Modellieren von Natur

Größe: px
Ab Seite anzeigen:

Download "Modellieren von Natur"

Transkript

1 Modellieren von Natur Oliver Deussen Natürliche Objekte 1

2 bisher: Kombination relativ einfacher Primitive zur Generierung (geschlossener) glatter Oberflächen aber: Wie modelliert man natürliche Objekte? (Bäume, Berge, Feuer, Wasser, Wolken) komplett neue Ansätze sind erforderlich effiziente Verfahren zur Herstellung der komplexen Geometrie hierarchische Methoden, um mit der Komplexität umzugehen Oliver Deussen Natürliche Objekte 2

3 prozedurales Modellieren: Objekte werden über einen Algorithmus erzeugt Ausgabe: Dreiecke (Problem: Komplexität) Spezielle Generierungsprozeduren: Fraktale, IFS L-Systeme Partikelsysteme Oliver Deussen Natürliche Objekte 3

4 Prozedurales Modellieren Prozedur (Generierungsvorschrift) beschreibt Objektgeometrie ( Erzeuge Kugel mit 120 Facetten, anstatt Facetten explizit angegeben) Vorteil: Platzersparnis Objekt kann je nach Anforderung dargestellt werden Ähnlich der Primitiv-Instanzierung aber: auch Topologie kann sich verändern Oliver Deussen Natürliche Objekte 4

5 Beispiel: Brücke Prozeduren beschreiben Aufbau der Straße, Seile, Pfosten usw. Teile beeinflussen sich gegenseitig Modellwechsel: Nachts besteht Brücke nur aus Punktlichtquellen weiterer wichtiger Vorteil: Prozeduren/Objekte können mit Umgebung interagieren (Baum wächst antlang einer Mauer) Oliver Deussen Natürliche Objekte 5

6 Fraktale Modelle Fraktal: Objekt, das in allen Auflösungen (Vergrößerungsstufen) Selbstähnlichkeit aufweist Erste Beobachtung: Brownsche Molekularbewegung Bewegung eines kleinen Teilchens in Öl Bahn: zufällig, aber ähnlich aussehend in verschiedenen Vergrößerungen Oliver Deussen Natürliche Objekte 6

7 funktionaler Fall: H=2.0 H=1.0 H=0.67 H=0.33 H=0.0 Brownsche Bewegung für verschiedene Rauhigkeiten Oliver Deussen Natürliche Objekte 7

8 wird beschrieben durch Zufallsfunktion: ( B(t + t) B(t) P t H ) < x = Φ(x) Φ(x) Gauß-Verteilt, H = 1/2 Hölder-Exponent. Eigenschaften der Brownschen Bewegungsfunktion: nicht differenzierbar charakteristisches Frequenzspektrum 1/f β mit f: Frequenz, β [1, 3]. statistisch selbstaffin (Aussehen ist ähnlich auf allen Vergrößerungsstufen modulo eines vertikalen Skalierungsfaktors) Oliver Deussen Natürliche Objekte 8

9 Synthetisierung der Brownschen Bewegung: Summe von Sinuswellen: B(t) = f= A f r fh sin(2πr f t + Θ f ) A f Gaußsche Zufallsvariable, r Ortsauflösung, Θ Zufallsphase, H Hölder-Exponent. Bandlimitierte Zufallsfunktionen (Perlinsche Rauschfunktionen) B(t) = n i=1 r fh N(tr i ). N Rauschfunktion, n zwischen 3 und 12 Oliver Deussen Natürliche Objekte 9

10 Geometrische Unterteilung: t new = 1 2 (t i + x t+1 ) B new = 1 2 (B i + B t+1 ) + P (t i+1 t i )N(t new ). Oliver Deussen Natürliche Objekte 10

11 Brownsche Bewegung generiert durch Unterteilung Oliver Deussen Natürliche Objekte 11

12 Konzept hinter der geometrischen Generierung: Initiator: legt Grundform fest Generator: ersetzt Geometrie durch verfeinerte Geometrie Beispiel: Koch-Kurve aus: The Algorithmic Beauty Of Plants Oliver Deussen Natürliche Objekte 12

13 Fraktale Dimension (Ähnlichkeitsdimension): Objekt wird in N gleich große Teile zerlegt Um wieviel muß ich jedes Teil vergrößern, damit ich ähnlich dem Original werde? N 1 d = r(n) = S d: Dimension, S: Skalierungsfaktor (1) r(n)=2 (1) r(n)=2 r(n)=3 (1) (2) (1) (2) N=2 (3) (4) N=4 (1) (2) (3) N=4 (4) Oliver Deussen Natürliche Objekte 13

14 Ergebnis: Linie: d = 1, Quadrat: d = 2, Koch-Kurve: D = log 4 log 3 1, 2618 mehr: B. Mandelbrot: Die fraktale Geometrie der Natur Computergraphik: auch endliche Generierungsprozesse werden als Fraktale bezeichnet Generierungsprozedur stoppt bei genügender Genauigkeit Vorteil von Fraktalen: oftmals sehr einfache Generierungsvorschrift für komplexe Geometrie Oliver Deussen Natürliche Objekte 14

15 Wie modelliert man fraktal? zuerst: fraktale Punktmengen danach fraktale Geometrien Gebirge (Brownsche Molekularbewegung) Plfanzengeometrie (Prozeduren + Regelsysteme) Oliver Deussen Natürliche Objekte 15

16 Die Mandelbrot-Menge einfaches 2D-Fraktal für jeden Punkt (komplexe Zahl) in der komplexen Ebene im Bereich: wende Iteration an: P i+1 = P 2 i + P i wenn P i > l max oder i > i max breche ab. kodiere P i als Farbe (l=0 schwarz) Julia-Menge: Iteration: P i+1 = P 2 i + c für eine Konstante c Oliver Deussen Natürliche Objekte 16

17 oben: Mandelbrot Menge, unten: Julia-Mengen Oliver Deussen Natürliche Objekte 17

18 Iterierte Funktionen-Systeme (IFS) Methode zur Erzeugung von Bildern und Punktobjekten (oftmals Fraktale) benötigt werden: n Funktionen M j R 2 R 2, M = {M 1, M 2,..., M n } m Wahrscheinlichkeiten P = {P 1, P 2,..., P m } n j=1 P j = 1 Startpunkt z 0 bzw. Menge von Startpunkten Z 0 Funktion M j : Affine Abbildung ( a b M j (x, y) = c d ) ( x y ) + ( e f ) Oliver Deussen Natürliche Objekte 18

19 Deterministischer Algorithmus wähle kompakte Menge von Startpunkten z 0 m z n+1 = M j (z n ) Beispiel: Sierpinski-Dreieck j=1 Definition der affinen Abbilungen: w a b c d e f p Oliver Deussen Natürliche Objekte 19

20 Ergebnisbild nach 1,2,3,5 Anwendungen: eigentlich: Baum aufbauen und abgehen Deterministischer Algorithmus: Breitenabstieg Stochastischer Algorithmus: Tiefenabstieg, zufällig für Startpunkte hierbei: wähle nach Wahrscheinlichkeiten, die der Kontraktion der Abbildung entsprechen Oliver Deussen Natürliche Objekte 20

21 Stochastischer Algorithmus wähle Startpunkt z 0 z n+1 = M j (z n ) Adaptiver Algorithmus Breitensuche mit adaptivem Abschneiden der Teilbäume je nach Gesamtkontraktion Beispiel: Abbildungen für Farnblatt: j a b c d e f Oliver Deussen Natürliche Objekte 21

22 Generierung eine Farnblattes: a) Breitenabstieg; b) stochastisch; c) Abstieg mit Abschneiden Oliver Deussen Natürliche Objekte 22

23 weitere Beispiele (aus Barnsley: Fractals everywhere) Oliver Deussen Natürliche Objekte 23

24 Fraktale Geometrieerzeugung Beispiel: Gebirge rekursive Unterteilung anlog Generierung Brownscher Bewegung in 2D: unterteile Linie in der Mitte und verschiebe Mittelpunkt zufällig Oliver Deussen Natürliche Objekte 24

25 in 3D (a) (b) aus Foley et al.: Computer Graphics Principles and Practice Oliver Deussen Natürliche Objekte 25

26 wird zufällige Verschiebung an Größe der Linie / des Dreiecks orientiert, ergibt sich ähnliches Aussehen auf jeder Vergrößerungsstufe aus: Texturing and Modeling Oliver Deussen Natürliche Objekte 26

Fraktale Terrainerzeugung. Fraktale. Ziel der Ausarbeitung. fbm) Fractional Brownian Motion (fbm( Eigenschaften von fbm

Fraktale Terrainerzeugung. Fraktale. Ziel der Ausarbeitung. fbm) Fractional Brownian Motion (fbm( Eigenschaften von fbm Ziel der Ausarbeitung Fraktale Terrainerzeugung Jürgen Platzer,, 0025360 Mario Ruthmair,, 9826157 Institute of Computer Graphics and Algorithms 2/ 34 Fraktale Warum Fraktale? Effiziente Erzeugung von Details

Mehr

Die Chaostheorie und Fraktale in der Natur

Die Chaostheorie und Fraktale in der Natur Hallertau-Gymnasium Wolnzach Abiturjahrgang 2009/2011 Facharbeit aus dem Leistungskurs Physik Die Chaostheorie und Fraktale in der Natur Eine physikalisch-philosophische Abhandlung über das Wesen der Natur

Mehr

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension

2 Selbstähnlichkeit, Selbstähnlichkeitsdimension 9 2 Selbstähnlichkeit, Selbstähnlichkeitsdimension und Fraktale 2.1 Selbstähnlichkeit Bei den Betrachtungen zur Dimension in Kapitel 1 haben wir ähnliche (im geometrischen Sinn) Figuren miteinander verglichen.

Mehr

Fraktale und Julia-Mengen

Fraktale und Julia-Mengen Uutner, J. Roser, A. Unseld, F. Fraktale und Julia-Mengen mit 77 Abbildungen Verlag Harri Deutsch Inhalt I Klassische Fraktale l 1 Cantor-Menge 2 1.1 Konstruktion und Eigenschaften 2 1.2 Triadische Darstellung

Mehr

Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale

Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale Computergrafik SS 2016 Oliver Vornberger Vorlesung vom 03.05.2016 Kapitel 11: Fraktale 1 Selbstähnlichkeit 2 Koch'sche Schneeflocke a+(x-a) cos(60 ) - (y-b) sin(60 ) b+(y-b) cos(60 ) + (x-a) sin(60 ) a,b

Mehr

Die Rasterbildtechnik

Die Rasterbildtechnik Die Rasterbildtechnik Anfänge der Computergraphik: Vektordisplays Oliver Deussen Grundlagen der Rastergraphik 1 Vorteile von Vektordisplays: - geringer Speicheraufwand (Display-Liste statt Pixelfeld) -

Mehr

Philosophie der Fraktale. Archetypen der Schöpfung

Philosophie der Fraktale. Archetypen der Schöpfung Philosophie der Fraktale Archetypen der Schöpfung Fraktale Geometrie der Natur Was haben diese Objekte gemeinsam? Fraktale Geometrie der Natur Farnblatt Fraktale Geometrie der Natur Lüftaufnahme eines

Mehr

2. Fraktale Geometrie

2. Fraktale Geometrie 2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale

Mehr

Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen

Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen Kenneth J. Falconer Fraktale Geometrie Mathematische Grundlagen und Anwendungen Aus dem Englischen von Jens Meyer Mit 98 Abbildungen Spektrum Akademischer Verlag Heidelberg Berlin Oxford Inhalt Vorwort

Mehr

Martin-Anderson-Nexö-Gymnasium, Dresden

Martin-Anderson-Nexö-Gymnasium, Dresden Fraktale Wechselspiel zwischen Chaos und Ordnung Teilnehmer: David Burgschweiger Tim Gabriel Welf Garkisch Anne Kell Leonard König Erik Lorenz Sofie Martins Niklas Schelten Heinrich-Hertz-Oberschule, Berlin

Mehr

Computergraphik II. Computergraphik II. Oliver Deussen Einleitung 1

Computergraphik II. Computergraphik II. Oliver Deussen Einleitung 1 Computergraphik II Oliver Deussen Einleitung 1 Computergraphik II Prof. Dr. Oliver Deussen Sommersemester 2001 c Oliver Deussen (Gesamttext) Bilder: Copyright bei den Autoren der unten genannten Bücher

Mehr

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier

FRAKTALE. Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier FRAKTALE Eine Dokumentation von Dominik Assmann, Philipp Gewessler und Paul Maier I. Fraktale allgemein a. Mathematischer Algorithmus i. Komplexe Zahlen b. Konvergieren und Divergieren i. Bei Mandelbrotmengen

Mehr

LINDENMAYER SYSTEME Astrid Koennecke

LINDENMAYER SYSTEME Astrid Koennecke LINDENMAYER SYSTEME Astrid Koennecke Geschichte: Ein Lindenmayer System (L-System) ist ein mathematischer Formalismus, der im Jahr 1968 von dem theoretischen Biologen Aristid Lindenmayer als Grundlage

Mehr

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt

Herbert Zeitler Wolfgang Neidhardt. Fraktale und Chaos. Eine Einführung. Wissenschaftliche Buchgesellschaft Darmstadt Herbert Zeitler Wolfgang Neidhardt Fraktale und Chaos Eine Einführung Wissenschaftliche Buchgesellschaft Darmstadt f INHALT Einleitung 1 I. Iteration reeller Funktionen und Chaos in dynamischen Systemen.

Mehr

Lindenmayer-Systeme. Zusammenfassung des Vortrags im Proseminar Theoretische Informatik. Benjamin Aram Berendsohn 11.

Lindenmayer-Systeme. Zusammenfassung des Vortrags im Proseminar Theoretische Informatik. Benjamin Aram Berendsohn 11. Lindenmayer-Systeme Zusammenfassung des Vortrags im Proseminar Theoretische Informatik Benjamin Aram Berendsohn 11. November 2014 1 Geschichte Lindenmayer-Systeme, kurz L-Systeme, wurden zuerst 1968 von

Mehr

MATHE-BRIEF. Juni 2017 Nr. 80. Die Mandelbrotmenge

MATHE-BRIEF. Juni 2017 Nr. 80. Die Mandelbrotmenge MATHE-BRIEF Juni 2017 Nr. 80 Herausgegeben von der Österreichischen Mathematischen Gesellschaft http: // www.oemg.ac.at / Mathe Brief mathe brief@oemg.ac.at Die Mandelbrotmenge Komplexe Zahlen werden im

Mehr

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung Objekte und ihre Beschreibung Einleitung Computergraphik: 3D sehr wichtig photo-realistic rendering Computer-Animation, Modellierung Visualisierung, Virtual Reality Ansatz: per rendering wird eine 3D-Szene

Mehr

Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages

Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages Proseminar Grundlagen der theoretischen Informatik Dozent: Prof. Helmut Alt Fraktale und Lindenmayer-Systeme Zusammenfassung des Vortrages Richard Wilhelm Wintersemester 2007 Fraktale Vorgestellt wurden

Mehr

Klassifikation und Analyse finanzwirtschaftlicher Zeitreihen mit Hilfe von fraktalen Brownschen Bewegungen

Klassifikation und Analyse finanzwirtschaftlicher Zeitreihen mit Hilfe von fraktalen Brownschen Bewegungen Michael Hafner Klassifikation und Analyse finanzwirtschaftlicher Zeitreihen mit Hilfe von fraktalen Brownschen Bewegungen PETER LANG Europäischer Verlag der Wissenschaften Inhaltsverzeichnis Abbildungsverzeichnis.-.

Mehr

Beispiele. Strecke A R 1 (genauso für R d ):

Beispiele. Strecke A R 1 (genauso für R d ): Definition 6.1.1 (fraktale Dimension). Sei A R d beschränkt und für ε > 0 sei N A (ε) die minimale Anzahl der d-dimensionalen Kugeln vom Radius ε, mit denen A überdeckt werden kann. Die fraktale Dimension

Mehr

Hauptseminar : IFS & Indra's Pearls P. Gafert & A. Aichert

Hauptseminar : IFS & Indra's Pearls P. Gafert & A. Aichert : P. Gafert & A. Aichert : Indra's Pearls Stichpunktiste Kurze Einführung - Vokommen in der Natur - Adressen Möbius-Transformationen - Darstellung und DOF - Kreistreue - Stereographische Projektion - Fixpunkte

Mehr

Vortragsthemen. Reelle Dynamik

Vortragsthemen. Reelle Dynamik Vortragsthemen Jede Teilnehmende ist für ein Thema verantwortlich, das sie im Kurs vorstellen wird. Es gibt also insgesamt 15 Vorträge, 4 aus den Gebieten Reelle bzw. Komplexe Dynamik und 7 aus dem Gebiet

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale

Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale Vorlesung Modelle in Biophysik/Biochemie 4. Fraktale c Priv.-Doz. Dr. Adelhard Köhler May 19, 2005 1 Gebrochene (fraktale) Dimension Fraktale haben eine gebrochene Dimension. Unterschiedliche Dimensionsbegriffe

Mehr

Fraktale: Eine Einführung

Fraktale: Eine Einführung Fraktale: Eine Einführung Fraktale Geometrie und ihre Anwendungen Seminar im WS 06/07 Florian Daikeler Übersicht: I. Einführung: Die Cantor-Drittelmenge II. Fraktale in 2D: Selbstähnlichkeit III. Beispiele:

Mehr

Geometrierepräsentation

Geometrierepräsentation Geometrierepräsentation Forderungen an Repräsentationsform: 1. mächtig (eine sinnvolle Menge von Objekten modellierbar) 2. eindeutig (es muß klar sein, was repräsentiert wird) H E D A F G C B Punkte, Linien,

Mehr

Datenkompression: Fraktale Kompression. H. Fernau

Datenkompression: Fraktale Kompression. H. Fernau Datenkompression: Fraktale Kompression H. Fernau email: fernau@informatik.uni-trier.de SoSe 2006 Universität Trier 1 Fraktale Codierung mathematische Grundgedanken Statt ein Datum zu übertragen, übertrage

Mehr

Methodischdidaktische. Charakt. Beispiele. Überlegungen

Methodischdidaktische. Charakt. Beispiele. Überlegungen FSG Kern- und Schulstandards Klasse 9/10 Mathematik (Stand7/2011) Inhalte (Schulbuchorientiert Reihenfolge), charakteristische Beispiele, die das Niveau zeigen (anwenden vernetzen), Leitideen + Kompetenzen

Mehr

8. Deterministisches Chaos

8. Deterministisches Chaos 8. Deterministisches Chaos Widerspruch: deterministisch chaotisch Schmetterlingseffekt: Der Flügelschlag eines Schmetterlings entscheidet über die Entwicklung eines Sturms. Allgemein: kleinste Änderungen

Mehr

Abbildung 11.1: Farnblatt

Abbildung 11.1: Farnblatt Kapitel 11 Fraktale 11.1 Selbstähnlichkeit Viele in der Natur vorkommende Strukturen weisen eine starke Selbstähnlichkeit auf. Beispiele sind Gebirgsformationen, Meeresküsten oder Pflanzenblätter. Solche

Mehr

Stan Wagon. Mathematica. in Aktion. Aus dem Amerikanischen übersetzt von Dr. Frank Eyßelein und Moritz Berger

Stan Wagon. Mathematica. in Aktion. Aus dem Amerikanischen übersetzt von Dr. Frank Eyßelein und Moritz Berger Stan Wagon Mathematica in Aktion Aus dem Amerikanischen übersetzt von Dr. Frank Eyßelein und Moritz Berger Spektrum Akademischer Verlag Heidelberg Berlin Oxford Inhaltsverzeichnis Vorwort 9 Eine kurze

Mehr

Algorithmische Geometrie: Arrangements und

Algorithmische Geometrie: Arrangements und Algorithmische Geometrie: Arrangements und Dualität Nico Düvelmeyer WS 2009/2010, 19.1.2010 Überblick 1 Strahlenverfolgung und Diskrepanz 2 Dualität Dualitäts-Abbildung Transformation des Problems zur

Mehr

HTL 1, Innsbruck Fraktale Kurven Seite 1 von 13

HTL 1, Innsbruck Fraktale Kurven Seite 1 von 13 HTL, Innsbruck Fraktale Kurven Seite von 3 Robert Salvador Fraktale Kurven salvador@htlinn.ac.at Mathematische / Fachliche Inhalte in Stichworten: Fraktale, Komplexe Zahlen, Iteration Kurzzusammenfassung

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

Biograe Grundlagen Arten Anwendung Problem. L-Systeme. Fabian Trattnig, Georg Messner, Benedikt Huber. 25. Jänner 2008

Biograe Grundlagen Arten Anwendung Problem. L-Systeme. Fabian Trattnig, Georg Messner, Benedikt Huber. 25. Jänner 2008 Biograe Grundlagen Arten Anwendung Problem Fabian Trattnig, Georg Messner, Benedikt Huber 25. Jänner 2008 Biograe Grundlagen Arten Anwendung Problem Einteilung 1 Biograe 2 Grundlagen 3 Arten 4 Anwendung

Mehr

Mathematische Modellierung Lösungen zum 10. Übungsblatt

Mathematische Modellierung Lösungen zum 10. Übungsblatt Mathematische Modellierung Lösungen zum Klaus G. Blümel Lars Hoegen 30. Januar 2006 Aufgabe 1 Die Figur (a) zeigt bei einem Skalierungsfaktor s 3 eine selbstähnliche Vielfachheit von N 5 auf, sie hat demnach

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

Fraktale Landschaften. Das Erstellen von Bergen und Wolken mit Hilfe von zwei verschiedenen Methoden

Fraktale Landschaften. Das Erstellen von Bergen und Wolken mit Hilfe von zwei verschiedenen Methoden Fraktale Landschaften Das Erstellen von Bergen und Wolken mit Hilfe von zwei verschiedenen Methoden Midpoint Displacement Zur Erzeugung des Grundgitters verwendet man das Midpoint Displacement. Dadurch

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE

WS 2014/15 FINITE-ELEMENT-METHODE JUN.-PROF. D. JUHRE Eigenschaften Der wesentliche Nachteil neunknotiger biquadratischer Lagrange Elemente ist die gegenüber dem bilinearen Element erhöhte Anzahl von Elementfreiheitsgraden. Insbesondere die beiden Freiheitsgrade

Mehr

Einführung in die objektorientierte Programmierung mit C++

Einführung in die objektorientierte Programmierung mit C++ Prof. Dr. Thomas Klinker FB Elektrotechnik und Informatik 08. 03. 2007 Projekt im 4. Semester Elektrotechnik: Einführung in die objektorientierte Programmierung mit C++ Aufgabe 1: Schreiben Sie ein Programm,

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Bildentstehung bei Julia-, Mandelbrotmenge und Newtonfraktal

Bildentstehung bei Julia-, Mandelbrotmenge und Newtonfraktal Bildentstehung bei Julia-, Mandelbrotmenge und Newtonfraktal Christoph Reinisch 07.06.2011 Inhaltsverzeichnis 1 Einleitung 2 2 Juliamenge 5 3 Mandelbrotmenge 10 4 Newtonfraktal 11 1 1 Einleitung Wahrscheinlich

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation

Mehr

Bachelorarbeit. im Studiengang Informatik. zur Erlangung des akademischen Grades Bachelor of Science

Bachelorarbeit. im Studiengang Informatik. zur Erlangung des akademischen Grades Bachelor of Science Universität Passau Fakultät für Mathematik mit Schwerpunkt Digitale Bildverarbeitung Bachelorarbeit im Studiengang Informatik zur Erlangung des akademischen Grades Bachelor of Science Thema: Autor: Erzeugung

Mehr

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger

Iteriertes Funktionensystem. Martin Aigner Rainer Brodinger Martin Rieger Iteriertes Funktionensystem Martin Aigner Rainer Brodinger Martin Rieger Agenda Einleitendes Beispiel Definition und Beschreibung Einsatzgebiete / Anwendungen weitere Beispiele Sierpinski-Dreieck "Das

Mehr

How To Build A Pyramid In Autocad

How To Build A Pyramid In Autocad Tutorial CAD - Baumfraktal Fraktal Dieses Beispiel ist eine einfache Version eines Fraktals. Dazu wird ein Pyramidenstumpf als Basisobjekt genommen und dieses Objekt immer wieder nach einem festgelegten

Mehr

= weiterer Typ von Fraktalen, entsteht im Zusammenhang mit dynamischen Systemen / Chaostheorie

= weiterer Typ von Fraktalen, entsteht im Zusammenhang mit dynamischen Systemen / Chaostheorie Seltsame Attraktoren (strange attractors) = weiterer Typ von Fraktalen, entsteht im Zusammenhang mit dynamischen Systemen / Chaostheorie dynamisches System: Phasenraum = Menge aller möglichen Zustände

Mehr

= weiterer Typ von Fraktalen, entsteht im Zusammenhang mit dynamischen Systemen / Chaostheorie

= weiterer Typ von Fraktalen, entsteht im Zusammenhang mit dynamischen Systemen / Chaostheorie Seltsame Attraktoren (strange attractors) = weiterer Typ von Fraktalen, entsteht im Zusammenhang mit dynamischen Systemen / Chaostheorie dynamisches System: Phasenraum = Menge aller möglichen Zustände

Mehr

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Mathematik Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Fachcurriculum Standards 10 Johannes-Kepler-Gymnasium Weil der Stadt Stand vom 19.8.2008 1 Stand 19.08.2008 Stundenzahl in

Mehr

fraktal kommt von f : C C : x x 3.

fraktal kommt von f : C C : x x 3. Kapitel 4 Fraktale und Dimension 4.1 Selbstähnlichkeit Was sind Fraktale? Das Wort fraktal kommt von zerbrochen und steht für die nicht-ganzzahlige Dimension. Wir betrachten also Objekte deren Dimension

Mehr

Handout 3. Grundlegende Befehle und Konstruktionen (Modi) von Cinderella

Handout 3. Grundlegende Befehle und Konstruktionen (Modi) von Cinderella Handout 3 Grundlegende Befehle und Konstruktionen (Modi) von Cinderella In dieser Sitzung erfahren Sie mehr über: Grundlegende Befehle von Cinderella Grundlegende Konstruktionen (Modi) von Cinderella Grundlegende

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Computergrafik SS 2010 Oliver Vornberger. noch Kapitel 10: 2D-Grafik im Web. Vorlesung vom 11.05.2010

Computergrafik SS 2010 Oliver Vornberger. noch Kapitel 10: 2D-Grafik im Web. Vorlesung vom 11.05.2010 Computergrafik SS 2010 Oliver Vornberger noch Kapitel 10: 2D-Grafik im Web Vorlesung vom 11.05.2010 1 Webseite SVG-Beispiel

Mehr

Computergraphik I. Freiformkurven. aus: Farin Curven und Flächen im CAGD. Oliver Deussen Freiformkurven 1

Computergraphik I. Freiformkurven. aus: Farin Curven und Flächen im CAGD. Oliver Deussen Freiformkurven 1 Freiformkurven aus: Farin Curven und Flächen im CAGD Oliver Deussen Freiformkurven 1 Definition für gebogene Kurven und Flächen Anwendungen: CAD: Automobil-, Flugzeug-, Schiffsbau Computergraphik: Objektmodellierung

Mehr

Kapitel 1: Motivation / Grundlagen Gliederung

Kapitel 1: Motivation / Grundlagen Gliederung Gliederung 1. Motivation / Grundlagen 2. Sortier- und Selektionsverfahren 3. Paradigmen des Algorithmenentwurfs 4. Ausgewählte Datenstrukturen 5. Algorithmische Geometrie 6. Umgang mit algorithmisch schwierigen

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Strategien zur Erzeugung von 3D Modellen

Strategien zur Erzeugung von 3D Modellen Strategien zur Erzeugung von 3D Modellen Technische Universität Dresden Fakultät Informatik Institut für Software-und Multimediatechnik Proseminar: Computergrafik Dozent: Dr. Mascolous Referent: Björn

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Fachcurriculum Mathematik Klasse 9/10

Fachcurriculum Mathematik Klasse 9/10 Stromberg-Gymnasium Vaihingen an der Enz Fachcurriculum Mathematik Klasse 9/10 Klasse 9 Vernetzung In allen Lerneinheiten sollten die folgenden Kompetenzen an geeigneten Beispielen weiterentwickelt werden:

Mehr

Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter

Kompetenzmodell. Geometrisches Zeichnen. Arbeitsblätter Kompetenzmodell Geometrisches Zeichnen Arbeitsblätter 4.10.2012 Inhaltsdimension Arbeitsblätter Risse Lesen und Skizzieren Bausteine Länge von Strecken Flächenmodelle Bedienung eines CAD-Programms 3D-CAD-Software:

Mehr

Kern- und Schulcurriculum am Hans und Sophie Scholl-Gymnasium für die Jahrgangsstufe 9 im Fach Mathematik

Kern- und Schulcurriculum am Hans und Sophie Scholl-Gymnasium für die Jahrgangsstufe 9 im Fach Mathematik Kern- und Schulcurriculum am Hans und Sophie Scholl-Gymnasium für die Jahrgangsstufe 9 im Fach Mathematik Kerncurriculum - Umgang mit Hilfsmitteln wie Formelsammlung, grafikfähigem Taschenrechner, Rechner

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Schattenberechnung Graphische DV und BV, Regina Pohle, 23. Schattenberechnung 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Sicheres Wissen und Können zu Dreiecken 1

Sicheres Wissen und Können zu Dreiecken 1 Sicheres Wissen und Können zu Dreiecken 1 Die Schüler verwenden den egriff Figur für beliebige geradlinig oder krummlinig begrenzte ebene Figuren. Die Namen der Figuren sind im Denken der Schüler sowohl

Mehr

Vorlesung Geometrische Algorithmen Generierung von Nicht-uniformen Netzen Sven Schuierer

Vorlesung Geometrische Algorithmen Generierung von Nicht-uniformen Netzen Sven Schuierer Vorlesung Geometrische Algorithmen Generierung von Nicht-uniformen Netzen Sven Schuierer Uberblick 1. Anwendung 2. Anforderungen an Netze 3. Quadrantenbaume Quadrantenbaume fur Punktemengen Bestimmung

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Java Einführung Objektorientierte Grundkonzepte

Java Einführung Objektorientierte Grundkonzepte Java Einführung Objektorientierte Grundkonzepte Inhalt Verständnis der grundlegenden Konzepte der Objektorientierung: Objekte Nachrichten Kapselung Klassen und Instanzen Vererbung Polymorphismus Darstellung

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Zufällige Fraktale. Klaus Scheufele. February 27, 2007

Zufällige Fraktale. Klaus Scheufele. February 27, 2007 Zufällige Fraktale Klaus Scheufele February 27, 2007 1 Einleitung Why is geometry often discribed as cold and dry? One reason lies in its inability to describe the shape of a cloud, a mountain, a coastline,

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Nichtrealistische Darstellung von Gebirgen mit OpenGL

Nichtrealistische Darstellung von Gebirgen mit OpenGL Nichtrealistische Darstellung von Gebirgen mit OpenGL Großer Beleg Torsten Keil Betreuer: Prof. Deussen Zielstellung Entwicklung eines Algorithmus, der die 3D- Daten einer Geometrie in eine nichtrealistische

Mehr

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension

Mehr

Algorithmische Geometrie Thema: Konvexe Hüllen

Algorithmische Geometrie Thema: Konvexe Hüllen Algorithmische Geometrie Thema: Konvexe Hüllen Christoph Hermes Hermes@hausmilbe.de 17. Juni 2003 Ausblick auf den Vortrag 1/32 1 Was sind konvexe Hüllen? Wozu braucht man sie? Wie kann man sie berechnen

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen SoSe 2012 Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing 10. April 2012 Dozentin: Prof. Dr. Christine Müller

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Anwendung 1. Torben Wallbaum, BSc. Procedural Generation Natural Environments out of the Box

Anwendung 1. Torben Wallbaum, BSc. Procedural Generation Natural Environments out of the Box Anwendung 1 Torben Wallbaum, BSc Procedural Generation Natural Environments out of the Box Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of

Mehr

Computergraphik II. Level-of-Detail. Oliver Deussen Level-of-Detail 1

Computergraphik II. Level-of-Detail. Oliver Deussen Level-of-Detail 1 Level-of-Detail Oliver Deussen Level-of-Detail 1 Motivation: Scanner und andere Meßgeräte liefern b-reps mit hohen Auflösungen Beispiel: 3D-Abtastung einer Karosserie ergibt 30 Mio Dreiecke Probleme: ineffizient

Mehr

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung Brownsche Bewegung M. Gruber 20. März 2015, Rev.1 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Informatik I. 7. Der let-ausdruck und eine graphische Anwendung. 18. November Albert-Ludwigs-Universität Freiburg. Informatik I.

Informatik I. 7. Der let-ausdruck und eine graphische Anwendung. 18. November Albert-Ludwigs-Universität Freiburg. Informatik I. 7. und eine graphische Anwendung Albert-Ludwigs-Universität Freiburg 18. November 2010 1 / 24 2 / 24 Wiederholte Berechnungen: (define square-sum (lambda (x y) (* (+ x y) (+ x y)))) wiederholt die Auswertung

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 BRP Mathematik VHS Floridsdorf 15.6.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 Notenschlüssel:

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

Das Modellieren von 2D- und 3D-Objekten

Das Modellieren von 2D- und 3D-Objekten Das Modellieren von 2D- und 3D-Objekten 1 VTK-Format Florian Buchegger, Michael Haberleitner December 11, 2015 Eine VTK-Datei besteht aus einem Header und einem Body. Während im Header lediglich wichtige

Mehr

Lokale Beleuchtungsmodelle

Lokale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell

Mehr

Newton-Verfahren und komplexe Dynamik. Jonathan Clausing

Newton-Verfahren und komplexe Dynamik. Jonathan Clausing Newton-Verfahren und komplexe Dynamik Jonathan Clausing Newton-Verfahren und komplexe Dynamik Von nutzloser und nützlicher Mathematik Iteration komplexer Polynome Die gefüllte Julia-Menge Die Mandelbrotmenge

Mehr

Darstellung von Kurven und Flächen

Darstellung von Kurven und Flächen Darstellung von Kurven und Flächen Proseminar Computergraphik, 10. Juni 2008 Christoph Dähne Seite 1 Inhalt Polygonnetze 3 Knotenliste 3 Kantenliste 3 Parametrisierte kubische Kurven 4 Definition 4 Stetigkeit

Mehr

FRAKTALE GEOMETRIE SS 2000 1 DEISSLER Lindenmayersysteme Einführung-2000.doc. Lindenmayer-Systeme. Das Programm L-Sys. R.Deißler

FRAKTALE GEOMETRIE SS 2000 1 DEISSLER Lindenmayersysteme Einführung-2000.doc. Lindenmayer-Systeme. Das Programm L-Sys. R.Deißler FRAKTALE GEOMETRIE SS 2000 1 DEISSLER Lindenmayer-Systeme Das Programm L-Sys R.Deißler SS 2000 FRAKTALE GEOMETRIE SS 2000 2 DEISSLER Lindenmayersysteme (L-Syteme) Lindenmayersysteme sind Systeme zur Modellierung

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls

Diana Lange. GENERATIVE GESTALTUNG Arten des Zufalls Diana Lange GENERATIVE GESTALTUNG Arten des Zufalls RANDOM int index = 0; while (index < 200) { float x = random(0, width); float y = random(0, height); float d = random(40, 100); ellipse(x, y, d, d);

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Wie man eine diophantische Gleichung löst

Wie man eine diophantische Gleichung löst Wie man eine diophantische Gleichung löst Michael Stoll Regionale Lehrerfortbildung Graf-Münster-Gymnasium Bayreuth 27. Juni 2012 Diophantische Gleichungen... sind Gleichungen F (x 1,..., x n ) = 0, wobei

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr