Customization (Zuschneiden)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Customization (Zuschneiden)"

Transkript

1 Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum Möglicher Ausweg: Trennung von Algorithmus und Repräsentation 317

2 Beispiel: DAG-Erkennung Vgl. Folie 73ff. (dort aber Test auf Ausgangsgrad)! Function isdag(g =(V, E)) // Adjazenzarray! dropped:= 0 compute array indegree of indegrees of all nodes // Zeit O(m)! droppable={v 2 V : indegree[v]=0} : Stack while droppable 6= /0 do invariant G is a DAG iff the input graph is a DAG v:= droppable.pop dropped++ foreach edge (v,w) 2 E do indegree[w] if indegree[w]=0 then droppable.push(w) return V = dropped Laufzeit: O(m + n) (auch ohne dynamische Graphdatenstruktur!) 318

3 Adjazenz-Matrix A 2 {0,1} n n with A(i,j)=[(i,j) 2 E] + platzeffizient für sehr dichte Graphen platzineffizient sonst. Übung: was bedeutet sehr dicht hier? + einfache Kantenanfragen langsame Navigation ++ verbindet lineare Algebra und Graphentheorie Beispiel: C = A k. C ij =# k-kanten-pfade von i nach j Wichtige Beschleunigungstechniken: I O(log k) Matrixmult. für Potenzberechnung I Matrixmultiplikation in subkubischer Zeit, z. B., Strassens Algorithmus 4 1 C A 319

4 Pfade zählen mittels LA Adjanzenzmatrix: A 2 {0,1} n n mit A(i,j)=[(i,j) 2 E] Sei C:= A k. Behauptung: C ij =# k-kanten-pfade von i nach j. Beweis: IA (k = 1) C = A 1 = A stimmt nach Definition von A. Schluss k k + 1: C ij =(A k A) ij = ÂA k i`a`j ` A k i` =#k-kanten-pfade von i nach ` (nach IV). A k i`a`j =#k + 1-Kanten-Pfade von i nach j mit (`,j) als letzter Kante. Jede mögliche letzte Kante wird genau einmal gezählt. Übung: zähle Pfade der Länge apple k C A 320

5 Beispiel, wo Graphentheorie bei LA hilft Problemstellung: löse Bx = c Sei G =(1..n,E = {{i,j} : B ij 6= 0}) Nehmen wir an, G habe zwei Zusammenhangskomponenten ) tausche Zeilen und Spalten derart, dass B1 0 x1 c1 = 0 B 2 x 2 c 2 zu lösen bleibt. Übung: Was passiert, wenn (1..n,E = {(i,j):b ij 6= 0}) ein DAG ist? 321

6 Implizite Repräsentation Kompakte Repräsentation möglicherweise sehr dichter Graphen Implementiere Algorithmen direkt mittels dieser Repräsentation Beispiel: Intervall-Graphen Knoten: Intervalle [a,b] R Kanten: zwischen überlappenden Intervallen 322

7 Zusammenhangstest für Intervallgraphen V = {[a 1,b 1 ],...,[a n,b n ]} E = {{[a i,b i ],[a j,b j ]} :[a i,b i ] \ [a j,b j ] 6= /0} Idee: durchlaufe Intervalle von links nach rechts. Die Anzahl überlappender Intervalle darf nie auf null sinken. Annahme: Startpunkte in Sortierung vor Endpunkten! Function isconnected(l : SortedListOfIntervalEndPoints) : {0, 1} remove first element of L; overlap := 1 foreach p 2 L do if overlap= 0 return false if p is a start point then overlap++ else overlap // end point return true O(n log n) Algorithmus für bis zu O n 2 Kanten! Übung: Zusammenhangskomponenten finden 323

8 Beispiel Function isconnected(l : SortedListOfIntervalEndPoints) : {0, 1} remove first element of L; overlap := 1 foreach p 2 L do if overlap= 0 return false if p is a start point then overlap++ else overlap // end point return true 324

9 Graphrepräsentation: Zusammenfassung I Welche Operationen werden gebraucht? I Wie oft? I Adjazenzarrays gut für statische Graphen I Pointer flexibler, aber auch teurer I Matrizen eher konzeptionell interessant 325

10 Kap. 9: Graphtraversierung Ausgangspunkt oder Baustein fast jedes nichttrivialen Graphenalgorithmus 326

11 Graphtraversierung als Kantenklassifizierung forward s tree backward cross 327

12 Breitensuche Baue Baum von Startknoten s, der alle von s erreichbaren Knoten mit möglichst kurzen Pfaden erreicht. Berechne Abstände: s b c d e f g tree backward cross forward

13 Breitensuche I Einfachste Form des Kürzeste-Wege-Problems I Umgebung eines Knotens definieren (ggf. begrenzte Suchtiefe) I Einfache, effiziente Graphtraversierung (auch wenn Reihenfolge egal) s b c d e f g tree backward cross forward

14 Breitensuche Algorithmenidee: Baum Schicht für Schicht aufbauen s b c d e f g tree backward cross forward

15 Function bfs(s) : Q:= hsi // aktuelle Schicht while Q 6= hi do exploriere Knoten in Q merke dir Knoten der nächsten Schicht in Q 0 Q:= Q 0 s b c d e f g tree backward cross forward

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 4.06.07 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik Kap.

Mehr

8 Graphrepräsentation

8 Graphrepräsentation Sanders / van Stee: Algorithmentechnik November, 7 1 8 Graphrepräsentation 1736 fragt L. Euler die folgende touristische Frage: Straßen- oder Computernetzwerke Zugverbindungen (Raum und Zeit) Soziale Netzwerke

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 06.06.06 Sortierte Folgen: eierlegende Wollmilchsau Suchbäume: binäre und (a, b)-bäume (a, b)-bäume: remove, insert etwas kompliziert (balancieren), aber in logarithmischer Zeit möglich Heute:

Mehr

Exkurs: Graphtraversierung

Exkurs: Graphtraversierung Sanders: Informatik III November 28, 2006 1 Exkurs: Graphtraversierung Begriffe Graphrepräsentation Erreichbarkeit mittels Tiefensuche Kreise Suchen Sanders: Informatik III November 28, 2006 2 Gerichtete

Mehr

8. Übung zu Algorithmen I 15. Juni 2016

8. Übung zu Algorithmen I 15. Juni 2016 8. Übung zu Algorithmen I 15. Juni 2016 Lisa Kohl Lisa.Kohl@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag, Christian Staudt und Christoph Striecks) Nachtrag: Quicksort, alternative

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig

Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig Janosch Maier 3. August 2011 Inhaltsverzeichnis 1 Sortieren 3 1.1 Externes Sortieren..........................

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

1. Übung Algorithmen I

1. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Problemstellung Ungewichtete Graphen Distanzgraphen Gewichtete

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt.

Wintersemester 2004/ Januar Aus der Vorlesung sind Datenstrukturen zur Repräsentation von Wäldern disjunkter Mengen bekannt. Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

Programmierkurs Python

Programmierkurs Python Programmierkurs Python Stefan Thater Michaela Regneri 2010-0-29 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen für Graphen Tiefen- und Breitensuche Nächste Woche: mehr Algorithmen 2 Was

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri FR.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 011 Heute Ein wenig Graph-Theorie (in aller Kürze) Datenstrukturen

Mehr

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j,

Wenn wir zudem a ii = 1 für 1 i n setzen, dann gilt für A k (boolesches Produkt, A 0 = I) 0 falls es im Graphen keinen Pfad von v i nach v j, 6.2 Boolesche Matrixmultiplikation und Transitive Hülle Wir ersetzen nun im vorhergehenden Abschnitt die Distanzmatrix durch die (boolesche) Adjazenzmatrix und (min, +) durch (, ), d.h.: n C = A B; c ij

Mehr

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS

Kap. 5: Graphen. Carsten Gutwenger Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund. 17. VO DAP2 SS Kap. 5: Graphen Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 17. VO DAP2 SS 2009 23. Juni 2008 1 Motivation Warum soll ich heute hier bleiben? Graphen sind wichtig und

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I

Karlsruher Institut für Technologie Institut für Theoretische Informatik. Klausur Algorithmen I Name: Vorname: Matrikelnummer: Klausur-ID: svorschlag Karlsruher Institut für Technologie Institut für Theoretische Informatik Jun.-Prof. D. Hofheinz, Jun.-Prof. H. Meyerhenke 8.09.05 Klausur Algorithmen

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen

Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen Kap. 6.3: Traversieren von Graphen Kap. 6.4: Elementare Graphalgorithmen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 19. VO DAP2 SS 2008 19. Juni 2008 1

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 07.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Weiterführendes Programmieren Lineare Widerstandsnetzwerke II Aufgabenblatt 6. 1 Zusammenfassung der elektrotechnischen Begriffe

Weiterführendes Programmieren Lineare Widerstandsnetzwerke II Aufgabenblatt 6. 1 Zusammenfassung der elektrotechnischen Begriffe Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dr. Elmar Zander Wintersemester 2013/14 14. November 2014 Weiterführendes Programmieren Lineare

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

Graphalgorithmen I. Simon Regnet. May 16, Universität Erlangen. Simon Regnet (Universität Erlangen) Graphalgorithmen I May 16, / 56

Graphalgorithmen I. Simon Regnet. May 16, Universität Erlangen. Simon Regnet (Universität Erlangen) Graphalgorithmen I May 16, / 56 Graphalgorithmen I Simon Regnet Universität Erlangen May 16, 2008 Simon Regnet (Universität Erlangen) Graphalgorithmen I May 16, 2008 1 / 56 Inhalt 1 Motivation 2 Terminologie 3 Datenstrukturen 4 Suche

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.

8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. 8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Quicksort ist ein Divide-and-Conquer-Verfahren.

Quicksort ist ein Divide-and-Conquer-Verfahren. . Quicksort Wie bei vielen anderen Sortierverfahren (Bubblesort, Mergesort, usw.) ist auch bei Quicksort die Aufgabe, die Elemente eines Array a[..n] zu sortieren. Quicksort ist ein Divide-and-Conquer-Verfahren.

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst.

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen (Folie 38, Seite 23 im Skript) Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Digraphen, DAGs und Wurzelbäume

Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 1 Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 2 Eingangs- und Ausgangsgrad Bei einer gerichteten Kante e = (u,v) E heißt u Startknoten von

Mehr

Suchbäume balancieren

Suchbäume balancieren Suchbäume balancieren Perfekte Balance: schwer aufrechtzuerhalten Flexible Höhe O(log n): balancierte binäre Suchbäume. Nicht hier (Variantenzoo). Flexibler Knotengrad: (a,b)-bäume. Grad zwischen a und

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 16: Erste Algorithmen in Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

11. Übung Algorithmen I

11. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 45 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Distanzen zwischen allen Knotenpaaren (APD)! Viele Anwendungen:! Navis! Netzwerkrouting!...

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Graphdurchläufe Vorlesender: Martin Aumüller (nach Folien von Prof. Martin Dietzfelbinger) April/Mai 0 FG KTuEA, TU Ilmenau Effiziente Algorithmen Sommersemester 0 Einleitung Kapitel

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

1 Stückweise konstante Funktionen (ca =10 Punkte)

1 Stückweise konstante Funktionen (ca =10 Punkte) Einführung in die wissenschaftliche Programmierung Klausur Seite 1/5 Name, Vorname, Unterschrift: Matrikelnummer: 1 Stückweise konstante Funktionen (ca. 4+2+4=10 Punkte) In dieser Aufgabe soll eine Klasse

Mehr

7. Übung zu Algorithmen I 1. Juni 2016

7. Übung zu Algorithmen I 1. Juni 2016 7. Übung zu Algorithmen I 1. Juni 2016 Lukas Barth lukas.barth@kit.edu (mit Folien von Lisa Kohl) Roadmap Ganzzahliges Sortieren mit reellen Zahlen Schnellere Priority Queues Bucket Queue Radix Heap Organisatorisches

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL 7.06.016 Bellman-Ford-Algorithmus (Brute-Force-Suche) Varianten des Kürzeste-Wege-Problems (azyklische Graphen) Ausblick: Routenplanung in Straÿennetzwerken Motivation Minimale Spannbäume

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph

23. Kürzeste Wege. Flussüberquerung (Missionare und Kannibalen) Das ganze Problem als Graph. Formulierung als Graph Fluüberquerung (Miionare und Kannibalen). Kürzete Wege Problem: Drei Kannibalen und drei Miionare tehen an einem Ufer eine Flue. Ein dort bereittehende Boot fat maimal zwei Peronen. Zu keiner Zeit dürfen

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Spezielle Sortierverfahren Autor: Sven Schuierer

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Spezielle Sortierverfahren Autor: Sven Schuierer Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Spezielle Sortierverfahren Autor: Sven Schuierer Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg 1

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin

Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin Departement Mathematik und Informatik Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin 12. April 2017 Union-Find Datenstruktur Graphen I Robert E. Tarjan Algorithmen und Datenstrukturen,

Mehr

1.8 Shift-And-Algorithmus

1.8 Shift-And-Algorithmus .8 Shift-And-Algorithmus nutzt durch Bitoperationen mögliche Parallelisierung Theoretischer Hintergrund: Nichtdeterministischer endlicher Automat Laufzeit: Θ(n), falls die Länge des Suchwortes nicht größer

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Kürzeste und Schnellste Wege

Kürzeste und Schnellste Wege Kürzeste und Schnellste Wege Wie funktionieren Navis? André Nusser (Folien inspiriert von Kurt Mehlhorn) Struktur Straßennetzwerke Naiver Algorithmus Dijkstras Algorithmus Transitknoten Nachbemerkungen

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

12.4 Traveling Salesman Problem

12.4 Traveling Salesman Problem 96 KOMBINATORISCHE SUCHE.4 Traveling Salesman Problem Definition.3(TSP, Problem des Handlungsreisenden): Wir betrachten einen gerichteten, gewichteten Graphen G = (V,E) mit K : V R. K({u,v}) sind die Kosten

Mehr