3 Zusammenhangsmaße Zusammenhangshypothesen

Größe: px
Ab Seite anzeigen:

Download "3 Zusammenhangsmaße Zusammenhangshypothesen"

Transkript

1 3 Zusammenhangsmaße Zusammenhangshypothesen Zusammenhänge (zwischen 2 Variablen) misst man mittels Korrelationen. Die Wahl der Korrelation hängt ab von: a) Skalenniveau der beiden Variablen: 1) intervallskaliert (Größe, Gewicht, Längen, Rohscore, Temperatur...) 2) rang- oder ordinalskaliert (Noten, Rangreihen, Dienstgrade, Beliebtheit von Personen...) 3) nominalskaliert (Geschlecht, Bildungsgrad, Haarfarbe, Beruf...) b) Art der Variable 1) Quantitativ I) stetig wenn sie (theoretisch) unendlich viele Ausprägungen/Intervalle annehmen kann (wie Größe, Gewicht, Längen,...) II) diskret, wenn sie nur eine bestimmte, endliche Anzahl aufweist (z.b: Anzahl der Personen in einem Raum, Testscore,...). 2) Qualitativ wenn sie nur beschränkte Ausprägungen oder in Klassen zusammengefasst ist. I) Dichotom: 2 Ausprägungen (z.b: Geschlecht, Versuchs- Kontrollgruppe, Psychologie vs. Nicht-PsychologiestudentInnen II) Polytom: mehr als 2 Ausprägungen (z.b: Bildung, Haarfarbe, Beruf...) Intervallskala Rangskala Nominalskala Quantitativ stetig, diskret Qualitativ dichotom, polytom 3.1 Arten von Korrelationen Definitionen: Produktmomentkorrelation (Pearson) r xy : geht von 1 bis +1; Verwendung grundsätzlich bei intervallskalierten, quantitativen Variablen Rangkorrelation (Spearman) r`: geht von 1 bis +1; Verwendung grundsätzlich bei rangskalierten Variablen Kendall-Tau-Korrelation: ist der Spearmankorrelation sehr ähnlich, nützt aber die Ranginformation besser aus. (ebenfalls für rangskalierte Daten) Vierfelderkorrelation (phi): geht von 1 bis +1; Verwendung bei 2 nominalskalierten dichotomen (qualitativen) Variablen (z.b.: Geschlecht und Raucher/Nichtraucher) Partielle Korrelation: geht von 1 bis +1; Um den Einfluss einer möglichen dritten Variable (intervenierenden oder Störvariable) auszuschließen und die reine Korrelation zwischen den 2 gewünschten Variablen anzuzeigen. (Voraussetzung wie Pearson Korrelation) Kontingenzkoeffizient (CC): geht von bis 1; Verwendung bei 2 qualitativen Variablen, wobei mindestens eine polytom (mehrkategoriell) ist. Cramer V: geht von bis 1; ist dem CC sehr ähnlich und wird ebenfalls bei 2 qualitativen, dichotomen/polytomen Variablen verwendet. 16

2 3.2 Beispiele Beispiel 1: Pearson Korrelation zwischen Körpergröße (cm) und Gewicht (kg) Ein klassisches Beispiel: beide Variablen sind einerseits intervallskaliert (oder sogar verhältnisskaliert) und andererseits quantitativ (es gibt theoretisch unendlich viele Ausprägungen). Logischer Weise (wie aus der Praxis bekannt) sollten die beiden Variablen korrelieren. (Jemand der größer ist, ist in der Regel auch schwerer.) Analysieren Korrelation Bivariat... gewünschten 2 Variablen (hier Größe und Gewicht) hinzufügen Pearson wählen (=Produkt-Moment-Korrelation) signifikante Korrelationen markieren anklicken zweiseitig ok Die Korrelation ergibt,635, das Bestimmtheitsmaß (Korrelation zum Quadrat; selbsterrechnet) beträgt r 2 = 4%. Die zweiseitige Signifikanzprüfung ergibt eine Signifikanz von, bei einer Irrtumswahrscheinlichkeit von,1. Es besteht demnach ein mittelmäßiger signifikant positiver Zusammenhang zwischen Gewicht und Größe. Korrelationen CM KG CM Korrelation nach Pearson 1,,635 Signifikanz (2-seitig),, N KG Korrelation nach Pearson,635 1, Signifikanz (2-seitig),, N ** Die Korrelation ist auf dem Niveau von,1 (2-seitig) signifikant. Beispiel 2: Spearman Korrelation und Kendall-Tau zwischen Deutsch und Englischnote. Deutsch und Englischnote sind beide rangskaliert, daher Spearman bzw. Kendall-Tau Analysieren Korrelation Bivariat... die 2 gewünschten Variablen eingeben Spearman und Kendall-Tau wählen signifikante Korrelationen markieren anklicken zweiseitig ok Die Korrelation r`=,436 (Spearman) sowie Kendall-Tau mit τ =,373 ist mit einem p-wert von, signifikant bei α =,1. Es besteht also ein signifikanter positiver Zusammenhang zwischen Deutsch und Englischnote in beiden Korrelationen. Korrelationen DEUTSCH ENGLISCH Kendall-Tau-b DEUTSCH Korrelationskoeffizient 1,,373 Sig. (2-seitig),, N ENGLISCH Korrelationskoeffizient,373 1, Sig. (2-seitig),, N

3 Spearman-Rho DEUTSCH Korrelationskoeffizient 1,,436 Sig. (2-seitig),, N ENGLISCH Korrelationskoeffizient,436 1, Sig. (2-seitig),, N ** Korrelation ist auf dem Niveau von,1 signifikant (2-seitig). Beispiel 3: Phi (Vierfelder)korrelation Frage: Besteht ein Zusammenhang zwischen Geschlecht und der besuchten Schulform (AHS und HTL) der Versuchspersonen Lösung: 2 dichotome Variablen und nominalskaliert, Frage nach Zusammenhang Vierfelderkorrelation für unabhängige Daten. Analysieren deskriptive Statistiken Kreuztabellen eine dichotome Variable in die Zeile und eine dichotome in die Spalte Statistik Phi und Cramer-V wählen (ev. auch Korrelationen ) weiter ev. Gruppierte Balkendiagramme anzeigen ok Geschlecht * besuchte Schulform2 Kreuztabelle Anzahl besuchte Schulform Gesamt Ahs HTL Geschlecht männlich weiblich Gesamt Symmetrische Maße Nominal- bzgl. Nominalmaß Wert Asymptotischer Näherungsweises Näherungsweise Standardfehler T Signifikanz Phi -,72,136 Cramer-V,72,136 Der p-wert der Phi-Korrelation beträgt,136 (nicht signifikant); es bestehen daher keine signifikanten Zusammenhänge zwischen Geschlecht und Schulform. Beispiel 4: Kontingenzkoeffizient CC bzw. Cramer V Frage: besteht ein Zusammenhang zwischen der besuchten Schulform (Ahs, Htl, Hbla, Andere) und dem aktuellen Studiensemester (1-9) der Personen? Lösung: 2 qualitative, polytome Variablen CC bzw. Cramer V. Analysieren deskriptive Statistiken Kreuztabellen eine polytome Variable in die Zeile und eine polytome in die Spalte Statistik Kontingenzkoeffiezient und Cramer-V wählen weiter ev. Gruppierte Balkendiagramme anzeigen ok 18

4 Symmetrische Maße Wert Näherungsweise Signifikanz Nominal- bzgl. Nominalmaß Phi,179,962 Cramer-V,14,962 Kontingenzkoeffizient,176,962 Anzahl der gültigen Fälle 412 a Die Null-Hyphothese wird nicht angenommen. b Unter Annahme der Null-Hyphothese wird der asymptotische Standardfehler verwendet. Interpretation: 1) CC: Der Kontingenzkoeffiezient wird nur unkorrigiert ausgegeben! Man muss daher händisch folgende Berechnung (Korrektur) durchführen (da CC von der Größe der Tabelle abhängig ist). Nach der Korrektur geht CC von bis 1 und ist leichter interpretierbar: min( r, s) 1 1) Berechnung von C max : Cmax = wobei r die Reihen und s die Spalten der min( r, s) Tabelle sind. In unserem Beispiel gibt es 9 Zeilen und 4 Spalten. Min(r,s) ist also 4. 3 C max = =,86 4 C,176 2) Berechnung des korrigierten CC: C korr = = =, 24 C,86 Der korrigierte CC beträgt,24, bei einem p-wert von,962 (siehe Tabelle). Es besteht daher kein signifikanter Zusammenhang zwischen besuchter Schulform und Anzahl der Semester. max 2) Cramer-V: Auch der Cramer-V Wert ist mit,14 und einem p-wert von,962 nicht signifikant. Beispiel 5: Partielle Korrelation r xy.z Frage: Spielt das Alter eine Rolle in Bezug auf den Zusammenhang von Mathe- und Allgemeinwissen? Lösung: partielle Korrelation mit Alter als eventuelle Störvariable, welche eine Scheinkorrelation zwischen den beiden Variablen Mathe und Allgemeinwissen verursachen könnte. Falls das Alter keinen Einfluss auf die beiden Variablen ausübt, entspricht die partielle Korrelation ungefähr der Produktmomentkorrelation! Analysieren Korrelation Partiell die zwei gewünschten Variablen in Variablen einfügen (hier: Mathe und Allgemeinwissen) Störvariable in Kontrollvariable eingeben (hier: Alter) zweiseitig ok 19

5 - - - P A R T I A L C O R R E L A T I O N C O E F F I C I E N T S Controlling for.. ALLGW AGE (=Alter) MATHE ALLGW 1,,3613 ( ) ( 97) P=, P=, MATHE,3613 1, ( 97) ( ) P=, P=, Die partielle Korrelation ergibt eine Korrelation von r xy.z,3613 (B = 13%). Im Vergleich dazu ergibt die Produktmomentkorrelation r xy =336 (B = 11%) (Muss noch separat errechnet werden; siehe Beispiel 1!) Die beiden Korrelationen sind also numerisch fast gleich. Das Alter übt demnach keinen relevanten Einfluss auf den Zusammenhang der beiden Variablen mathematisches und allgemeines Wissen aus. Anmerkung: Würde beispielsweise nur das Alter verantwortlich für die Korrelation sein, müsste beim Konstanthalten der Variable Alter (also bei der partiellen Korrelation) der Zusammenhang verschwinden, also r xy.z gegen gehen, während bei der Produktmomentkorrelation der Scheinzusammenhang bestehen würde, da das Alter nicht berücksichtigt wird. 2

6 4 Die einfache/multiple lineare Regression (vgl. Bortz S.174, Statistik for you S. 16) 4.1 Zweck der Regression: 1. Funktionalen Zusammenhang zwischen einer oder mehreren unabhängigen Variablen (UV) oder X und der abhängigen (AV) bzw. Y Variablen untersuchen. (vgl. Korrelation) 2. Untersuchung, ob von bestimmten Prädiktoren (X) auf die Variable Y geschlossen werden kann. (Werte prognostizieren bzw. vorhersagen) z.b.: Prädiktoren X: Geschlecht, Gewicht, Ausdauer, Alter Frage: Kann aufgrund dieser Prädiktoren die AV Sauerstoffverbrauch gut geschätzt bzw. vorausgesagt werden? 4.2 Stichworte: 1. Residuen: sind die Schätzfehler. Also die Differenz der geschätzten AV ( ŷ ) und der wahren AV (y): y ˆ i yi = ei = Re siduum wenn alle y ˆ i yi = ei dann ist die Regression sehr gut ausgefallen und der Zusammenhang der Prädiktoren und der AV ist hoch. 2. Regressionsgleichung y = x + x + x k k vgl. y = kx+d (lineare Funktion) wobei...konstante (der Abstand vom Ursprung zur Regressionsgeraden auf der y-achse; die Höhenlage der Regressionsgeraden (alternativ: d oder a yx )) (unbekannt!) 1, 2,... k...die Regressionskoeffizienten (alternativ: k oder b yx ) der Prädiktoren X (unbekannt!) x 1, x2,..., xk...die Unabhängigen Variablen, Prädiktorvariablen oder UV y...kriteriumsvariable oder AV Merke: verschiedene Bezeichnungen für : Statistik 1 SPSS Lineare Funktion Regressionskoeffizienten der b yx,,... k k (Steigung) 1 2 k Prädiktoren b = 1...k Konstante (Höhenlage der a yx, Intercept oder d (Konstante) Regressionsgeraden) Konstante Prädiktoren X Unabhängige bzw. X X= 1...n Einflussvariablen Kriterium Y Abhängige Variable Y = f(x) 21

7 3. Regressionsgerade Mit der Regressionsgeraden wird der Trend festgelegt, der die Punkte am besten beschreibt. Sie wird durch den Punkteschwarm so gelegt, dass die Abweichungen (Residuen) der einzelnen XY-Punkte zur Regressionsgerade ein Minimum werden. Da die Summe der positiven und negativen Residuen sich aber aufheben können, könnte es auch mehrere Regressionsgeraden geben (nicht eindeutig!). Daher soll die Summe der quadrierten Abweichungen (Residuen) ein Minimum ergeben. Schätzmethode: Ordinary least squares (Kleinste Quadrate Schätzung) Beispiel: 27 Personen, X-Achse: Gewicht (kg), Y-Achse: Körpergröße (cm) a yx : 124,563 b yx :,723 Eine Person die 6 Kilo wiegt ist laut dieser Regressionsgleichung wie groß?...wir setzten ein Y = kx + d y = 124,563 +,723 6 y = 167,943 Die Person ist dem Regressionsmodell zufolge ca. 168 cm groß. Eine positive Steigung bedeutet, dass die y-werte bei steigenden x-werten ebenfalls größer werden. (bei negativer Steigung umgekehrt) 22

8 4.3 Theoretisches Beispiel Frage: Kann aufgrund Geschlecht, Gewicht, Alter, Ausdauer auf den Sauerstoffverbrauch einer Person geschlossen werden? AV: Sauerstoffverbrauch UV: Geschlecht, Alter, Gewicht, Ausdauer Regressionsgleichung: Sauerstoffverbr. y= + 1 Geschlecht + 2 Alter + 3 Gewicht + 4 Ausdauer Die Regressionskoeffizienten ˆ (=Schätzer) werden geschätzt und es wird überprüft, welche ˆ optimal sind d.h. welche ˆ signifikante Einflüsse auf AV haben. Durch Einsetzen der Schätzer in das Regressionsmodell erhält man schließlich die geschätzte AV: Yˆ (geschätzter Sauerstoffverbrauch) 4.4 Praktisches Beispiel Frage: Kann aufgrund der Variablen Körpergröße der Mutter bzw. Körpergröße des Vaters auf die Körpergröße der Kinder geschlossen werden? AV: Körpergröße (des Kindes) UV: Körpergröße Mutter, Körpergröße Vater Regressionsgleichung: Körpergröße (y) = + 1iGröße _ Mutter + 2i Größe _ Vater Analysieren Regression Linear... in abhängige Variable die gewünschten AV einfügen (hier: Körpergröße des Kindes) in unabhängige Variable(n) die gewünschte(n) UV einfügen (hier: Körpergröße Mutter bzw. Vater) bei Methode schrittweise wählen Statistiken... Schätzer und Anpassungsgüte des Modells anklicken ok Tabelle 1: Modellzusammenfassung Modell R R-Quadrat Korrigiertes R-Quadrat Standardfehler des Schätzers 1,534,285,284 8,53 2,66,367,364 8,4 a Einflußvariablen : (Konstante), CM_M b Einflußvariablen : (Konstante), CM_M, CM_V Tabelle 2: ANOVA Modell Quadratsumme df Mittel der Quadrate F Signifikanz 1 Regression 11914, ,14 163,647, Residuen 29849, ,84 Gesamt 41763, Regression 15341, , ,742, Residuen 26421, ,61 Gesamt 41763, a Einflußvariablen : (Konstante), CM_M b Einflußvariablen : (Konstante), CM_M, CM_V c Abhängige Variable: CM 23

9 Tabelle 3: Koeffizienten Nicht standardisierte Standardisierte T Signifikanz Koeffizienten Koeffizienten Modell B Standardfehler Beta 1 (Konstante) 58,682 9,183 6,39, CM_M,78,55,534 12,792, 2 (Konstante) 21,889 1,17 2,185,29 CM_M,512,59,386 8,725, CM_V,393,54,322 7,284, a Abhängige Variable: CM Interpretation: Die Regression wurde schrittweise gewählt, d.h. die Prädiktoren werden der Reihe nach zur Gleichung hinzugefügt. Zuerst wird die Gleichung mit Prädiktor 1 (Modell 1 in den Tabellen) aufgestellt, im Modell 2 kommt der 2. Prädiktor in die Gleichung hinzu. 1) Tabelle 1: Modellprüfung! korrigiertes R-Quadrat (korrigiertes Bestimmtheitsmaß): Wird zur Modellprüfung herangezogen (also wie gut ist die Regression, wie gut ist der Zusammenhang zwischen UV und AV; wie sinnvoll ist es, die Regression anzuwenden) Zeigt den Anteil der erklärten Varianz von Y (hier: Größe) durch die Prädiktoren an (hier: Größe Vater bzw. Mutter). Modell 1 (also nur die Größe der Mutter) erklärt 28,5% der Varianz Modell 2: kommt die Größe des Vaters als Prädiktor noch dazu wird 36,7% der Varianz erklärt. 1-36,7% = 63,3% unerklärte Varianz (Schätzfehler) bleiben jedoch noch offen. Das Modell ist daher nicht sehr gut! Es fehlen also noch weitere wichtige/relevante Prädiktoren. 2) Tabelle 2: Modellprüfung! F-Wert: wird ebenfalls zur Modellprüfung herangezogen Die Hypothesen lauten: H : ˆ ˆ... ˆ = 1 = = k = (also alle Regressionskoeffizienten sind Null, sie sind also schlechte Prädiktoren bzw. Konstante) H : ˆ 1 j (also mindestens ein ist nicht ; min. ein Prädiktor beschreibt die AV gut) Die F-Werte sind in beiden Modellen signifikant mit den p-werten von,. Die Alternativhypothese wird angenommen. Das Modell ist daher sinnvoll, weil die Körpergröße von Vater und Mutter einen Einfluss auf AV (Größe Person) hat. 3) Tabelle 3: Regressionskoeffizienten! (b yx, a yx ) Folgende 2 Hypothesen für jeden einzelnen Koeffizienten 24 ˆ j :

10 H : ˆ j = (also der Regressionskoeffizient ist Null) H : ˆ 1 j (der Koeffizient ist ungleich Null) Wenn ˆ signifikant ungleich von ist dann ist der zugehörige Prädiktor X eine j gute/sinnvolle Vorhersage für Y. (Gemessen mit der Prüfgröße t = S tan dardfehler Folgende Koeffizienten sind aus der Tabelle ablesbar: Unter Konstante wird das a yx dargestellt (also die Höhenlage der Regressionsgeraden) Unter CM_M (Größe der Mutter) wird der Koeffizient b y1 des ersten Prädiktors abgebildet. Unter CM_V (Größe des Vaters) wird der Koeffizient b y2 des zweiten Prädiktors abgebildet. Aus Tabelle 3 kann man entnehmen dass alle Koeffizienten der Prädiktoren signifikante p- Werte aufweisen. (Konstante: p =,29; CM_M: p =,; CM_V: p =,) Die Prädiktoren Größe des Vaters bzw. der Mutter sind demnach sinnvolle Schätzer für die abhängige Variable Größe der Person. Händische Berechnung zur Veranschaulichung: Die Regressionsgleichung wird wie folgt aufgestellt: ) Körpergröße (y) = + 1Größe _ Mutter + 2Größe _ Vater oder (wie in Statistik 1) Körpergröße (y) = a yx + b Größe _ Mutter by2größe _ Vater y1 + Die Größe einer Person, dessen Mutter 162 cm und Vater 184 cm groß ist, kann aufgrund der Regressionsgleichung geschätzt werden. Eingesetzt werden folgende Werte aus Tabelle 3: = 21,889 (vgl. a yx ) 1=,512 (vgl. b y1 ) =,393 (vgl. b y2 ) 2 Körpergröße (y) = 21, *, *,393 Körpergröße = 177,145 Aufgrund der Regressionsgleichung ist die Person ca. 177 cm groß. Die wahre Größe dieser Person ist 178 (aus den Daten entnommen). Das Residuum ( wahrer Wert minus Schätzer) ist demnach ,145 =,855. (Die Regressionsgleichung ist umso besser, je kleiner die Residuen werden.) y yˆ 25

11 Variationen: Speichern der vorhergesagten Werte ( ŷ ): Speichern vorhergesagte Werte nicht standardisiert anklicken weiter Speichern der Residuen ( uˆ = y yˆ): Speichern Residuen nicht standardisiert anklicken weiter 26

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Kreuztabellenanalyse -Zusammenhangsmaße

Kreuztabellenanalyse -Zusammenhangsmaße Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse -Zusammenhangsmaße 14. Dezember 2007 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2:

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Kapitel 23 Lineare Regression

Kapitel 23 Lineare Regression Kapitel 23 Lineare Regression Sowohl einfache als auch multiple Regressionsanalysen können Sie mit dem Befehl STATISTIK REGRESSION LINEAR... durchführen. Dabei lassen sich mit Hilfe diverser Optionen zahlreiche

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000

EINFACHE LINEARE REGRESSION MODUL 13 PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2000 INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR DESKRIPTIVE STATISTIK ANALYSE UND DARSTELLUNG VON DATEN I GÜNTER HAIDER WS 1999/2 MODUL 13 EINFACHE LINEARE REGRESSION Erziehungswissenschaft/Haider

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Kapitel 3: Interpretationen

Kapitel 3: Interpretationen Kapitel 3: 1. Interpretation von Outputs allgemein... 1 2. Interpretation von Signifikanzen... 1 2.1. Signifikanztests / Punktschätzer... 1 2.2. Konfidenzintervalle... 2 3. Interpretation von Parametern...

Mehr

Regression mit Gretl Eine erste Einführung 1

Regression mit Gretl Eine erste Einführung 1 Kurzeinführung in Gretl S. 1 Regression mit Gretl Eine erste Einführung 1 Installation: Gretl für das entsprechende Betriebssystem herunterladen und die Setup-Datei ausführen. Hinweis: Für die Benutzung

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung:

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

6.1 Grundbegriffe und historischer Hintergrund

6.1 Grundbegriffe und historischer Hintergrund Kapitel 6 Regression 61 Grundbegriffe und historischer Hintergrund Bedeutung der Regression: Eines der am häufigsten verwendeten statistischen Verfahren Vielfache Anwendung in den Sozialwissenschaften

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG

Christian FG Schendera. Regressionsanalyse. mit SPSS. 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Christian FG Schendera Regressionsanalyse mit SPSS 2. korrigierte und aktualisierte Auflage DE GRUYTER OLDENBOURG Inhalt Vorworte V 1 Korrelation 1 1.1 Einführung 1 1.2 Erste Voraussetzung: Das Skalenniveau

Mehr

6.1.2 Die Interaktionseffekte von Dummy- und zentrierten metrischen Variablen

6.1.2 Die Interaktionseffekte von Dummy- und zentrierten metrischen Variablen Dr. Wolfgang Langer - Integrierte Veranstaltung Methoden IV WS 2002/2003-1 6.1.2 Die Interaktionseffekte von Dummy- und zentrierten metrischen Variablen Bei der Zentrierung handelt es sich um eine lineare

Mehr

Datenanalyse mit SPSS spezifische Analysen

Datenanalyse mit SPSS spezifische Analysen Datenanalyse mit SPSS spezifische Analysen Arnd Florack Tel.: 0251 / 83-34788 E-Mail: florack@psy.uni-muenster.de Raum 2.015 Sprechstunde: Dienstags 15-16 Uhr 25. Mai 2001 2 Auswertung von Häufigkeitsdaten

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0)

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0) Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische e Lösung von Grundaufgaben mit SPSS (ab V..0) Text: akmv_v.doc Daten: akmv??.sav Lehrbuch: W. Timischl, Biostatistik. Wien - New York:

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

Varianzanalyse. Seminar: Multivariate Verfahren Dr. Thomas Schäfer. Datum: 25. Mai 2010

Varianzanalyse. Seminar: Multivariate Verfahren Dr. Thomas Schäfer. Datum: 25. Mai 2010 Varianzanalyse Seminar: Multivariate Verfahren Dozent: Dr. Thomas Schäfer Referenten: Ralf Hopp, Michaela Haase, Tina Giska Datum: 25. Mai 2010 Gliederung I Theorieteil 1. Das Prinzip der Varianzanalyse

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Einfache und multiple Regressionsanalyse / Logistische Regressionsanalyse November 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 28. November 2012: Vormittag

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. Lineare Regression Statistisches Modell Realisierung mit der SPSS-Prozedur Regression

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. Lineare Regression Statistisches Modell Realisierung mit der SPSS-Prozedur Regression Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit Lineare Regression Statistisches Realisierung mit der SPSS-Prozedur Regression Statistische Zusammenhangsanalyse Lineare Regression Um zu untersuchen,

Mehr

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells

Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Die Auswertung dyadischer Daten anhand des Partner-Effekt-Modells Dorothea E. Dette-Hagenmeyer Was sind dyadische Daten? Dyadische Daten sind Daten von zwei oder mehreren Personen, die etwas miteinander

Mehr

Übungen zur Veranstaltung Statistik 2 mit SPSS

Übungen zur Veranstaltung Statistik 2 mit SPSS Raum 22, Tel. 39 4 Aufgabe 5. Wird der neue Film MatchPoint von Woody Allen von weiblichen und männlichen Zuschauern gleich bewertet? Eine Umfrage unter 00 Kinobesuchern ergab folgende Daten: Altersgruppe

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Fragen und Antworten zu Kapitel 18

Fragen und Antworten zu Kapitel 18 Fragen und Antworten zu Kapitel 18 (1) Nennen Sie verschiedene Zielsetzungen, die man mit der Anwendung der multiplen Regressionsanalyse verfolgt. Die multiple Regressionsanalyse dient der Kontrolle von

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Statistische Auswertungsverfahren mit SPSS. Prof. Dr. Andrea Raab Fachhochschule Ingolstadt

Statistische Auswertungsverfahren mit SPSS. Prof. Dr. Andrea Raab Fachhochschule Ingolstadt Inhaltliche Übersicht Informationen zum Programm SPSS Grundlagen der Programmbedienung in SPSS Befragung und Datenerstellung Daten und Variablen Deskriptive Analysemethoden 2 Das Programmpaket SPSS für

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

Multivariate Zeitreihenanalyse mit EViews 4.1

Multivariate Zeitreihenanalyse mit EViews 4.1 Multivariate Zeitreihenanalyse mit EViews 4.1 Unterlagen für LVen des Instituts für Angewandte Statistic (IFAS) Johannes Kepler Universität Linz Stand: 30. Mai 2005, Redaktion: Frühwirth-Schnatter 1 Deskriptive

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung Der Internetdienst für Ihre Online-Umfragen Leitfaden statistische Auswertung Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten einen Fragebogen

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

(2) Mittels welcher Methode ist es im ALM möglich kategoriale Variablen als Prädiktoren in eine Regressionsgleichung zu überführen?

(2) Mittels welcher Methode ist es im ALM möglich kategoriale Variablen als Prädiktoren in eine Regressionsgleichung zu überführen? Beispielaufgaben LÖSUNG (1) Grenzen Sie eine einfache lineare Regression von einem Random Intercept Modell mit nur einem Level1-Prädiktor ab! a. Worin unterscheiden sich die Voraussetzungen? - MLM braucht

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Erste Schritte mit SPSS - eine Anleitung

Erste Schritte mit SPSS - eine Anleitung Der Internetdienst für Ihre Online-Umfragen Erste Schritte mit SPSS - eine Anleitung -1- Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression I

Institut für Soziologie Dipl.-Soz. Benjamin Gedon. Methoden 2. Logistische Regression I Institut für Soziologie Dipl.-Soz. Methoden 2 Logistische Regression I Programm Ergänzung zu letzter Sitzung: Interpretation nichtlinearer Effekte Anwendungsbereich der logistischen Regression Entwicklung

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Versuchsauswertung mit Polynom-Regression in Excel

Versuchsauswertung mit Polynom-Regression in Excel Versuchsauswertung mit Polynom-Regression in Excel Aufgabenstellung: Gegeben sei die in Bild 1 gezeigte Excel-Tabelle mit Messwertepaaren y i und x i. Aufgrund bekannter physikalischer Zusammenhänge wird

Mehr

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit.

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit. 1. Schachbrett voller Reis Wir haben uns für mehr als 1000 kg entschieden, da wir glauben, dass aufgrund des stark ansteigenden Wachstums (exponentiell!) dieses Gewicht leicht zustande kommt. Anfangs eine

Mehr

Lineare Modelle in R: Einweg-Varianzanalyse

Lineare Modelle in R: Einweg-Varianzanalyse Lineare Modelle in R: Einweg-Varianzanalyse Achim Zeileis 2009-02-20 1 Datenaufbereitung Wie schon in der Vorlesung wollen wir hier zur Illustration der Einweg-Analyse die logarithmierten Ausgaben der

Mehr

Kapitel 3. Erste Schritte der Datenanalyse. 3.1 Einlesen und Überprüfen der Daten

Kapitel 3. Erste Schritte der Datenanalyse. 3.1 Einlesen und Überprüfen der Daten Kapitel 3 Erste Schritte der Datenanalyse 3.1 Einlesen und Überprüfen der Daten Nachdem die Daten erfasst worden sind, etwa mit Hilfe eines Fragebogens, ist die nächste Frage, wie ich sie in den Rechner

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

Notiz zur logistischen Regression

Notiz zur logistischen Regression Kapitel 1 Notiz zur logistischen Regression 1.1 Grundlagen Bei dichotomen abhängigen Variablen ergeben sich bei einer normalen linearen Regression Probleme. Während man die Ausprägungen einer dichotomen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Neuerungen in Minitab 16

Neuerungen in Minitab 16 Neuerungen in Minitab 16 minitab@additive-net.de - Telefon: 06172 / 5905-30 Willkommen zu Minitab 16! Die neueste Version der Minitab Statistical Software umfasst mehr als siebzig neue Funktionen und Verbesserungen,

Mehr

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at

Koeffizienten der Logitanalyse. Kurt Holm. Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at Koeffizienten der Logitanalyse Kurt Holm Almo Statistik-System www.almo-statistik.de holm@almo-statistik.de kurt.holm@jku.at 1 Kurt Holm Koeffizienten der Logitanalyse Eine häufig gestellte Frage lautet:

Mehr