! 2. Prüfung ob eine hebbare Definitionslücke vorliegt: Eine hebbare Definitionslücke liegt

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Mathematik I. Vorlesung 27. Differenzierbare Funktionen. In diesem Abschnitt betrachten wir Funktionen f :D K, wobei D K eine offene Menge in K ist.

Mathematik I. Vorlesung 27. Differenzierbare Funktionen. In diesem Abschnitt betrachten wir Funktionen f :D K, wobei D K eine offene Menge in K ist. Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 27 Differenzierbare Funktionen In diesem Abschnitt betrachten wir Funktionen, wobei D K eine offene Menge in K ist. Definition 27.1. Sei

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion

Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Vorkurs Mathematik Übungen zu Ableitungen und Kurvendiskussion Als bekannt setzen wir die folgenden 5 Ableitungen und 3 Regeln voraus: cos) = sin) n ) = n n für alle n 0 e ) =e sin) = cos) ln) = f) g))

Mehr

Grenzwerte, Stetigkeit, Differenziation

Grenzwerte, Stetigkeit, Differenziation 0 Grenzwerte, Stetigkeit, Differenziation 0 Grenzwerte von Funktionen In 33Kapitel 9 wurden Folgen und deren Grenzwerte eingeführt Mittels der Konvergenz von Folgen wird der Begriff der Konvergenz für

Mehr

differenzierbare Funktionen

differenzierbare Funktionen Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Kapitel 7 Differentialrechnung

Kapitel 7 Differentialrechnung Kapitel 7 Differentialrechnung 245 Kapitel 7.1 Grundbegriffe 246 Der Differentialquotient und das Integral sind die Kernbegriffe der Analysis. Ableitung und Integralbegriff werden durch gewisse Grenzwerte

Mehr

Vermischte Aufgaben zu den Ableitungen

Vermischte Aufgaben zu den Ableitungen Vermischte Aufgaben zu den Ableitungen Seite 01 Kapitel mit 322 Aufgaben Seite Übersicht der Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (28 Aufgaben) 06 Lösungen zum Aufgabenblatt 1 07 Aufgabenblatt

Mehr

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang

Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang . Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm

Mehr

Mathematische Grundlagen für das Physik-Praktikum:

Mathematische Grundlagen für das Physik-Praktikum: Mathematische Grundlagen für das Physik-Praktikum: Grundwissen: Bruchrechnung Potenzen Logarithmen Funktionen und ihre Darstellungen: Lineare Funktionen Proportionen Exponentialfunktion Potenzfunktionen

Mehr

Kettenregel, Substitution und Methode der Trennung der Variablen

Kettenregel, Substitution und Methode der Trennung der Variablen Kettenregel, Substitution und Methode der Trennung der Variablen Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2015 11. April

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung Inhaltsverzeichnis Seite : Matrizen Seite : Funktionen Seite 5: Integralrechnung Seite 69: Binomialverteilung Seite 86: Statistik/Normalverteilung Seite 04: Vektoren Seite 40: Wachstum Lineare Algebra

Mehr

Die Regeln von de l Hospital

Die Regeln von de l Hospital Die Regeln von de l Hospital Von Florian Modler Guillaume Francois Antoine de l Hospital war ein französischer Mathematiker und Aristokrat. Er wurde 66 geboren und verstarb 704 im Alter von 43 Jahren.

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Differenzieren. Frage: Wie ändern sich Funktionswerte. ẋ t = v t, v t = a t, m a t = F t

Differenzieren. Frage: Wie ändern sich Funktionswerte. ẋ t = v t, v t = a t, m a t = F t Differenzieren Als Isaac Newton nachdachte, wie er die Bewegung von Objekten beschreiben könnte, um daraus physikalische Gesetzmäßigkeiten abzuleiten (seine drei Kraftgesetze), fehlten ihm dazu die mathematischen

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Didaktik der Mathematik der Sekundarstufe II

Didaktik der Mathematik der Sekundarstufe II Didaktik der Mathematik der Sekundarstufe II 7. Ableitungsregeln H. Rodner, G. Neumann Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1

1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1 Neue Funktionen aus alten Funktionen: Produkt, Quotient, Verkettung Sind die Funktionen u mit u () = und v mit v () = cos () gegeben, so erhält man die Verkettung u v () = u v () dieser beiden Funktionen,

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

5. Differentialrechnung

5. Differentialrechnung Prof. Dr. Wolfgang Konen Mathematik, WS6 7..6 5. Differentialrechnung 5.. Wozu Informatikerinnen Differentialrechnung brauchen In vielen technischen Problemen interessiert man sich für die momentane Steigung

Mehr

Grenzkosten. = x. v v

Grenzkosten. = x. v v 1. Was sind Grenzkosten? Was Grenzkosten sind, sollte man aus der bloßen Bezeichnung ableiten können: Eine Grenze wird überschritten, und die Kosten ändern sich. Kosten erändern sich, weil sich eine Größe

Mehr

28. Lineare Approximation und Differentiale

28. Lineare Approximation und Differentiale 28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik bla Differenzialrechnung Ort - Zeit - Geschwindigkeit E:\1_GYMER\_Unterricht\AUFGABEN\0_3 Differenzialrechnung\00_differenzialrechnung.docx 1 Das Weg-Zeit-Diagramm und die Geschwindigkeit Ordne

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $ Mathematik für Ingenieure I, WS 008/009 Dienstag 0. $Id: stetig.te,v.5 009/0/0 7:3:38 hk Ep $ $Id: diffb.te,v. 009/0/0 7:50: hk Ep hk $ III. Analysis 3 Stetige Funktionen 3.4 Umkehrfunktionen Zum Abschluss

Mehr

Vorkurs Mathematik. Christoph Hindermann. Funktionen, Ableitungen und Optimierung

Vorkurs Mathematik. Christoph Hindermann. Funktionen, Ableitungen und Optimierung Kapitel 3 Funktionen, Ableitungen und Optimierung Christoph Hindermann Vorkurs Mathematik 1 Vorkurs Mathematik 2 3.1 Funktionen Motivation Funktionen reeller Veränderlicher gehören zu den wichtigsten Untersuchungs-

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik

Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik Grundlagen der Differentialrechnung: Anwendungsbeispiele aus Physik und Technik István Pál Email: inpal@gmx.de 15. Okt. 2014 Gliederung Bekannte Grundbegriffe Geschichte der Differentialrechnung Anwendungsgebiete

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.)

x 1 keinen rechtsseitigen Grenzwert x 0+ besitzen. (Analog existiert der linksseitige Grenzwert nicht.) Differentialrechnung 1 Grenzwerte Gegeben sei ein Intervall I R, a I {, } und f : I\{a} R. Die Funktion f kann sehr wohl auch an der Stelle x = a erklärt sein, wir wollen aber nur wissen wie sich die Funktion

Mehr

Mathematik Lösung KA Nr Seite 1

Mathematik Lösung KA Nr Seite 1 9.11.17 Seite 1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der TR und die Formalsammlung verwendet werden dürfen.) Es ist

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

fi fi fi fi fi fi fi fi

fi fi fi fi fi fi fi fi LEARN ATTACK MATHEMATIK TOPTHEMEN OBERSTUFE DER SICHERE WEG ZUM ABITUR Dudenverlag Berlin Duden Bibliograsche Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese

Mehr

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4 2. Übungsaufgabe zur Untersuchung ökonomischer Funktionen Ein Unternehmen kann sein Produkt zum Preis von 12 GE / ME verkaufen. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben:

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 5. Funktionen 5.1. Begriffe Funktionen sind eindeutige oder eineindeutige Relationen 1. Eindeutige Relationen ordnen jedem -Wert genau einen -Wert zu. Eineindeutige Relationen ordnen jedem -Wert genau

Mehr

Funktionen mehrerer Variablen

Funktionen mehrerer Variablen Funktionen mehrerer Variablen Partielle Ableitungen 1-E Die Grundfragen Um Differentialrechnung im Mehrdimensionalen zu formulieren, müssen wir folgende Fragen beantworten: 1-1 Wie wird die Konstruktion

Mehr

Drei Aspekte des Differenzierbarkeitsbegriffs

Drei Aspekte des Differenzierbarkeitsbegriffs 1. Dezember 2010 Gliederung 1 Rahmenplan und zu beobachtende Kriterien 2 3 Grenzwertproblematik Modellierungsbeispiel Ausblick 4 Rahmenplan Fundamentalbereich Diffenzialrechnung (2. Halbjahr Einführungsphase)

Mehr

L Hospitial - Lösungen der Aufgaben

L Hospitial - Lösungen der Aufgaben A ln - (Zähler und Nenner müssen gegen gehen, wenn gegen geht): Für geht der Zähler gegen ln Für geht der Nenner gegen - ( ln ) ' ( )' - L'Hospital darf angewendet werden Zähler und Nenner differenzieren

Mehr

Aufgabe 2 Berechne zur gegebenen Funktion die erste und zweite Ableitung. Wie groß ist die Steigung in den Punkten x = { 1,0,50}?

Aufgabe 2 Berechne zur gegebenen Funktion die erste und zweite Ableitung. Wie groß ist die Steigung in den Punkten x = { 1,0,50}? Testarbeit Mathematik Klasse Name Aufgabe Skizziere die Ableitung! Wie groß ist die Steigung ungefähr bei x =,0,,, { }? Kennzeichne lokale Minima, Maxima und den Wendepunkt. Was passiert beim Wendepunkt?

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Einführung in die Differentialrechnung I (MD)

Einführung in die Differentialrechnung I (MD) Betrachte den Graphen von f(x) als Profilkurve eines Berges und laufe ihn von "- nach +" ab. An jedem Punkt des Graphen kannst du die Steigung beschreiben und mit dem Anstieg in der Umgebung vergleichen.

Mehr

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:

Mehr

Kapitel 6 Folgen und Stetigkeit

Kapitel 6 Folgen und Stetigkeit Kapitel 6 Folgen und Stetigkeit Mathematischer Vorkurs TU Dortmund Seite 76 / 226 Definition 6. (Zahlenfolgen) Eine Zahlenfolge (oder kurz: Folge) ist eine Funktion f : 0!. Statt f(n) schreiben wir x n

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Summen, Exponentialfunktion, Ableitung Prof. Dr. Achim Klenke http://www.aklenke.de 2. Vorlesung: 04.11.2011 1/46 Inhalt 1 Summen und Produkte Summenzeichen Produktzeichen

Mehr

2 Differenzialrechnung für Funktionen einer Variablen

2 Differenzialrechnung für Funktionen einer Variablen 2 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr