Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167"

Transkript

1 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167

2 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine metrische abhängige Variable Analog zur bivariaten Regression wird auch hier die Abhängige als lineare Funktion der Unabhängigen modelliert: y = a + b 1 x 1 + b 2 x 2 mit a = Regressionskonstante b 1 = Steigungskoeffizient des ersten Merkmals x 1 = Ausprägung des ersten Merkmals b 2 = Steigungskoeffizient des zweiten Merkmals x 2 = Ausprägung des zweiten Merkmals Auch hier ist das Ziel, eine Gerade zu finden, die Quadratsumme der Residuen minimiert, also folgender Gleichung genügt: (yi ŷ i ) 2 = min! Statistik für SozialwissenschaftlerInnen II p.168

3 Beispiel Multivariate Regression Hypothesen: A: Je größer der Anteil der Katholiken, desto besser das CDU-Ergebnis. B: Je höher die Arbeitslosenquote, desto schlechter das CDU-Ergebnis. Wahlkreis y: CDU % x 1 : Kath. % x 2 : Arbeitslos % Neuwied 44,21 55,55 10,1 Ahrweiler 50,13 81,99 9,6 Koblenz 46,6 73,14 9,3 Cochem 50,94 70,78 10,8 Kreuznach 39,1 32,6 12 Bitburg 52,68 91,4 9,3 Trier 44,82 87,97 9,9 Montabaur 43,42 50,76 8,4 Mainz 40,86 51,36 8,3 Worms 37,99 32,81 9,6 Frankenthal 39,71 31,98 10,6 Ludwigshafen 40,86 38,01 10,1 Neustadt - S 46,48 45,61 9,3 Kaiserslautern 37,68 34,89 14,4 Pirmasens 42,79 45,98 14,4 Südpfalz 45,09 55,07 10,1 Statistik für SozialwissenschaftlerInnen II p.169

4 Berechnung der Regressionskoeffizienten Wie auch bei der bivariaten Regression werden die Regressionskoeffizienten a, b 1 und b 2 mit der Methode der kleinsten Quadrate geschätzt. Da die Ableitung der Koeffizienten ausgesprochen kompliziert ist, hier nur die Formeln der linearen Regression mit 2 Unabhängigen: a = ȳ b 1 x 1 b 2 x 2 b 1 = r yx 1 r yx2 r x1 x 2 1 r 2 x 1 x 2 s y s x1 b 2 = r yx 2 r yx1 r x1 x 2 1 r 2 x 1 x 2 s y s x2 Die Koeffizienten können zwischen ± schwanken, mit 0 als neutralem Wert, bei dem kein Effekt der Variable angenommen werden kann. Statistik für SozialwissenschaftlerInnen II p.170

5 Beispiel: Regressionskoeffizienten Korrelationsmatrix Stdabw. Mittelw Fälle y x 1 x 2 s n y 1 0,85-0,35 4,59 43,96 16 x 1 1-0,37 20,23 54,99 16 x 2 1 1,80 10,39 16 b 1 = r yx 1 r yx2 r x1 x 2 1 r 2 x 1 x 2 s y s x1 = 0, 85 ( 0, 35 0, 37) 1 ( 0, 37) 2 4, 59 20, 23 = 0, 19 b 2 = r yx 2 r yx1 r x1 x 2 1 r 2 x 1 x 2 s y s x2 = 0, 35 (0, 85 0, 37) 4, 59 1 ( 0, 37) 2 1, 8 = 0, 10 a = ȳ b 1 x 1 b 2 x 2 = 42, 96 0, 19 54, , 10 10, 39 = 34, 64 Statistik für SozialwissenschaftlerInnen II p.171

6 Standardisierte Koeffizienten Regressionskoeffizienten (b i ) sind abhängig von der Skala der unabhängigen Variablen und können daher nicht miteinander verglichen werden (bzgl. Stärke des Effektes) Abhilfe: Standardisierte Koeffizienten b i sie sind skalenunabhängig und schwanken zwischen 1 und +1: b 1 = r yx 1 r yx2 r x1 x 2 1 r 2 x 1 x 2 = b 1 s x 1 s y b 2 = r yx 2 r yx1 r x1 x 2 1 r 2 x 1 x 2 = b 2 s x 2 s y Je näher b i an +1( 1), desto stärker der positive (negative) Zusammenhang. 0 bedeutet kein Effekt. b Koeffizienten werden von Statistikprogrammen meist mit β bezeichnet. Statistik für SozialwissenschaftlerInnen II p.172

7 Beispiel: Standardisierte Koeffizienten Für unser Beispiel erhalten wir mit den Werten aus der Korrelationsmatrix: b 1 = b 1 s x 1 s y = 0, 19 20, 23 4, 59 b 2 = b 2 s x 2 s y = 0, 10 1, 8 4, 59 = 0, 84 = 0, 04 Demnach ist der Effekt des Katholizismus wesentlich stärker als der der regionalen Arbeitslosigkeit. Statistik für SozialwissenschaftlerInnen II p.173

8 Der Determinationskoeffizient R 2 Die Berechnung und Interpretation des Determinationskoeffizienten erfolgt auf gleiche Weise wie bei der bivariaten Regression: R 2 ist das Verhältnis der erklärten Streuung zur Gesamtstreuung: R 2 = erklärte Streuung Gesamtstreuung = n (ŷ i ȳ) 2 i=1 n (y i ȳ) 2 i=1 Statistik für SozialwissenschaftlerInnen II p.174

9 Beispiel: R 2 Wahlkreis y i ŷ i (y i ȳ) (y i ȳ) 2 (ŷ i ȳ) (ŷ i ȳ) 2 Neuwied 44,21 44,10 0,25 0,06 0,14 0,02 Ahrweiler 50,13 49,18 6,17 38,07 5,22 27,26 Koblenz 46,6 47,53 2,64 6,97 3,57 12,76 Cochem 50,94 46,92 6,98 48,72 2,96 8,73 Kreuznach 39,1 39,52 4,86 23,62 4,44 19,69 Bitburg 52,68 51,00 8,72 76,04 7,04 49,61 Trier 44,82 50,28 0,86 0,74 6,32 40,00 Montabaur 43,42 43,38 0,54 0,29 0,58 0,34 Mainz 40,86 43,50 3,1 9,61 0,46 0,21 Worms 37,99 39,83 5,97 35,64 4,13 17,05 Frankenthal 39,71 39,56 4,25 18,06 4,40 19,35 Ludwigshafen 40,86 40,76 3,1 9,61 3,20 10,22 Neustadt - Sp 46,48 42,30 2,52 6,35 1,66 2,76 Kaiserslautern 37,68 39,69 6,28 39,44 4,27 18,24 Pirmasens 42,79 41,80 1,17 1,37 2,16 4,68 Südpfalz 45,09 44,01 1,13 1,28 0,05 0,00 703,36 315,87 230,93 ȳ 43,96 R 2 = n i=1 (ŷ i ȳ) 2 n i=1 (y i ȳ) 2 = 230,93 315,87 = 0, 73 Statistik für SozialwissenschaftlerInnen II p.175

10 Signifikanztest Gesamtmodell Um zu überprüfen, ob dem Modell als Ganzes Signifikanz zugeschrieben werden kann, wird eine F -verteilte Prüfgröße berechnet Der Signifikanztest testet die Hypothese H 0 : alle β i = 0 H 1 : mindestens ein β i 0 Berechnung von F emp nach der Formel F emp = R 2 k 1 R 2 n k 1 mit df Zähler = k und df Nenner = n k 1 mit n =Zahl der Fälle k =Zahl der Unabhängigen Statistik für SozialwissenschaftlerInnen II p.176

11 Beispiel Signifikanz Gesamtmodell Da in unserem Beispiel R 2 = 0, 73 und n = 16; k = 2 kann F emp berechnet werden als F emp = R 2 k 1 R 2 n k 1 = 0, , = 17, 57 mit df Zähler = 2 und df Nenner = 13 kann für α = 0, 05 ein kritisches F von 3,81 ermittelt werden. Da F emp > F krit wird die H 0 verworfen und die H 1 beibehalten. Mindestens ein β-koeffizient ist ungleich Null. Statistik für SozialwissenschaftlerInnen II p.177

12 mit Signifikanztest Koeffizienten Um eine Aussage darüber machen zu können, welche der einzelnen unabhängigen Variablen einen signifikanten Effekt auf die Abhängige ausüben, müssen die einzelnen Koeffizienten auf Signifikanz geprüft werden: H 0 : β i = 0 (ungerichtet, auch gerichtet möglich) Die Prüfgröße folgt einer t-verteilung und ist bereits aus der bivariaten Regressionsanalyse bekannt: t = b i s bi mit df = n k 1 s bi = Standardfehler des Regressionskoeffizienten b i Statistik für SozialwissenschaftlerInnen II p.178

13 Beispiel Signifikanz d. Koeffizienten Da der F -Test keine Auskunft darüber gegeben hatte, welche Koeffizienten sich von Null unterscheiden, müssen die Koeffizienten von Katholizismus (x 1 ) und Arbeitslosigkeit (x 2 ) noch einzeln auf Signifikanz geprüft werden: für x 1 (Katholizsmus): H 1 : β > 0; H 0 : β 0 für x 2 (Arbeitslosigkeit): H 1 : β < 0; H 0 : β 0 Die Standardfehler der Koeffizienten lauten: s b1 = 0, 035 und s b2 = 0, 394, also sind für x 1 : t emp = b 1 s b1 = 0,19 0,035 für x 2 : t emp = b 2 s b2 = 0,10 0,394 = 5, 43 mit df = 13 = 0, 25 mit df = 13 Statistik für SozialwissenschaftlerInnen II p.179

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Das lineare Regressionsmodell Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Mittelwertvergleiche, Teil II: Varianzanalyse

Mittelwertvergleiche, Teil II: Varianzanalyse FB 1 W. Ludwig-Mayerhofer Statistik II 1 Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil II: FB 1 W. Ludwig-Mayerhofer Statistik II 2 : Wichtigste Eigenschaften Anwendbar auch bei mehr als

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Die Korrelation von Merkmalen

Die Korrelation von Merkmalen Die Korrelation von Merkmalen In der Analse von Datenmaterial ist eines der Hauptziele der Statistik eine Abhängigkeit bzw. einen Zusammenhang zwischen Merkmalen zu erkennen. Die Korrelation ermittelt

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Wiederholung Drittvariablen Nicht-lineare Effekte Zusammenfassung. Regression III. Statistik I. Sommersemester 2009. Statistik I Regression III (1/36)

Wiederholung Drittvariablen Nicht-lineare Effekte Zusammenfassung. Regression III. Statistik I. Sommersemester 2009. Statistik I Regression III (1/36) Regression III Statistik I Sommersemester 2009 Statistik I Regression III (1/36) Wiederholung Zuwandererquote FN 2004 10 15 20 25 5 10 15 20 Statistik I Regression III (2/36) Zum Nachlesen Agresti/Finlay

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung:

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Herzlich willkommen zur Vorlesung Statistik

Herzlich willkommen zur Vorlesung Statistik FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik Zusammenhänge zwischen nominalen (und/oder ordinalen) Merkmalen: analyse und II: Signifikanztests und Maße der Assoziation

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression 2., Linear 2., lineare multiple 2., lineare 2.1 2.2 Lineare 2.1 2.2 Lineare 2.7 Partielle 2.7 Partielle 1 / 149 2., Linear 2., lineare 2.1 2.2 Lineare 2.1 2.7 Partielle 2 / 149 2.1 Beispiel: Arbeitsmotivation

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Bitte kreuzen Sie alle richtigen Alternativen an! Beachten Sie dabei, daß eine falsch angekreuzte Alternative eine richtig angekreuzte aufhebt!

Bitte kreuzen Sie alle richtigen Alternativen an! Beachten Sie dabei, daß eine falsch angekreuzte Alternative eine richtig angekreuzte aufhebt! Aufgabe M1 (6 Punkte): Bitte kreuzen Sie alle richtigen Alternativen an! Beachten Sie dabei, daß eine falsch angekreuzte Alternative eine richtig angekreuzte aufhebt! In einer Marktreaktionsfunktion müssen

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav.

Kapitel 5 FRAGESTELLUNG 1. Öffne die Datei alctobac.sav. Kapitel 5 FRAGESTELLUNG 1 Öffne die Datei alctobac.sav. Zuerst werden wir ein Streudiagramm erstellen, um einen grafischen Überblick von diesem Datensatz zu erhalten. Gehe dazu auf Grafiken / Streudiagramm

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Behörde: Anschrift: Telefonnummer: Parkstraße Altenkirchen. Läufstraße Andernach. Insel Silberau Bad Ems

Behörde: Anschrift: Telefonnummer: Parkstraße Altenkirchen. Läufstraße Andernach. Insel Silberau Bad Ems Kreisverwaltung Altenkirchen Kreisverwaltung Alzey-Worms Abteilung 5 Jugend und Familie Stadtverwaltung Andernach Kreisverwaltung Bad Dürkheim Kreisverwaltung Rhein-Lahn-Kreis Kreisverwaltung Bad Kreuznach

Mehr

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser

Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz. Lisza Gaiswinkler, Daniela Gusel, Tanja Schlosser Kolmogorov-Smirnov-Test Forschungsmethodik II Mag.rer.nat. M. Kickmeier-Rust Karl-Franzens-Universität Graz 1 Kolmogorov- Smirnov Test Andrei Nikolajewitsch Kolmogorov * 25.4.1903-20.10.1987 2 Kolmogorov-

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005

Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Lösungen zur Klausur Statistik II Dr. Andreas Voß Sommersemester 2005 Name: Mat.Nr.: Bearbeitungshinweise: Insgesamt können 40 Punkte erreicht werden. Die Klausur gilt als bestanden, wenn Sie mindestens

Mehr

Soziale Beratungsstellen in Rheinland-Pfalz

Soziale Beratungsstellen in Rheinland-Pfalz Soziale Beratungsstellen in Rheinland-Pfalz (Stand: Mai 2014) Anschriften Diakonisches Werk Ahrweiler Peter-Jansen-Str. 20 53474 Ahrweiler Telefon 02641 3283 Telefax 02641 34026 schuldnerberatung-ahrweiler@web.de

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick Mehrfeldertabellen und Zusammenhangsmaße 1. Mehrfeldertabellen und Zusammenhangsmaße:

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Statistik II für Betriebswirte Vorlesung 12

Statistik II für Betriebswirte Vorlesung 12 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 12 11. Januar 2013 7.3. Multiple parameterlineare Regression Im Folgenden soll die

Mehr

SPSS III Mittelwerte vergleichen

SPSS III Mittelwerte vergleichen SPSS III Mittelwerte vergleichen A Zwei Gruppen ------------ Zwei-Stichproben t-test Beispieldatei: Seegräser Fragestellung: Unterscheidet sich die Anzahl der Seegräser in Gebieten mit und ohne Seeigelvorkommen

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

Marketing III - Angewandte Marktforschung (SS 2016)

Marketing III - Angewandte Marktforschung (SS 2016) TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing III - Angewandte Marktforschung (SS 2016)

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Arbeitsloseninitiativen in Rheinland-Pfalz. ARGE Stellen in Rheinland-Pfalz

Arbeitsloseninitiativen in Rheinland-Pfalz. ARGE Stellen in Rheinland-Pfalz Arbeitsloseninitiativen in Rheinland-Pfalz AG von Erwerbsloseninitiativen und Eingliederungsbetrieben Rheinland Pfalz (AGIB) AGIB e.v Internet: www.agib-ev.de Kontaktadresse: AGIB e.v., c/o Best ggmbh,

Mehr

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz

Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Vergleiche von Gruppen hinsichtlich Ihrer zentralen Tendenz Im folgenden sollen Analyseverfahren dargestellt werden, die zwei oder mehr Gruppen hinsichtlich ihrer zentralen Tendenz in einer einzelnen Variablen

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse I: Lineare Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse I: Lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Lineare Regression Inhalt 1. Grundidee und Vorgehen 2. Güte eines Regressionsmodells 3. Regressionskoeffizienten Signifikanz und Interpretation

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Lineare Regressionsanalyse

Lineare Regressionsanalyse Lineare Regressionsanalyse BIVARIATE REGRESSION. Beispiel: Übungsaufgabe I. (Skript, Anhang, S.) 3.. Darstellung der Regressionsgeraden im Streudiagramm 3.. Durchführung der Regression 4. Beispiel: Scherhorn-Studie

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung Übung Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung BACHELOR FT 2013 (HSU) Übung Emp. WiFo FT 2013 1 / 1 Maßzahlen für den Zusammenhang zwischen Merkmalen Kontingenztabelle:

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung 1 Berechnung der Effektstärke und der beobachteten Teststärke einer einfaktoriellen Varianzanalyse

Mehr

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO

Bivariater Zusammenhang in der Mehrfeldertafel PEΣO Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007

Pfadanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007 Pfadanalyse Bacher, SoSe2007 1. Grundlegende Verfahren Explorative Pfadanalyse: Kausale Beziehungen zwischen Variablen werden aufgedeckt, erforderlich ist eine kausale Anordnung der Variablen. Konfirmatorische

Mehr

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz

Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz Branchenmonitoring Gesundheitsfachberufe Rheinland-Pfalz Eine Untersuchung des Instituts für Wirtschaft, Arbeit und Kultur (IWAK), Zentrum der Goethe-Universität Frankfurt am Main, im Auftrag des Ministeriums

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse. Statistik II Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Wiederholung Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Kapitel 4: Merkmalszusammenhänge

Kapitel 4: Merkmalszusammenhänge Kapitel 4: Merkmalszusammenhänge Streudiagramme SPSS bietet die Möglichkeit, verschiedene Arten von Streudiagrammen zu zeichnen. Gehen Sie auf Grafiken Streu-/Punkt-Diagramm und wählen Sie die Option Einfaches

Mehr

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind?

a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen, die länger als 140 ms sind? Modul G 20.12.2007 Zur Hausaufgabe 3 Erkläre die folgenden Plots und Berechnungen zu Wahrscheinlichkeiten aus technischer und statistischer Sicht. a) Wie hoch ist die Wahrscheinlichkeit, dass Vokale vorkommen,

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling

Versuchsplanung. Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Versuchsplanung Teil 2 Varianzanalyse (ANOVA) Dr. Tobias Kiesling Gliederung Grundlagen der Varianzanalyse Streuungszerlegung und Modellschätzer Modellannahmen und Transformationen

Mehr

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert

Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße. x mod (lies: x-mod) Wofür? Lageparameter. Modus/ Modalwert Zentrum. Median Zentralwert Kapitel 5 Kenngrößen empirischer Verteilungen 5.1. Lagemaße Wofür? Lageparameter Modus/ Modalwert Zentrum Median Zentralwert Im Datensatz stehende Informationen auf wenige Kenngrößen verdichten ermöglicht

Mehr

Multiple Regression. Statistik II

Multiple Regression. Statistik II Statistik II Übersicht Wiederholung Literatur Regression Assoziation und Kausalität Statistische Kontrolle Multivariate Beziehungen Inferenz Das Multivariate Modell Beispiel: Bildung und Verbrechen Fit

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

STROM aus erneuerbaren Energien in Rheinland-Pfalz

STROM aus erneuerbaren Energien in Rheinland-Pfalz STROM aus erneuerbaren Energien in Rheinland-Pfalz Stromeinspeisung aus erneuerbaren Energien Stromnetzbetreiber veröffentlichen eingespeiste und geförderte Strommengen aus erneuerbaren Energien im Internet

Mehr

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab.

SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests. H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. SPSS IV Gruppenvergleiche (>2 Gruppen) A priori & post hoc-tests A parametrisch -- ANOVA Beispieldatei: Seegräser_ANOVA H0: Die mittlere Anzahl der Seegräser (µ) hängt nicht von der Seeigel menge ab. µ

Mehr

Schulden des Landes steigen Schulden des Landes und der Flächenländer 2000 bis 2009 Belastung je Einwohner am 31. Dezember in Euro 8.000 7.000 6.000 5.000 4.000 4.698 3.739 4.989 3.968 5.287 4.211 5.585

Mehr

Fortgeschrittene Statistik Logistische Regression

Fortgeschrittene Statistik Logistische Regression Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E

Mehr

Multivariate Regression

Multivariate Regression Multivariate Regression Ziel: Man will überprüfen, welche Variablen wieviel Varianz einer Zielvariable erlären und ob die durch die einzelnen Variablen wegerlärte Varianz signifiant von 0 verschieden ist

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

2.2 Multiples Regressionsmodell

2.2 Multiples Regressionsmodell Multiples Regressionsmodell In vielen Anwendungen: mehr als ein Regressor notwendig Beispiel: Schülerleistungen nicht nur von KG abhängig, sondern auch z. B. von o Schulcharakteristika (Lehrerqualität,

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr