3 Zusammenhangsmaße Zusammenhangshypothesen

Größe: px
Ab Seite anzeigen:

Download "3 Zusammenhangsmaße Zusammenhangshypothesen"

Transkript

1 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert (Größe, Gewicht, Längen, Rohscore, Temperatur...) 2) rang- oder ordinalskaliert (Noten, Rangreihen, Dienstgrade, Beliebtheit von Personen...) 3) nominalskaliert (Geschlecht, Bildungsgrad, Haarfarbe, Beruf...) b) Art der Variable 1) Quantitativ I) stetig wenn sie (theoretisch) unendlich viele Ausprägungen/Intervalle annehmen kann (wie Größe, Gewicht, Längen,...) II) diskret, wenn sie nur eine bestimmte, endliche Anzahl aufweist (z.b: Anzahl der Personen in einem Raum, Testscore,...). 2) Qualitativ wenn sie nur beschränkte Ausprägungen oder in Klassen zusammengefasst ist. I) Dichotom: 2 Ausprägungen (z.b: Geschlecht, Versuchs- Kontrollgruppe, Psychologie vs. Nicht-PsychologiestudentInnen II) Polytom: mehr als 2 Ausprägungen (z.b: Bildung, Haarfarbe, Beruf...) Intervallskala Rangskala Nominalskala Quantitativ stetig, diskret Qualitativ dichotom, polytom 3.1 Arten von Korrelationen Definitionen: Produktmomentkorrelation (Pearson) r xy : geht von 1 bis +1; Verwendung grundsätzlich bei intervallskalierten, quantitativen Variablen Rangkorrelation (Spearman) r`: geht von 1 bis +1; Verwendung grundsätzlich bei rangskalierten Variablen Kendall-Tau-Korrelation: ist der Spearmankorrelation sehr ähnlich, nützt aber die Ranginformation besser aus. (ebenfalls für rangskalierte Daten) Vierfelderkorrelation (phi): geht von 1 bis +1; Verwendung bei 2 nominalskalierten dichotomen (qualitativen) Variablen (z.b.: Geschlecht und Raucher/Nichtraucher) Partielle Korrelation: geht von 1 bis +1; Um den Einfluss einer möglichen dritten Variable (intervenierenden oder Störvariable) auszuschließen und die reine Korrelation zwischen den 2 gewünschten Variablen anzuzeigen. (Voraussetzung wie Pearson Korrelation) Kontingenzkoeffizient (CC): geht von bis 1; Verwendung bei 2 qualitativen Variablen, wobei mindestens eine polytom (mehrkategoriell) ist. Cramer V: geht von bis 1; ist dem CC sehr ähnlich und wird ebenfalls bei 2 qualitativen, dichotomen/polytomen Variablen verwendet. 16

2 3.2 Beispiele Beispiel 1: Pearson Korrelation zwischen Körpergröße (cm) und Gewicht (kg) Ein klassisches Beispiel: beide Variablen sind einerseits intervallskaliert (oder sogar verhältnisskaliert) und andererseits quantitativ (es gibt theoretisch unendlich viele Ausprägungen). Logischer Weise (wie aus der Praxis bekannt) sollten die beiden Variablen korrelieren. (Jemand der größer ist, ist in der Regel auch schwerer.) Analysieren Korrelation Bivariat... gewünschten 2 Variablen (hier Größe und Gewicht) hinzufügen Pearson wählen (=Produkt-Moment-Korrelation) signifikante Korrelationen markieren anklicken zweiseitig ok Die Korrelation ergibt,635, das Bestimmtheitsmaß (Korrelation zum Quadrat; selbsterrechnet) beträgt r 2 = 4%. Die zweiseitige Signifikanzprüfung ergibt eine Signifikanz von, bei einer Irrtumswahrscheinlichkeit von,1. Es besteht demnach ein mittelmäßiger signifikant positiver Zusammenhang zwischen Gewicht und Größe. Korrelationen CM KG CM Korrelation nach Pearson 1,,635 Signifikanz (2-seitig),, N KG Korrelation nach Pearson,635 1, Signifikanz (2-seitig),, N ** Die Korrelation ist auf dem Niveau von,1 (2-seitig) signifikant. Beispiel 2: Spearman Korrelation und Kendall-Tau zwischen Deutsch und Englischnote. Deutsch und Englischnote sind beide rangskaliert, daher Spearman bzw. Kendall-Tau Analysieren Korrelation Bivariat... die 2 gewünschten Variablen eingeben Spearman und Kendall-Tau wählen signifikante Korrelationen markieren anklicken zweiseitig ok Die Korrelation r`=,436 (Spearman) sowie Kendall-Tau mit τ =,373 ist mit einem p-wert von, signifikant bei α =,1. Es besteht also ein signifikanter positiver Zusammenhang zwischen Deutsch und Englischnote in beiden Korrelationen. Korrelationen DEUTSCH ENGLISCH Kendall-Tau-b DEUTSCH Korrelationskoeffizient 1,,373 Sig. (2-seitig),, N ENGLISCH Korrelationskoeffizient,373 1, Sig. (2-seitig),, N

3 Spearman-Rho DEUTSCH Korrelationskoeffizient 1,,436 Sig. (2-seitig),, N ENGLISCH Korrelationskoeffizient,436 1, Sig. (2-seitig),, N ** Korrelation ist auf dem Niveau von,1 signifikant (2-seitig). Beispiel 3: Phi (Vierfelder)korrelation Frage: Besteht ein Zusammenhang zwischen Geschlecht und der besuchten Schulform (AHS und HTL) der Versuchspersonen Lösung: 2 dichotome Variablen und nominalskaliert, Frage nach Zusammenhang Vierfelderkorrelation für unabhängige Daten. Analysieren deskriptive Statistiken Kreuztabellen eine dichotome Variable in die Zeile und eine dichotome in die Spalte Statistik Phi und Cramer-V wählen (ev. auch Korrelationen ) weiter ev. Gruppierte Balkendiagramme anzeigen ok Geschlecht * besuchte Schulform2 Kreuztabelle Anzahl besuchte Schulform Gesamt Ahs HTL Geschlecht männlich weiblich Gesamt Symmetrische Maße Nominal- bzgl. Nominalmaß Wert Asymptotischer Näherungsweises Näherungsweise Standardfehler T Signifikanz Phi -,72,136 Cramer-V,72,136 Der p-wert der Phi-Korrelation beträgt,136 (nicht signifikant); es bestehen daher keine signifikanten Zusammenhänge zwischen Geschlecht und Schulform. Beispiel 4: Kontingenzkoeffizient CC bzw. Cramer V Frage: besteht ein Zusammenhang zwischen der besuchten Schulform (Ahs, Htl, Hbla, Andere) und dem aktuellen Studiensemester (1-9) der Personen? Lösung: 2 qualitative, polytome Variablen CC bzw. Cramer V. Analysieren deskriptive Statistiken Kreuztabellen eine polytome Variable in die Zeile und eine polytome in die Spalte Statistik Kontingenzkoeffiezient und Cramer-V wählen weiter ev. Gruppierte Balkendiagramme anzeigen ok 18

4 Symmetrische Maße Wert Näherungsweise Signifikanz Nominal- bzgl. Nominalmaß Phi,179,962 Cramer-V,14,962 Kontingenzkoeffizient,176,962 Anzahl der gültigen Fälle 412 a Die Null-Hyphothese wird nicht angenommen. b Unter Annahme der Null-Hyphothese wird der asymptotische Standardfehler verwendet. Interpretation: 1) CC: Der Kontingenzkoeffiezient wird nur unkorrigiert ausgegeben! Man muss daher händisch folgende Berechnung (Korrektur) durchführen (da CC von der Größe der Tabelle abhängig ist). Nach der Korrektur geht CC von bis 1 und ist leichter interpretierbar: min( r, s) 1 1) Berechnung von C max : Cmax = wobei r die Reihen und s die Spalten der min( r, s) Tabelle sind. In unserem Beispiel gibt es 9 Zeilen und 4 Spalten. Min(r,s) ist also 4. 3 C max = =,86 4 C,176 2) Berechnung des korrigierten CC: C korr = = =, 24 C,86 Der korrigierte CC beträgt,24, bei einem p-wert von,962 (siehe Tabelle). Es besteht daher kein signifikanter Zusammenhang zwischen besuchter Schulform und Anzahl der Semester. max 2) Cramer-V: Auch der Cramer-V Wert ist mit,14 und einem p-wert von,962 nicht signifikant. Beispiel 5: Partielle Korrelation r xy.z Frage: Spielt das Alter eine Rolle in Bezug auf den Zusammenhang von Mathe- und Allgemeinwissen? Lösung: partielle Korrelation mit Alter als eventuelle Störvariable, welche eine Scheinkorrelation zwischen den beiden Variablen Mathe und Allgemeinwissen verursachen könnte. Falls das Alter keinen Einfluss auf die beiden Variablen ausübt, entspricht die partielle Korrelation ungefähr der Produktmomentkorrelation! Analysieren Korrelation Partiell die zwei gewünschten Variablen in Variablen einfügen (hier: Mathe und Allgemeinwissen) Störvariable in Kontrollvariable eingeben (hier: Alter) zweiseitig ok 19

5 - - - P A R T I A L C O R R E L A T I O N C O E F F I C I E N T S Controlling for.. ALLGW AGE (=Alter) MATHE ALLGW 1,,3613 ( ) ( 97) P=, P=, MATHE,3613 1, ( 97) ( ) P=, P=, Die partielle Korrelation ergibt eine Korrelation von r xy.z,3613 (B = 13%). Im Vergleich dazu ergibt die Produktmomentkorrelation r xy =336 (B = 11%) (Muss noch separat errechnet werden; siehe Beispiel 1!) Die beiden Korrelationen sind also numerisch fast gleich. Das Alter übt demnach keinen relevanten Einfluss auf den Zusammenhang der beiden Variablen mathematisches und allgemeines Wissen aus. Anmerkung: Würde beispielsweise nur das Alter verantwortlich für die Korrelation sein, müsste beim Konstanthalten der Variable Alter (also bei der partiellen Korrelation) der Zusammenhang verschwinden, also r xy.z gegen gehen, während bei der Produktmomentkorrelation der Scheinzusammenhang bestehen würde, da das Alter nicht berücksichtigt wird. 2

6 4 Die einfache/multiple lineare Regression (vgl. Bortz S.174, Statistik for you S. 16) 4.1 Zweck der Regression: 1. Funktionalen Zusammenhang zwischen einer oder mehreren unabhängigen Variablen (UV) oder X und der abhängigen (AV) bzw. Y Variablen untersuchen. (vgl. Korrelation) 2. Untersuchung, ob von bestimmten Prädiktoren (X) auf die Variable Y geschlossen werden kann. (Werte prognostizieren bzw. vorhersagen) z.b.: Prädiktoren X: Geschlecht, Gewicht, Ausdauer, Alter Frage: Kann aufgrund dieser Prädiktoren die AV Sauerstoffverbrauch gut geschätzt bzw. vorausgesagt werden? 4.2 Stichworte: 1. Residuen: sind die Schätzfehler. Also die Differenz der geschätzten AV ( ŷ ) und der wahren AV (y): y ˆ i yi = ei = Re siduum wenn alle y ˆ i yi = ei dann ist die Regression sehr gut ausgefallen und der Zusammenhang der Prädiktoren und der AV ist hoch. 2. Regressionsgleichung y = x + x + x k k vgl. y = kx+d (lineare Funktion) wobei...konstante (der Abstand vom Ursprung zur Regressionsgeraden auf der y-achse; die Höhenlage der Regressionsgeraden (alternativ: d oder a yx )) (unbekannt!) 1, 2,... k...die Regressionskoeffizienten (alternativ: k oder b yx ) der Prädiktoren X (unbekannt!) x 1, x2,..., xk...die Unabhängigen Variablen, Prädiktorvariablen oder UV y...kriteriumsvariable oder AV Merke: verschiedene Bezeichnungen für : Statistik 1 SPSS Lineare Funktion Regressionskoeffizienten der b yx,,... k k (Steigung) 1 2 k Prädiktoren b = 1...k Konstante (Höhenlage der a yx, Intercept oder d (Konstante) Regressionsgeraden) Konstante Prädiktoren X Unabhängige bzw. X X= 1...n Einflussvariablen Kriterium Y Abhängige Variable Y = f(x) 21

7 3. Regressionsgerade Mit der Regressionsgeraden wird der Trend festgelegt, der die Punkte am besten beschreibt. Sie wird durch den Punkteschwarm so gelegt, dass die Abweichungen (Residuen) der einzelnen XY-Punkte zur Regressionsgerade ein Minimum werden. Da die Summe der positiven und negativen Residuen sich aber aufheben können, könnte es auch mehrere Regressionsgeraden geben (nicht eindeutig!). Daher soll die Summe der quadrierten Abweichungen (Residuen) ein Minimum ergeben. Schätzmethode: Ordinary least squares (Kleinste Quadrate Schätzung) Beispiel: 27 Personen, X-Achse: Gewicht (kg), Y-Achse: Körpergröße (cm) a yx : 124,563 b yx :,723 Eine Person die 6 Kilo wiegt ist laut dieser Regressionsgleichung wie groß?...wir setzten ein Y = kx + d y = 124,563 +,723 6 y = 167,943 Die Person ist dem Regressionsmodell zufolge ca. 168 cm groß. Eine positive Steigung bedeutet, dass die y-werte bei steigenden x-werten ebenfalls größer werden. (bei negativer Steigung umgekehrt) 22

8 4.3 Theoretisches Beispiel Frage: Kann aufgrund Geschlecht, Gewicht, Alter, Ausdauer auf den Sauerstoffverbrauch einer Person geschlossen werden? AV: Sauerstoffverbrauch UV: Geschlecht, Alter, Gewicht, Ausdauer Regressionsgleichung: Sauerstoffverbr. y= + 1 Geschlecht + 2 Alter + 3 Gewicht + 4 Ausdauer Die Regressionskoeffizienten ˆ (=Schätzer) werden geschätzt und es wird überprüft, welche ˆ optimal sind d.h. welche ˆ signifikante Einflüsse auf AV haben. Durch Einsetzen der Schätzer in das Regressionsmodell erhält man schließlich die geschätzte AV: Yˆ (geschätzter Sauerstoffverbrauch) 4.4 Praktisches Beispiel Frage: Kann aufgrund der Variablen Körpergröße der Mutter bzw. Körpergröße des Vaters auf die Körpergröße der Kinder geschlossen werden? AV: Körpergröße (des Kindes) UV: Körpergröße Mutter, Körpergröße Vater Regressionsgleichung: Körpergröße (y) = + 1iGröße _ Mutter + 2i Größe _ Vater Analysieren Regression Linear... in abhängige Variable die gewünschten AV einfügen (hier: Körpergröße des Kindes) in unabhängige Variable(n) die gewünschte(n) UV einfügen (hier: Körpergröße Mutter bzw. Vater) bei Methode schrittweise wählen Statistiken... Schätzer und Anpassungsgüte des Modells anklicken ok Tabelle 1: Modellzusammenfassung Modell R R-Quadrat Korrigiertes R-Quadrat Standardfehler des Schätzers 1,534,285,284 8,53 2,66,367,364 8,4 a Einflußvariablen : (Konstante), CM_M b Einflußvariablen : (Konstante), CM_M, CM_V Tabelle 2: ANOVA Modell Quadratsumme df Mittel der Quadrate F Signifikanz 1 Regression 11914, ,14 163,647, Residuen 29849, ,84 Gesamt 41763, Regression 15341, , ,742, Residuen 26421, ,61 Gesamt 41763, a Einflußvariablen : (Konstante), CM_M b Einflußvariablen : (Konstante), CM_M, CM_V c Abhängige Variable: CM 23

9 Tabelle 3: Koeffizienten Nicht standardisierte Standardisierte T Signifikanz Koeffizienten Koeffizienten Modell B Standardfehler Beta 1 (Konstante) 58,682 9,183 6,39, CM_M,78,55,534 12,792, 2 (Konstante) 21,889 1,17 2,185,29 CM_M,512,59,386 8,725, CM_V,393,54,322 7,284, a Abhängige Variable: CM Interpretation: Die Regression wurde schrittweise gewählt, d.h. die Prädiktoren werden der Reihe nach zur Gleichung hinzugefügt. Zuerst wird die Gleichung mit Prädiktor 1 (Modell 1 in den Tabellen) aufgestellt, im Modell 2 kommt der 2. Prädiktor in die Gleichung hinzu. 1) Tabelle 1: Modellprüfung! korrigiertes R-Quadrat (korrigiertes Bestimmtheitsmaß): Wird zur Modellprüfung herangezogen (also wie gut ist die Regression, wie gut ist der Zusammenhang zwischen UV und AV; wie sinnvoll ist es, die Regression anzuwenden) Zeigt den Anteil der erklärten Varianz von Y (hier: Größe) durch die Prädiktoren an (hier: Größe Vater bzw. Mutter). Modell 1 (also nur die Größe der Mutter) erklärt 28,5% der Varianz Modell 2: kommt die Größe des Vaters als Prädiktor noch dazu wird 36,7% der Varianz erklärt. 1-36,7% = 63,3% unerklärte Varianz (Schätzfehler) bleiben jedoch noch offen. Das Modell ist daher nicht sehr gut! Es fehlen also noch weitere wichtige/relevante Prädiktoren. 2) Tabelle 2: Modellprüfung! F-Wert: wird ebenfalls zur Modellprüfung herangezogen Die Hypothesen lauten: H : ˆ ˆ... ˆ = 1 = = k = (also alle Regressionskoeffizienten sind Null, sie sind also schlechte Prädiktoren bzw. Konstante) H : ˆ 1 j (also mindestens ein ist nicht ; min. ein Prädiktor beschreibt die AV gut) Die F-Werte sind in beiden Modellen signifikant mit den p-werten von,. Die Alternativhypothese wird angenommen. Das Modell ist daher sinnvoll, weil die Körpergröße von Vater und Mutter einen Einfluss auf AV (Größe Person) hat. 3) Tabelle 3: Regressionskoeffizienten! (b yx, a yx ) Folgende 2 Hypothesen für jeden einzelnen Koeffizienten 24 ˆ j :

10 H : ˆ j = (also der Regressionskoeffizient ist Null) H : ˆ 1 j (der Koeffizient ist ungleich Null) Wenn ˆ signifikant ungleich von ist dann ist der zugehörige Prädiktor X eine j gute/sinnvolle Vorhersage für Y. (Gemessen mit der Prüfgröße t = S tan dardfehler Folgende Koeffizienten sind aus der Tabelle ablesbar: Unter Konstante wird das a yx dargestellt (also die Höhenlage der Regressionsgeraden) Unter CM_M (Größe der Mutter) wird der Koeffizient b y1 des ersten Prädiktors abgebildet. Unter CM_V (Größe des Vaters) wird der Koeffizient b y2 des zweiten Prädiktors abgebildet. Aus Tabelle 3 kann man entnehmen dass alle Koeffizienten der Prädiktoren signifikante p- Werte aufweisen. (Konstante: p =,29; CM_M: p =,; CM_V: p =,) Die Prädiktoren Größe des Vaters bzw. der Mutter sind demnach sinnvolle Schätzer für die abhängige Variable Größe der Person. Händische Berechnung zur Veranschaulichung: Die Regressionsgleichung wird wie folgt aufgestellt: ) Körpergröße (y) = + 1Größe _ Mutter + 2Größe _ Vater oder (wie in Statistik 1) Körpergröße (y) = a yx + b Größe _ Mutter by2größe _ Vater y1 + Die Größe einer Person, dessen Mutter 162 cm und Vater 184 cm groß ist, kann aufgrund der Regressionsgleichung geschätzt werden. Eingesetzt werden folgende Werte aus Tabelle 3: = 21,889 (vgl. a yx ) 1=,512 (vgl. b y1 ) =,393 (vgl. b y2 ) 2 Körpergröße (y) = 21, *, *,393 Körpergröße = 177,145 Aufgrund der Regressionsgleichung ist die Person ca. 177 cm groß. Die wahre Größe dieser Person ist 178 (aus den Daten entnommen). Das Residuum ( wahrer Wert minus Schätzer) ist demnach ,145 =,855. (Die Regressionsgleichung ist umso besser, je kleiner die Residuen werden.) y yˆ 25

11 Variationen: Speichern der vorhergesagten Werte ( ŷ ): Speichern vorhergesagte Werte nicht standardisiert anklicken weiter Speichern der Residuen ( uˆ = y yˆ): Speichern Residuen nicht standardisiert anklicken weiter 26

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Kreuztabellenanalyse -Zusammenhangsmaße

Kreuztabellenanalyse -Zusammenhangsmaße Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse -Zusammenhangsmaße 14. Dezember 2007 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2:

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Kapitel 23 Lineare Regression

Kapitel 23 Lineare Regression Kapitel 23 Lineare Regression Sowohl einfache als auch multiple Regressionsanalysen können Sie mit dem Befehl STATISTIK REGRESSION LINEAR... durchführen. Dabei lassen sich mit Hilfe diverser Optionen zahlreiche

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme SPSS bietet die Möglichkeit, verschiedene Arten von Streudiagrammen zu zeichnen. Gehen Sie auf Grafiken Streu-/Punkt-Diagramm und wählen Sie die Option Einfaches

Mehr

Matthias Gabriel. Kurze Einführung in SPSS 11.5

Matthias Gabriel. Kurze Einführung in SPSS 11.5 Kurze Einführung in SPSS 11.5 001 überarbeitet Oktober 003 1 Inhaltsverzeichnis 1 Datenaufbereitung 4 1.1 Die SPSS-Matrix 4 1. Variablen definieren 5 1.3 Variablen verschieben, einfügen 5 1.4 Fälle (Personen)

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Statistik Einführung // Lineare Regression 9 p.2/72

Statistik Einführung // Lineare Regression 9 p.2/72 Statistik Einführung Lineare Regression Kapitel 9 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Ledold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Lineare Regression

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme 1 Korrelationen 3 Lineare Regression 6 Zusammenhang zwischen Korrelation, Regression und t-test 8 Streudiagramme SPSS bietet die Möglichkeit, verschiedene

Mehr

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation

Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Sozialer Abstieg und Konsum

Sozialer Abstieg und Konsum Sozialer Abstieg und Konsum Auswirkungen finanzieller Verknappung auf das Konsumverhalten Inaugural-Dissertation zur Erlangung des akademischen Grades einer Doktorin der Wirtschaftswissenschaft des Fachbereichs

Mehr

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3

Geschlecht + Anfangsgehalt. T-Test für das Anfangsgehalt Gruppenstatistiken. Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Der SPSS Output der aktuellen Computerübung zum Aufgabenblatt 3 Geschlecht + Anfangsgehalt 14000 399 403 7000 12000 335 Anfangsgehalt 10000 8000 6000 4000 2000 N = 28 63 185 291 227 52 215 158 88 284 193

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000 INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2 MODUL 13 EINFACHE LINEARE REGRESSION Erziehungswissenschaft/Haider

Mehr

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro

Auswerten mit Excel. Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro Auswerten mit Excel Viele Video-Tutorials auf Youtube z.b. http://www.youtube.com/watch?v=vuuky6xxjro 1. Pivot-Tabellen erstellen: In der Datenmaske in eine beliebige Zelle klicken Registerkarte Einfügen

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

6.2 Regressionsanalyse

6.2 Regressionsanalyse c-kennzahlensystem (ROCI) 6. Regressionsanalyse Die Regressionsanalyse zählt zu den wichtigsten Analysemethoden des Kommunikationscontrollings und hat ihre tiefen Wurzeln in der Statistik. Im Rahmen des

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Lösungen zum SPSS-Buch zweiter Teil Einführung in das quantitativ orientierte Forschen

Lösungen zum SPSS-Buch zweiter Teil Einführung in das quantitativ orientierte Forschen 1 Lösungen zum SPSS-Buch zweiter Teil Einführung in das quantitativ orientierte Forschen 2. Auflage Allgemeine Anmerkung Die Interpretationen zur Signifikanz erfolgen auf dem 5%-Nieveau. Kapitel 8 Studienaufgabe

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Bivariate Analyseverfahren

Bivariate Analyseverfahren Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung:

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA)

Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) Interdisziplinäres Seminar Lineare Strukturgleichungsmodelle (LISREL) Konfirmatorische Faktorenanalyse (CFA) WS 2008/09 19.11.2008 Julia Schiele und Lucie Wink Dozenten: Prof. Dr. Bühner, Prof. Dr. Küchenhoff

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0)

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0) Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische e Lösung von Grundaufgaben mit SPSS (ab V..0) Text: akmv_v.doc Daten: akmv??.sav Lehrbuch: W. Timischl, Biostatistik. Wien - New York:

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

6. Auswertung mehrdimensionaler Daten

6. Auswertung mehrdimensionaler Daten 6. Auswertung mehrdimensionaler Daten Bisher: Auswertungsmethoden für Daten eines einzelnen Merkmals, z.b. Diskrete Klassierung Grafische Darstellungen (Verteilungsfunktion) Lagemaße Streungsmaße Schiefemaße

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische irtschaftsforschung, SS 2009 ach: Prüfer: Bachelorprüfung Praxis der empirischen irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail

Mehr

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate

3.3 Das allgemeine lineare Modell (ALM), Methode der kleinsten Quadrate 31 und 31 und (), Methode der 33 Das allgemeine (), Methode der kleinsten Quadrate 37 Modelle mit Messwiederholungen 1 / 113 Eine grundsätzliche Bemerkung zu Beginn Es bestehen viele Ähnlichkeiten zwischen

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

6.1 Grundbegriffe und historischer Hintergrund

6.1 Grundbegriffe und historischer Hintergrund Kapitel 6 Regression 61 Grundbegriffe und historischer Hintergrund Bedeutung der Regression: Eines der am häufigsten verwendeten statistischen Verfahren Vielfache Anwendung in den Sozialwissenschaften

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr