Abbildungseigenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abbildungseigenschaften"

Transkript

1 Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert angenommen wird. Es werden also keine zwei verschiedenen Elemente der efinitionsmenge auf ein und dasselbe Element der Zielmenge abgebildet. Eine injektive Funktion ist daher (als Relation gesehen) linkseindeutig. Im Unterschied zu einer bijektiven Abbildung entspricht dabei nicht unbedingt jedem Element der Zielmenge ein Element der efinitionsmenge. ie ildmenge kann also kleiner als die Zielmenge sein. Eine injektive Funktion wird auch als Injektion bezeichnet. Eine injektive Funktion; A.5.. efinitionen Seien und Mengen, sowie f: eine Abbildung von nach. ie folgenden efinitionen für Injektivität sind äquivalent: f heißt injektiv, wenn zu jedem y aus höchstens ein x aus existiert mit f(x) = y. ( Höchstens eines bedeutet dabei: Gar keines oder genau eines, aber nicht mehrere.) Formal: y : (!x : f(x) = y ( x : f(x) = y)) f heißt injektiv, wenn aus der Gleichheit von Funktionswerten (y Werten) die Gleichheit der in die Funktion eingesetzten x Werte folgt. Formal: x,x : (f(x ) = f(x ) x = x ) f heißt injektiv, wenn ungleiche x Werte stets auf ungleiche y Werte abgebildet werden. Formal: x,x : (x x f(x ) f(x )) Verwendet man diese efinition zum Nachweis der Injektivität, führt dies oft zu einem Widerspruchsbeweis. er direkte eweis mit der vorigen efinition kann eleganter und kürzer sein..5.. Grafische Veranschaulichungen as Prinzip der Injektivität: Jeder Punkt in der Zielmenge () wird höchstens einmal getroffen. rei injektive streng monoton steigende rei injektive streng monoton fallende eispiele und Gegenbeispiele Unmathematisches eispiel: ie Funktion, die jedem ürger der undesrepublik eutschland mit Personalausweis die Nummer seines aktuellen Personalausweises zuordnet, ist injektiv, wobei als Zielmenge die Menge aller möglichen Personalausweisnummern angenommen wird. bezeichne die Menge der natürlichen und die Menge der ganzen Zahlen. f :, x x ist injektiv. f :, x x ist injektiv. f :, x x ist injektiv.

2 f :, x x ist nicht injektiv..5.. Eigenschaften Eine stetige reellwertige Funktion auf einem reellen Intervall ist genau dann injektiv, wenn sie in ihrem gesamten efinitionsbereich streng monoton steigend oder streng monoton fallend ist, d.h. für zwei beliebige Zahlen a und b aus dem efinitionsbereich gilt: Aus a < b folgt f(a) < f(b) (steigend), bzw. aus a < b folgt f(a) > f(b) (fallend). Man beachte, dass die Injektivität einer Funktion f: A nur vom Funktionsgraphen {(x,f(x)) x A} abhängt (im Gegensatz zur Surjektivität, die auch von der Zielmenge abhängt, welche man am Funktionsgraphen nicht ablesen kann). Sind die Funktionen f: A und g: injektiv, dann gilt dies auch für die Komposition (Verkettung) g f : A. Aus der Injektivität von g f folgt, dass f injektiv ist. Eine Funktion f: A mit nichtleerer efinitionsmenge A ist genau dann injektiv, wenn f eine linke Inverse hat, also eine Funktion g: A mit g f = id A (wobei id A die identische Abbildung auf A bezeichnet). Eine Funktion f: A ist genau dann injektiv, wenn f links kürzbar ist, also für beliebige Funktionen g, h: A mit f g = f h schon g = h folgt. Eine Funktion f: A ist genau dann injektiv, wenn für alle Teilmengen, A gilt: f( )= f() f(). Jede beliebige Funktion f: A ist darstellbar als Verkettung f = h g, wobei g surjektiv und h injektiv (nämlich eine Inklusionsabbildung) ist..5. Surjektivität Surjektivität (surjektiv) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge mindestens einmal als Funktionswert angenommen wird, also mindestens ein Urbild hat. In der Sprache der Relationen ist der entsprechende egriff rechtstotal. Eine surjektive Funktion wird auch als Surjektion bezeichnet..5.. efinition Es seien und Mengen, sowie f: eine Abbildung. f heißt surjektiv, wenn für alle y aus mindestens ein x aus mit f(x) = y existiert. Formal: y x : f(x) = y.5.. Grafische Veranschaulichungen Eine surjektive Funktion; as Prinzip der Surjektivität: Jeder Punkt in der Zielmenge () wird mindestens einmal getroffen. rei surjektive Funktionen zwischen reellen Intervallen. Ein Sonderfall der Surjektivität: ie Zielmenge () besteht nur aus einem Element.

3 .5.. eispiele und Gegenbeispiele ie Funktion f: mit f(x) = x + ist surjektiv, denn für jede reelle Zahl y gibt es ein Urbild. Aus der Gleichung y = x + erhält man nämlich durch Äquivalenzumformung die Gleichung x = ½(y ), womit sich für jedes y ein Urbild x berechnen lässt. ie Sinus Funktion sin : [,] ist surjektiv. Jede horizontale Gerade y = c mit c hat unendlich viele Schnittpunkte mit dem Graphen der Funktion. ie Sinus Funktion sin : ist jedoch nicht surjektiv, da z.. die Gerade y = keinen Schnittpunkt mit dem Graphen hat, der Wert also nicht als Funktionswert angenommen wird. bezeichne die Menge der komplexen Zahlen. f :, x x ist nicht surjektiv. f :, x x ist surjektiv..5.. Eigenschaften Man beachte, dass die Surjektivität einer Funktion f: A nicht nur vom Funktionsgraphen {(x,f(x)) x A}, sondern auch von der Zielmenge abhängt (im Gegensatz zur Injektivität, welche man am Funktionsgraphen ablesen kann). Sind die Funktionen f: A und g: surjektiv, dann gilt dies auch für die Komposition (Verkettung) g f : A. Aus der Surjektivität von g f folgt, dass g surjektiv ist. Eine Funktion f: A ist genau dann surjektiv, wenn f eine rechte Inverse hat, also eine Funktion g: A mit f g = id (wobei id die identische Abbildung auf bezeichnet). iese Aussage ist äquivalent zum Auswahlaxiom der Mengenlehre. Eine Funktion f: A ist genau dann surjektiv, wenn f rechts kürzbar ist, also für beliebige Funktionen g, h: mit g f = h f schon g = h folgt. Jede beliebige Funktion f: A ist darstellbar als Verkettung f = h g, wobei g surjektiv und h injektiv ist. g: A im f hat dabei die ildmenge von f als Zielmenge und stimmt ansonsten mit f überein (hat denselben Funktionsgraphen)..5. ijektivität ijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist eine Eigenschaft einer mathematischen Funktion. Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres efinitionsbereichs auf verschiedene Elemente der Zielmenge abbildet (sie also injektiv ist), und wenn zusätzlich jedes Element der Zielmenge als Funktionswert auftritt (sie also surjektiv ist). Eine bijektive Funktion hat daher immer eine Umkehrfunktion, ist also invertierbar. Eine bijektive Funktion nennt man auch eine ijektion. Eine ijektion einer endlichen Menge auf sich selbst heißt auch Permutation. Für endliche Mengen haben die efinitionsmenge, die ildmenge und die Zielmenge einer ijektion dieselbe Anzahl von Elementen. Umgekehrt ist eine Funktion zwischen endlichen Mengen bijektiv, wenn diese drei Zahlen übereinstimmen. Für unendliche Mengen definiert man die Mächtigkeit als Verallgemeinerung der Elementanzahl mit Hilfe des egriffes der ijektion..5.. efinition Sei f eine Funktion, die von nach abbildet, also f:. f ist bijektiv, wenn für alle y genau ein x mit f(x) = y existiert. Mit anderen Worten kann man dies so ausdrücken: f ist bijektiv, wenn f injektiv und surjektiv ist. A Eine bijektive Funktion;

4 .5.. Grafische Veranschaulichungen as Prinzip der ijektivität: Jeder Punkt in der Zielmenge () wird genau einmal getroffen. Vier bijektive streng monoton steigende Vier bijektive streng monoton fallende.5.. eispiele und Gegenbeispiele ie Menge der reellen Zahlen wird hier mit bezeichnet, die Menge der nichtnegativen reellen Zahlen mit + 0. ie Funktion f:, x x + a ist bijektiv mit der Umkehrfunktion f :, x x a. Ebenso ist für a 0 die Funktion g:, x ax bijektiv mit der Umkehrfunktion g :, x a x. Unmathematisches eispiel: Ordnet man jedem (monogam) verheirateten Menschen seinen Ehepartner bzw. seine Ehepartnerin zu, ist dies eine ijektion der Menge aller verheirateten Menschen auf sich selbst. ies ist sogar ein eispiel für eine selbstinverse Abbildung. ie folgenden vier Quadratfunktionen unterscheiden sich nur in ihren efinitions bzw. Wertemengen: f :, x x f : + 0, x x f : + 0, x x f : , x x Mit diesen efinitionen ist f nicht injektiv, nicht surjektiv, nicht bijektiv f injektiv, nicht surjektiv, nicht bijektiv f nicht injektiv, surjektiv, nicht bijektiv f injektiv, surjektiv, bijektiv.5.. Eigenschaften Sind A und endliche Mengen mit gleich vielen Elementen und ist f: A eine Funktion, dann gilt: Ist f injektiv, dann ist f bereits bijektiv. Ist f surjektiv, dann ist f bereits bijektiv. Insbesondere gilt also für Funktionen f: A von einer endlichen Menge A in sich selbst: f ist injektiv f ist surjektiv f ist bijektiv. Für unendliche Mengen ist das im Allgemeinen falsch. iese können injektiv auf echte Teilmengen abgebildet werden, ebenso gibt es surjektive Abbildungen einer unendlichen Menge auf sich selbst, die keine ijektionen sind. Solche Überraschungen werden im Artikel Hilberts Hotel detaillierter beschrieben, siehe dazu auch edekind Unendlichkeit. Sind die Funktionen f: A und g: bijektiv, dann gilt dies auch für die Verkettung g f : A. ie Umkehrfunktion von g f ist dann f g. Ist g f bijektiv, dann ist f injektiv und g surjektiv.

5 Ist f : A eine Funktion und gibt es eine Funktion g: A, die die beiden Gleichungen g f = id A (id A = Identität auf der Menge A) f g = id (id = Identität auf der Menge ) erfüllt, dann ist f bijektiv, und g ist die Umkehrfunktion von f, also g = f. ie ijektionen einer Menge A in sich selbst bilden, zusammen mit der Verkettung als Verknüpfung, eine Gruppe, die, falls A endlich ist, symmetrische Gruppe heißt. 5

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 2.1 .1 Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen & Gleichungssysteme Quadratische und Gleichungen

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

1.3 Abbildungen. Definition : Abbildung, Definitionsbereich, Zielbereich, Bildmenge

1.3 Abbildungen. Definition : Abbildung, Definitionsbereich, Zielbereich, Bildmenge Abbildungen Grundlagen der Mathematik Abbildungen Deinition : Abbildung, Deinitionsbereich, Zielbereich, Bildmenge Eine Abbildung : D Z ordnet jedem Element D eindeutig ein Z zu D heißt Deinitionsbereich

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2

4.1 Definition. Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn. = y 1. = y 2. xfy 1. xfy 2 4.1 Definition Gegeben: Relation f X Y f heißt Funktion (Abbildung) von X nach Y, wenn xfy 1 xfy 2 = y 1 = y 2 Y heißt Zielbereich oder Zielmenge von f. Statt (x, y) f oder xfy schreibt man y = f(x). Vollständige

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

4.4 Funktionen [ Gamut 41-44, Partee 30-36, Chierchia ]

4.4 Funktionen [ Gamut 41-44, Partee 30-36, Chierchia ] 4.4 Funktionen [ Gamut 41-44, Partee 30-36, Chierchia 536-539 ] Funktionen sind spezielle binäre Relationen bzw. spezielle bbildungen und damit nichts anderes als spezielle Mengen. Funktionen werden gewöhnlich

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Vorkurs Mathematik Einführung in das mathematische Denken. Übungsaufgaben

Vorkurs Mathematik Einführung in das mathematische Denken. Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik Einführung in das mathematische Denken Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe 1. Schreiben Sie folgende

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 5. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 5. Vorlesung 1 / 30 Themen

Mehr

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016 HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre

Mehr

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich

3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Spickzettel Mathe C1

Spickzettel Mathe C1 Spickzettel Mathe C1 1 Mengenlehre 1.1 Potenzmenge Die Potenzmenge P (Ω) einer Menge Ω ist die Menge aller Teilmengen von Ω. Dabei gilt: P (Ω) := {A A Ω} card P (Ω) = 2 card Ω P (Ω) 1.2 Mengenalgebra Eine

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N,

Funktionen (Teschl/Teschl 5.2) Beispiele. Eine Funktion (oder Abbildung) f : M N, Funktionen (Teschl/Teschl 5.2) Eine Funktion (oder Abbildung) f : M N, x f (x) ordnet jedem Element x einer Menge M (Denitionsbereich) eindeutig ein Element y = f (x) einer Menge N (Werte- oder Bildbereich)

Mehr

Musterlösung zu Blatt 11, Aufgabe 1

Musterlösung zu Blatt 11, Aufgabe 1 Musterlösung zu Blatt 11, Aufgabe 1 I Aufgabenstellung Es sei I =[a, b] ein kompaktes Intervall. (a) Zeigen Sie, daß eine stetige Funktion f : I R genau dann injektiv ist, wenn sie strikt monoton ist.

Mehr

Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 26. September 2016, Fehler und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y

6 Permutationen. Beispiele: a) f : R R, f(x) = x 2. b) f : R R, f(x) = e x. c) f : R 2 R, x (Projektion auf die x Achse) y 6 Permutationen Seien und B Mengen. Eine bbildung von nach B ist eine Vorschrift f, die jedem Element x ein eindeutig bestimmtes Element y = f(x) B zuordnet. Schreibe f : B, x f(x) Beispiele: a) f : R

Mehr

Kapitel 3 Relationen, Ordnung und Betrag

Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Mathematischer Vorkurs TU Dortmund Seite 27 / 254 Kapitel 3 Relationen, Ordnung und Betrag Definition 3.1 (Relationen)

Mehr

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Abbildungen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Abbildungen Die wichtigsten Relationen sind die Abbildungen: Eine Abbildung (A,B,f ) von A nach

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

Funktionen. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Ihre Fragen Funktionen SetlX Funktionen Verkettung und Mehrstelligkeit

Funktionen. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Ihre Fragen Funktionen SetlX Funktionen Verkettung und Mehrstelligkeit Funktionen Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Funktionen Slide 1/23 Agenda Ihre Fragen Funktionen SetlX Funktionen Verkettung und Mehrstelligkeit Diskrete

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!

Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt! Relationen, Funktionen und Partitionen 1. Geordnetes Paar Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen

Mehr

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok.

Quiz Analysis 1. Lösungen zu den Aufgaben M1 bis M7 der Probeklausur. Mathematisches Institut, WWU Münster. Karin Halupczok. Quiz Analysis 1 Mathematisches Institut, WWU Münster Karin Halupczok WiSe 2011/2012 Lösungen zu den Aufgaben M1 bis M7 der Probeklausur 1 Aufgabe M1: Fragen zu Folgen, Reihen und ihre Konvergenz 2 Aufgabe

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

Ableitung einer Betragsfunktion Differenzierbarkeit

Ableitung einer Betragsfunktion Differenzierbarkeit Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Funktionalgleichungen I

Funktionalgleichungen I Schweizer Mathematik-Olympiade smo osm Funktionalgleichungen I Thomas Huber Aktualisiert: 2. März 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Grundlegende Lösungstechniken 3 1.1 Einsetzen...................................

Mehr

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet:

Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: Abbildung Unter einer Abbildung f von einer Menge A in eine Menge B versteht man eine Vorschrift, die jedem a A eindeutig ein bestimmtes b = f (a) B zuordnet: f : A B. Für die Elementzuordnung verwendet

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

4.4 Funktionen. Funktionen sind spezielle binäre Relationen bzw. spezielle Abbildungen und damit spezielle Mengen.

4.4 Funktionen. Funktionen sind spezielle binäre Relationen bzw. spezielle Abbildungen und damit spezielle Mengen. 4.4 Funktionen Funktionen sind spezielle binäre Relationen bzw. spezielle Abbildungen und damit spezielle Mengen. Funktionen werden gewöhnlich mit f, g,... oder F, G,... notiert. Johannes Dölling: Logik

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Warum Informatiker Funktionen brauchen Prof. Dr. Wolfgang Konen Mathematik, WS03 30.0.03 4. Reelle Funktionen 4.. Warum Informatiker Funktionen brauchen Funktionen beschreiben Zusammenhänge zwischen Zielgrößen und Einflußgrößen und sind damit

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Diskrete Strukturen Vorlesungen 5 und 6

Diskrete Strukturen Vorlesungen 5 und 6 Sebastian Thomas RWTH Aachen, WS 2016/17 07.11.2016 09.11.2016 Diskrete Strukturen Vorlesungen 5 und 6 3 Abbildungen In diesem Abschnitt führen wir Abbildungen zwischen Mengen ein. Während Mengen von der

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

Lineare Algebra I. Lösung 3.1:

Lineare Algebra I. Lösung 3.1: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 3 Prof. Dr. Markus Schweighofer 18.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 3.1: (a) Sei

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Funktionen, Mächtigkeit, Unendlichkeit

Funktionen, Mächtigkeit, Unendlichkeit Funktionen, Mächtigkeit, Unendlichkeit Nikolai Nowaczyk http://math.nikno.de, Lars Wallenborn http://www.wallenborn.net/ Frühjahrsakademie 12.04. - 14.04.2013 Inhaltsverzeichnis

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr