Einführung in die Induktive Statistik: Varianzanalyse

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Induktive Statistik: Varianzanalyse"

Transkript

1 Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012

2 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test Vergleich der Erwartungswerte in mehreren Gruppen für kategoriale oder gruppierte Merkmale durch χ 2 -Homogenitätstest Ziel der Varianzanalyse: Vergleich der Erwartungswerte eines normalverteilten Merkmals in mehreren Gruppen. Getestet wird, ob die Mittelwerte in den einzelnen Gruppen signikant voneinander abweichen. Wird oft bei Experimenten eingesetzt (Medizin, Landwirtschaft) Es wird ein Einussfaktor identiziert, dessen Einuss auf verschiedenen Faktorstufen untersucht werden soll.

3 Varianzanalyse Einfaktorielle Varianzanalyse Zweifaktorielle Varianzanalyse mit festen Eekten

4 Einfaktorielle Varianzanalyse Einführung Wird auch als Einfachklassikation bezeichnet. Lediglich ein Faktor wird betrachtet. Gemessen wird der Einuss des Faktors auf die metrische Zielgröÿe. Untersucht wird, ob die unterschiedlichen Stufen des Faktors statistisch signikante unterschiedliche Wirkungen auf das interessierende Merkmal haben. Zusätzlich können die Eekte der Faktorstufen quantiziert werden.

5 Einfaktorielle Varianzanalyse Einführung Zielgröÿe Stufe 1 y 11 y y 1n 1 Stufe 2 y 21 y y 2n 2 Faktor Stufe 3 y 31 y y 3n 3... Stufe I y I 1 y I 2... y InI n 1,..., n I Stichprobenumfänge in jeder Faktorstufe I Anzahl der Faktorstufen Stichprobenumfänge müssen in den einzelnen Faktorstufen nicht identisch sein Man unterscheidet zwei Ansätze, um im varianzanalytischen Modell die Zielvariable in Abhängigkeit der auf Stufen erfassten Einussgröÿe zu beschreiben.

6 Einfaktorielle Varianzanalyse Modelformulierung (I) Erster Modellansatz Annahme: Die jeweiligen Faktorstufen bedingen eine gewisse durchschnittliche Ausprägung der Zielgröÿe. Y ij = µ i + ε ij, i = 1,...I, j = 1,..., n i Wegen Normalverteilungsannahme für Y gilt zudem auch: ε ij N(0, σ 2 ). Wegen Zufallsauswahl sind Y 11, Y 12,..., Y InI bzw. ε 11,..., ε InI voneinander unabhängig. Hypothesenpaar: H 0 : µ 1 = µ 2 =... = µ I gegen H 1 : µ i µ j für mindestens ein Paar (i, j).

7 Einfaktorielle Varianzanalyse Modellformulierung (II) Zweiter Modellansatz Völlig äquivalent zu Modell (I) Versucht der Idee Rechnung zu tragen, dass unterschiedliche Faktorstufen unterschiedliche Eekte haben können. Modell in Eektdarstellung: Y ij = µ + α i + ɛ ij i = 1,..., I, j = 1,..., n i. µ grand mean oder globaler Erwarungswert, d.h. µ = 1 n I i=1 n iµ i α i Eekt der i-ten Faktorstufe mit α i = µ i µ

8 Einfaktorielle Varianzanalyse Modellformulierung (II) Es gilt n i α i = 0 i=1 Auÿerdem wird wieder angenommen, dass ε 11,..., ε InI normalverteilt sind mit ε ij N(0, σ 2 ) unabhängig und Hypothesenpaar: H 0 : α 1 = α 2 =... = α I = 0 gegen H 1 : mindestens zwei α i 0.

9 Einfaktorielle Varianzanalyse Anwendung Grundidee ist ein varianzanalytisches experimentelles Design, bei dem die Beobachtungseinheiten verschiedenen Stufen des Einussfaktors ausgesetzt werden. Varianzanalyse lässt sich aber auch bei Beobachtungsstudien anwenden, bei denen sowohl das interessierende Merkmal als auch der Einussfaktor gleichzeitig beobachtet werden.

10 Einfaktorielle Varianzanalyse Schätzen Fragestellung: Wie lassen sich µ, µ i und α i schätzen? Als Schätzer bieten sich wieder die entsprechenden Stichprobenmittelwerte an: ˆµ = 1 n n i Y ij = Ȳ.. ˆµ i = 1 n i i=1 j=1 n i j=1 Y ij = Ȳ i. ˆα i = Ȳ i. Ȳ.. Damit ergeben sich die Residuen als: ˆε ij = y ij (ˆµ + ˆα i ) = y ij (ȳ.. + ȳ i. ȳ.. ) = y ij ȳ i.

11 Einfaktorielle Varianzanalyse Testen Testen Zur Erinnerung: Im Zwei-Stichprobenfall verwendet man unter der Annahme identischer Varianzen für X und Y die Prüfgröÿe T = X Ȳ S 2 ( 1n + 1m ), mit S 2 = ((n 1)S 2 + X (m 1)S 2 Y )/(n + m + 2). misst die Variabilität innerhalb der Gruppen. X Ȳ misst den Unterschied und damit die Variabilität zwischen den Gruppen. S 2 Diese Idee lässt sich auf den Mehrgruppenvergleich der Varianzanalyse übetragen.

12 Einfaktorielle Varianzanalyse Testen Zur Messung der Variabilität zwischen den Gruppen verwendet man n i SQE = (Ȳ i. Ȳ.. ) 2 = n i (Ȳ i. Ȳ.. ) 2. i=1 j=1 i=1 Die Variabilität innerhalb der Gruppen misst man durch n i SQR = (Y ij Ȳ i. ) 2 = (n i 1)S 2 i. i=1 j=1 i=1 Teilt man beide Gröÿen noch durch ihre jeweiligen Freiheitsgrade I 1 und n I, so erhält man die Prüfgröÿe I ni SQE /(I 1) F = SQR/(n I ) = (Ȳ i=1 j=1 i. Ȳ.. ) 2 /(I 1) I ni (Y i=1 j=1 ij Ȳ i. ) 2 /(n I ).

13 Einfaktorielle Varianzanalyse Testen Die Prüfgröÿe besitzt wie bei der Regressionsanalyse unter H 0 eine F-Verteilung mit I 1 und n I Freiheitsgraden. H 0 wird verworfen, wenn die Variabilität zwischen den Gruppen wesentlich gröÿer ist als innerhalb der Gruppen, d.h. wenn gilt: F > F 1 α(i 1, n I )

14 Einfaktorielle Varianzanalyse Testen Modellannahmen: Varianzen sind in den jeweiligen Grundgesamtheiten gleich (Varianzhomogenität) Unabhängigkeit der Beobachtungen (problematisch bei Messwiederholungen) Y ist normalverteilt Alle Annahmen sollten stets kritisch hinterfragt werden. Bei wiederholten Paarvergleichen kann es zudem zur multiplen Testproblematik kommen.

15 Zweifaktorielle Varianzanalyse mit festen Eekten Einführung Fragestellung: Haben zwei Faktoren gemeinsam einen anderen Einuss auf die Zielvariable als jeder Faktor für sich? Modell berücksichtigt nicht nur die einzelnen Eekte der Faktoren, sondern auch die Möglichkeit der gegenseitigen Beeinussung. (Wechselwirkung der Faktoren) Liegen keine Wechselwirkungen vor, wird geprüft, ob die beiden Faktoren isoliert betrachtet eine Auswirkung auf die Zielgröÿe haben. (Haupteekte) Eine Interpretation der Haupteekte allein ist nur sinnvoll, wenn keine signikanten Wechselwirkungen vorliegen. Beispiele: Einuss der Unterrichtsmethode und des Leistungsstands der Studenten auf den Erfolg in der Klausur, Einuss der Bodenbeschaenheit und des Düngemittels auf den Ertrag,...

16 Zweifaktorielle Varianzanalyse mit festen Eekten Einführung Faktor A 1 y 111 y 112. mit Stufen Faktor B mit Stufen 1 j J y 11K. i y ij 1 y ij 2... I y ijk

17 Zweifaktorielle Varianzanalyse mit festen Eekten Einführung Modellannahmen: Varianzen sind für die einzelnen Faktorkombinationen gleich (Varianzhomogenität) Unabhängigkeit der Beobachtungen (problematisch bei Messwiederholungen) Y ist normalverteilt in den einzelnen Faktorkombinationen

18 Zweifaktorielle Varianzanalyse mit festen Eekten Modelformulierung (I) Erster Modellansatz Annahme: Durch die jeweiligen Faktorkombinationen wird eine gewisse durchschnittliche Ausprägung der Zielgröÿe bedingt. Y ijk = µ ij + ε ijk, ε ijk N(0, σ 2 ), i = 1,...I, j = 1,..., J, k = 1,..., K µ ij = E(Y ijk ) in der Faktorkombination (i, j). Nachteil des Modells: Keine dierenzierte Analyse hinsichtlich Wechselwirkungen und Haupteekten möglich.

19 Zweifaktorielle Varianzanalyse mit festen Eekten Modelformulierung (II) Zweiter Modellansatz µ ij wird aufgespalten in allgemeinen Mittelwert µ und die durch die Faktoren und ihrer gegenseitigen Beeinussung bewirkten Abweichung davon: Es gilt: Y ijk = µ + α i + β j + (αβ) ij + ɛ ijk ε ijk N(0, σ 2 ) i = 1,..., I, j = 1,..., J, k = 1,..., K. α i = 0, J β j = 0, (αβ) ij = 0, J (αβ) ij = 0. i=1 j=1 i=1 j=1

20 Zweifaktorielle Varianzanalyse mit festen Eekten Modelformulierung (II) Interpretation der einzelnen Parameter: µ = 1 IJ J i=1 j=1 µ ij α i = µ i. µ mit µ i. = 1 J β j = µ.j µ mit µ.j = 1 I J µ ij j=1 µ ij i=1 (α, β) ij = µ ij (µ + α i + β i )

21 Zweifaktorielle Varianzanalyse mit festen Eekten Modelformulierung (II) Beispiele für mögliche Wechselwirkungen auf den verschiedenen Faktorstufen: (a) Faktor B (b) Faktor B (c) Faktor B µ ij 1 2 µ ij 1 2 µ ij 1 2 Faktor A Faktor A Faktor A

22 Zweifaktorielle Varianzanalyse mit festen Eekten Schätzen Alle Erwartungswerte werden wieder durch die Mittelwerte aus den Daten geschätzt: ˆµ = 1 IJK J i=1 j=1 k=1 K Y ijk = Ȳ... ˆα i = Ȳ i.. Ȳ... mit Ȳ i.. = 1 JK ˆβ j = Ȳ.j. Ȳ... mit Ȳ.j. = 1 IK J K j=1 k=1 K i=1 k=1 Y ijk Y ijk

23 Zweifaktorielle Varianzanalyse mit festen Eekten Schätzen Der Wechselwirkungsparameter (αβ) ij lässt sich schätzen als ( αβ ij ) = Ȳ ij. (ˆµ + ˆα i + ˆβ j ) = Ȳ ij. (Ȳ... + Ȳ i.. Ȳ... + Ȳ.j. Ȳ... ) = Ȳ ij. Ȳ i.. Ȳ.j. + Ȳ..., wobei Ȳ ij. = 1 K Y K k=1 ijk. Für die Residuen gilt: ˆε ijk = y ijk (ˆµ + ˆα i + ˆβ j + ( αβ) ij )

24 Zweifaktorielle Varianzanalyse mit festen Eekten Testen Drei Typen von Nullhypothesen möglich. 1. Nullhypothese: Keine Wechselwirkungen H A B H A B : (αβ) 0 ij = 0 für alle i, j, i = 1,..., I, j = 1,..., J gegen : für mindestens zwei Paare (i, j) gilt (αβ) 1 ij Nullhypothese: Keine Haupteekte bedingt durch Faktor A H A 0 : α i = 0 für alle i i = 1,..., I, gegen H A 1 : für mindestens zwei α i gilt α i Nullhypothese: Keine Haupteekte bedingt durch Faktor B H B 0 : β j = 0 für alle j j = 1,..., J, gegen H B 1 : für mindestens zwei β j gilt β j 0.

25 Zweifaktorielle Varianzanalyse mit festen Eekten Testen Herleitung der Prüfgröÿe über die Streuungszerlegung: SQT = SQA + SQB + SQ(A B) + SQR SQT : SQA: SQB: SQ(A B): SQR: Gesamtstreuung Streuung bedingt durch den Faktor A Streuung bedingt durch den Faktor B Streuung bedingt durch die Wechselwirkung von A und B Reststreuung

26 Zweifaktorielle Varianzanalyse mit festen Eekten Testen Die einzelnen Komponenten berrechnen sich als SQT = J K (Y ijk Ȳ... ) 2, i=1 j=1 k=1 SQA = KJ (Ȳ i.. Ȳ... ) 2 = KJ ˆα 2 i, SQB = KI i=1 J (Ȳ.j. Ȳ... ) 2 = KI j=1 i=1 J ˆβ 2 j, j=1

27 Zweifaktorielle Varianzanalyse mit festen Eekten Testen SQ(A B) = K J (Ȳ ij. Ȳ i.. Ȳ.j. + Ȳ... ) 2 = K J ( αβ) 2 ij, i=1 j=1 i=1 j=1 SQR = J K (Y ijk Ȳ ij. ) 2 = J (K 1)S 2 ij. i=1 j=1 k=1 i=1 j=1 Die jeweiligen Prüfgröÿen berechnen sich, indem die Relation zwischen der interessierenden Streuung und der Reststreuung betrachtet wird, wobei beide Gröÿen noch durch ihre jeweiligen Freiheitsgrade dividiert werden.

28 Zweifaktorielle Varianzanalyse mit festen Eekten Testen H 0 Prüfgröÿe kritische Schranke (αβ) ij = 0 F A B = α i = 0 F A = SQ(A B)/(I 1)(J 1) SQR/IJ(K 1) F 1 α((i 1)(J 1), IJ(K 1)) SQA/(I 1) SQR/IJ(K 1) F 1 α(i 1, IJ(K 1)) β j = 0 F B = SQB/(J 1) SQR/IJ(K 1) F 1 α(j 1, IJ(K 1)) H 0 wird abgelehnt, wenn Prüfgröÿe > kritische Schranke.

29 Varianzanalyse Zusammenfassung Beurteilt den Einuss eines oderer mehrerer Faktoren auf ein metrisches Merkmal. Analog zum Regressionsmodell wird der Zusammenhang zwischen einer Zielvariable und einer oder mehrerer Einussgröÿen beschrieben. Varianzanalyse als Spezialfall der Regression mit kategorialen erklärenden Variablen. Einuss der Variablen geht nur über eine 0-1-Kodierung in das Modell ein. Höhe des Eekts kann geschätzt werden.

30 Varianzanalyse Zusammenfassung Teststatistiken prüfen, ob Eekt vorhanden. Prüfung über Streuungszerlegung. Voraussetzung: Y normalverteilt. Zweifaktorielle Varianzanalyse liefert zusätzliche Information, ob sich die Eekte zweier Faktoren lediglich kumulieren oder ob sie sich gegenseitig beeinussen, also gemeinsam einen verstärkenden oder abschwächenden Eekt haben.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

Eine Einführung in R: Varianzanalyse

Eine Einführung in R: Varianzanalyse Eine Einführung in R: Varianzanalyse Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2011 Bernd Klaus, Verena Zuber Das

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Die Funktion f wird als Regressionsfunktion bezeichnet.

Die Funktion f wird als Regressionsfunktion bezeichnet. Regressionsanalyse Mit Hilfe der Techniken der klassischen Regressionsanalyse kann die Abhängigkeit metrischer (intervallskalierter) Zielgrößen von metrischen (intervallskalierten) Einflussgrößen untersucht

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate 31 und 31 und (), Methode der 33 Das allgemeine (), Methode der kleinsten Quadrate 37 Modelle mit Messwiederholungen 1 / 113 Eine grundsätzliche Bemerkung zu Beginn Es bestehen viele Ähnlichkeiten zwischen

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

ANalysis Of VAriance (ANOVA) 1/2

ANalysis Of VAriance (ANOVA) 1/2 ANalysis Of VAriance (ANOVA) 1/2 Markus Kalisch 16.10.2014 1 ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich)?

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

Welche(s) Paar(e) ist(sind) denn nun signifikant verschieden?

Welche(s) Paar(e) ist(sind) denn nun signifikant verschieden? Welche(s) Paar(e) ist(sind) denn nun signifikant verschieden? Der F-Test der Varianzanalyse erlaubt lediglich eine Existenzaussage über ein Paar (i,j) mit µ i µ j zum einem Niveau α. In der Praxis interessiert

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

4 Binäre Regressionsmodelle, Folien 2

4 Binäre Regressionsmodelle, Folien 2 4 Binäre Regressionsmodelle, Folien 2 Ludwig Bothmann (basierend auf Unterlagen von Nora Fenske) Statistik III für Nebenfachstudierende WS 2014/2015 4.5 Hypothesentests Lineare Hypothesen Betrachtet werden

Mehr

Biostatistik 7. Zweistichproben-t-Test, F-Test

Biostatistik 7. Zweistichproben-t-Test, F-Test Biostatistik 7. Zweistichproben-t-Test, F-Test Zweistichproben-t-Test Vergleich von zwei unabhängigen Stichproben Versuchssituation: dieselbe Variable wird bei zwei unabhängigen Stichproben geprüft Kontrollgruppe,

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Hypothese: Typische Eigenschaften von Terroristen (Prototypikalität) und die nationale Herkunft (Ausländer vs. Deutsche) haben

Mehr

Einführung in die Varianzanalyse

Einführung in die Varianzanalyse Einführung in die Varianzanalyse Einführendes Skriptum zur Vorlesung Statistik II Uwe Mortensen Westfälische Wilhelms-Universität Fachbereich Psychologie und Sportwissenschaft Institut III 1 Inhaltsverzeichnis

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Statistik für SozialwissenschaftlerInnen II p.85

Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Statistik für SozialwissenschaftlerInnen II p.85 Schätzverfahren Ziel von Schätzverfahren: Ausgehend von Stichproben Aussagen über Populationskennwerte machen Kenntnis der Abweichung des

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Modul G.1 WS 07/08: Statistik 31.01.2008 1

Modul G.1 WS 07/08: Statistik 31.01.2008 1 Modul G.1 WS 07/08: Statistik 31.01.2008 1 Varianzanalyse Als Varianzanalyse bezeichnet man eine große Gruppe datenanalytischer und mustererkennender statistischer Verfahren, die zahlreiche unterschiedliche

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Ein- und Zweistichprobentests

Ein- und Zweistichprobentests (c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen

Mehr

Zweifache Varianzanalyse

Zweifache Varianzanalyse Zweifache Varianzanalyse Man kann mittels VA auch den (gleichzeitigen) Einfluss mehrerer Faktoren (unabhängige Variablen) auf ein bestimmtes Merkmal (abhängige Variable) analysieren. Die Wirkungen werden

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Mittelwertvergleiche Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Messwiederholungen und abhängige Messungen

Messwiederholungen und abhängige Messungen Messwiederholungen und abhängige Messungen t Tests und Varianzanalysen für Messwiederholungen Kovarianzanalyse Thomas Schäfer SS 009 1 Messwiederholungen und abhängige Messungen Bei einer Messwiederholung

Mehr

Ablaufschema beim Testen

Ablaufschema beim Testen Ablaufschema beim Testen Schritt 1 Schritt 2 Schritt 3 Schritt 4 Schritt 5 Schritt 6 Schritt 7 Schritt 8 Schritt 9 Starten Sie die : Flashanimation ' Animation Ablaufschema Testen ' siehe Online-Version

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Einführung in die Induktive Statistik: Testen von Hypothesen

Einführung in die Induktive Statistik: Testen von Hypothesen Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

ANalysis Of VAriance (ANOVA) 2/2

ANalysis Of VAriance (ANOVA) 2/2 ANalysis Of VAriance (ANOVA) 2/2 Markus Kalisch 22.10.2014 1 Wdh: ANOVA - Idee ANOVA 1: Zwei Medikamente zur Blutdrucksenkung und Placebo (Faktor X). Gibt es einen sign. Unterschied in der Wirkung (kontinuierlich

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne Inhalt Versuchsplanung Faktorielle Versuchspläne Dr. Tobias Kiesling Allgemeine faktorielle Versuchspläne Faktorielle Versuchspläne mit zwei Faktoren Erweiterungen Zweiwertige

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Die Familie der χ 2 (n)-verteilungen

Die Familie der χ 2 (n)-verteilungen Die Familie der χ (n)-verteilungen Sind Z 1,..., Z m für m 1 unabhängig identisch standardnormalverteilte Zufallsvariablen, so genügt die Summe der quadrierten Zufallsvariablen χ := m Z i = Z 1 +... +

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Statistik-Team. Tobias Kley: Übung: Freitag, Uhr, HGA 10 Tutorium (SPSS) - ab

Statistik-Team. Tobias Kley: Übung: Freitag, Uhr, HGA 10 Tutorium (SPSS) - ab Statistik-Team Tobias Kley: tobikley@uni-muenster.de Übung: Freitag, 9.00-10.00 Uhr, HGA 10 Tutorium (SPSS) - ab 26.10.2009 Koordination: Dr. Helge Thiemann Helge.Thiemann-i5m@ruhr-uni-bochum.de 0234/

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

x(n x) cm 2 ) zweier Betonsorten wird überprüft. Dabei ergaben Sorte 1 185 186 184 186 185 187 186 187 185 Sorte 2 183 182 185 182 181 179

x(n x) cm 2 ) zweier Betonsorten wird überprüft. Dabei ergaben Sorte 1 185 186 184 186 185 187 186 187 185 Sorte 2 183 182 185 182 181 179 . Aufgabe: Zwei bis drei Millionen deutsche Haushalte sind überschuldet. Einer der Hauptgründe für die Überschuldung privater Haushalte ist eine gescheiterte Selbstständigkeit. In einer Stichprobe von

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Prüfungsliteratur: Rudolf & Müller S

Prüfungsliteratur: Rudolf & Müller S 1 Beispiele zur univariaten Varianzanalyse Einfaktorielle Varianzanalyse (Wiederholung!) 3 Allgemeines lineares Modell 4 Zweifaktorielle Varianzanalyse 5 Multivariate Varianzanalyse 6 Varianzanalyse mit

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des.

Im Modell der Varianzanalyse (mit festen Effekten) ist das. aus dem Durchschnittsmesswert für y plus dem Effekt des. Einfatorielle Varianzanalyse Varianzanalyse untersucht den Einfluss verschiedener Bedingungen ( = nominalsalierte(r) Variable(r)) auf eine metrische Variable. Die Bedingungen heißen auch atoren und ihre

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Eine Einführung in R: Lineare Regression

Eine Einführung in R: Lineare Regression Eine Einführung in R: Lineare Regression (basierend auf Vorarbeiten von Verena Zuber und Bernd Klaus) Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.nowick-lab.info/?page_id=365

Mehr

Biometrische und Ökonometrische Methoden II Lösungen 1

Biometrische und Ökonometrische Methoden II Lösungen 1 TECHNISCHE UNIVERSITÄT MÜNCHEN - WEIHENSTEPHAN SS 01 MATHEMATIK UND STATISTIK, INFORMATIONS- UND DOKUMENTATIONSZENTRUM Biometrische und Ökonometrische Methoden II Lösungen 1 1. a) MTB > name c1 '100 mm'

Mehr

Eine Einführung in R: Lineare Regression

Eine Einführung in R: Lineare Regression Eine Einführung in R: Lineare Regression Katja Nowick, Lydia Müller und Markus Kreuz Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.bioinf.uni-leipzig.de/teaching/currentclasses/class211.html

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

T-Test für den Zweistichprobenfall

T-Test für den Zweistichprobenfall T-Test für den Zweistichprobenfall t-test (unbekannte, gleiche Varianzen) Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten, aber gleichen Varianzen durch Vergleich der

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Das lineare Regressionsmodell Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.

3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0. Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität

Mehr

Tutorial: Anpassungstest

Tutorial: Anpassungstest Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr