Aufgaben zur Flächenberechnung mit der Integralrechung

Größe: px
Ab Seite anzeigen:

Download "Aufgaben zur Flächenberechnung mit der Integralrechung"

Transkript

1 ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph von f mit der x-chse über dem Intervall I = [, 5] ein?

2 c) Die Fläche zwischen der Kurve von f, der x-chse zwischen den Geraden x = und x = a ( < a < ) beträgt 5 Flächeneinheiten (d.h. über dem Intervall I = [, a]). Wie groß ist a? Es werden zunächst die Nullstellen bestimmt: f(x) = -x + x = :(-) x - x = a) Mit der p-q-formel, oder wenn man x ausklammert, erhält man x = und x =. ( x x)dx x 6x (FE) b) In das Intervall I = [, 5] fällt eine Nullstelle, nämlich x =. Damit muss man zwei Integrale berechnen (siehe Grafik): x 6x 6 (FE) ( x x)dx 5 5 x 6x 7 7 (FE) ( x x)dx = + = (FE)

3 c) a ( x x)dx! a x 6x a 6a 5(FE) lso gilt: -a + 6a = 5-5 -a + 6a - 5 = ÿ(-) a - 6a + 5 = Hier können wir a nicht ausklammern und benötigen eine Polynomdivision. Dazu muss man a erraten. Wir finden a =. Mit der Polynomdivision (diese kann man unter Polynomdivision/Polynomdivision.php üben) ergibt sich (a - 6a + 5) : (a - ) = a -5a - 5. a -5a - 5 = ergibt mit der p-q-formel: a º -,85 und a º 5,85. Da nur a = zwischen und liegt, muss a = sein! ) Geben ist die Funktionen f(x) = x - x. Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? Es werden zunächst die Nullstellen bestimmt: f(x) = x - x = x ÿ(x - ) = Damit ist x / =. x - = ergibt x = - und x =

4 Damit muss man zwei Integrale berechnen, wobei die beiden Flächen gleich groß sind, denn f ist achsensymmetrisch zur y-chse ("es kommen nur gerade Exponenten vor"). 5 / 5 x / x 6 /5 6 /5 (FE) (x x )dx 5 / 5 x / x 6 /5 6 /5 (FE) (x x )dx = + = 8/5 FE º 8,5 FE ) Geben sind Funktionen f(x) = x - und g(x) = x. Wie groß ist die Fläche, die von den beiden Kurven eingeschlossen wird? Hier müssen zunächst die Schnittstellen bestimmt werden: f(x) = g(x)

5 x - = x -x x -x - = Damit ist x = - und x =. Da zwischen den Schnittstellen die Kurve von g über der von f liegt, integrieren wir über g(x) - f(x) (andernfalls müsste man den Betrag verwenden). (g(x) f (x))dx (x (x lso = / (FE) º,667 (FE). ))dx ( x x )dx / x x x ) Geben sind Funktionen f(x) = x, g(x) = 9x und h(x) = x. Wie groß ist die Fläche, die von den drei Kurven im ersten Quadraten eingeschlossen wird (siehe Grafik)? Hier muss man jeweils zwischen zwei Funktionen die Schnittstellen bestimmen, wobei nicht alle Schnittstellen relevant sind. f(x) = g(x) ñ x = 9x ñ x - 9x = ñ xÿ(x - 9) = Hier ergibt sich x =, x = und x = -. Wichtig wäre hier nur die Schnittstellen bei x = (siehe Grafik oben).

6 nalog ergeben sich bei f(x) = h(x) die Schnittstellen x =, x 5 = und x 6 = - (wir haben einfach weiter nummeriert), wobei nur die Schnittstellen bei x = relevant ist (siehe Grafik oben). g(x) = h(x) ergibt eine Schnittstelle bei x =. Wenn man die Grafik betrachtet, sieht man, dass zwei Flächen berechnet werden müssen: Für x zwischen und liegt die Kurve von g oben und die von h unten (Fläche ). Für x zwischen und liegt die Kurve von g oben und die von f unten (Fläche ). 5/ x (FE) (g(x) h(x))dx (9x x)dx 5x dx 9 / x / x 5/ (FE) (g(x) f (x))dx (9x x )dx = + = 65/ (FE) = 6,5 (FE) 5) Geben sind Funktionen f(x) = -x + 6x und g(x) = -x + 6. Wie groß ist die Fläche, die von den beiden Kurven und der x-chse eingeschlossen wird (siehe Grafik)?

7 Hier müssen zunächst die Schnittstellen bestimmt werden: f(x) = g(x) - x + 6x = -x + 6 +x x + 7x - 6 = ÿ(-) x - 7x + 6 = Damit ist x = und x = 6. Wie an der Grafik zu sehen ist, spielt die Schnittstelle von f und g bei x = eine Rolle, sowie die kleiner Nullstelle von f bei x = und die Nullstelle von g bei x = 6. Dieses mal ist die Flächen von unten durch die x-chse begrenzt. Wenn man die Grafik betrachtet, sieht man, dass zwei Flächen berechnet werden müssen: Für x zwischen und liegt die Kurve von f oben und die x-chse unten (Fläche ). Für x zwischen und 6 liegt die Kurve von g oben und die x-chse unten (Fläche ). / x x 8/ (FE) f (x)dx ( x 6x)dx / x 6x 5/ (FE) g(x) dx ( x 6)dx = + = 9/6 (FE) º 5,67 (FE) 6) Geben sind Funktionen f(x) = x - x und g(x) = x -. Wie groß ist die Fläche, die von den beiden Kurven eingeschlossen wird?

8 Hier müssen zunächst die Schnittstellen bestimmt werden: f(x) = g(x) x - x = x - -x + x - x - x + = Wir können kein x ausklammern und benötigen eine Polynomdivision. Dazu müssen wir eine Nullstelle raten. Wir probieren und finden x =. Polynomdivision: (x -x -x + ) : (x - ) = x - x - -(x - x ) x -x -(-x + x) x + -(-x + ) Zu den restlichen Schnittstellen: x - x - = mit der p-q-formel gelöst ergibt: x = und x = - Nun ordnen wir die Schnittstellen nach der Größe: -; ;. Damit müssen wir zwei Integrale berechnen, einmal von - bis und einmal von bis. (f(x) g(x))dx (x x (x ))dx (x x x ) dx / x / x / x x 8/ (FE) Da zwischen den Schnittstellen und die Kurve von g über der von f liegt, integrieren wir über g(x) - f(x) (andernfalls müsste man den Betrag verwenden). Wenn man die Grafik oben nicht kennen würde, müsste man nur einen Wert zwischen und in beide Funktionen einsetzen und die Funktionswerte vergleichen: f(,5) = -,5, g(,5) = -,5, womit die Kurve von g über der Kurve von f liegt, wenn x zwischen und liegt. (g(x) f (x))dx (x (x x ))dx ( x x x ) dx / x / x / x x 5/ (FE)

9 Oder: (f (x) g(x))dx (x x (x ))dx (x x x ) dx / x / x / x x 5/ 5/ (FE) = + = 8/ (FE) + 5/ (FE) = 7/ (FE) º,8 (FE) 7) Die Fläche zwischen den Kurven von f(x) = x und g(x) = a ÿx (a > ) soll 8 Flächeneinheiten betragen. Wir berechnen wieder zuerst die Schnittstellen: f(x) = g(x) x = a x a x x - a x = xÿ(x - a ) =

10 Damit ist x =. x - a = + a x = a lso: x = a und x = -a. Da f und g beide punktsymmetrisch zum Ursprung sind, ist die Fläche zwischen den beiden Kurven über dem Intervall [-a, ] so groß (d.h. ), wie die, über dem Intervall [, a] (d.h. ). Da + = 8 (FE) ist, muss = = (FE) sein. Wir müssen damit nur oder bestimmen. Wenn x zwischen und a liegt, dann liegt der Graph von g über dem von f: a (g(x) f (x))dx a (a x x )dx [/ a x / x ] a / a a / a / a! lso: /ÿa = ÿ a = 6 a = (Da a > sein muss.)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

VORBEREITUNG AUF DAS ABITUR

VORBEREITUNG AUF DAS ABITUR VORBEREITUNG AUF DAS ABITUR 9.5 Sinus- und Kosinusfuntionen 9.5. Bleib fit in Sinus- und Kosinusfuntionen. a) Die. Koordinate eines Puntes P ann diret in den Graphen übertragen werden. r = b) Die. Koordinate

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 7 / 8 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Ableitung und Steigung. lim h

Ableitung und Steigung. lim h Ableitung und Steigung Aufgabe 1 Bestimme die Ableitung der Funktion f(x) = x über den Differentialquotienten. f (x f '(x ) lim h h) f (x h ) (x lim h h) h x x lim h hx h h x h(x lim h h h) lim x h h x

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Vorkurs Mathematik für Ingenieure. Aufgaben und Lösungsvorschläge

Vorkurs Mathematik für Ingenieure. Aufgaben und Lösungsvorschläge Universität Duisburg-Essen, Campus Duisburg herausgegeben von der Fakultät für Ingenieurwissenschaften Vorkurs Mathematik für Ingenieure Aufgaben und Lösungsvorschläge Wintersemester 0/03 von Wolfgang

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Abi Know-How Mathematik

Abi Know-How Mathematik Mathe bis zum Abitur Abi Know-How Mathematik Olaf Schneider Liebe Schüler, Das Abi Know-How Mathematik ist als Lernhilfe für meine Nachhilfeschüler entstanden. Es ist geeignet für die Oberstufe bis zum

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Abiturprüfung 2008. Mathematik, Grundkurs

Abiturprüfung 2008. Mathematik, Grundkurs M GK HT 3 Seite 1 von Name: Abiturprüfung 008 Mathematik, Grundkurs Aufgabenstellung: Gegeben ist die Funktion f mit x f( x) = ( x+ 1) e, x IR. Der Graph von f ist in der nebenstehenden Abbildung dargestellt.

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Kostenfunktionen. Der Stückpreis (Preis pro Einheit) beträgt 4 Geldeinheiten. Die durch Verkauf zu erzielenden Gesamteinnahmen heißen Umsatz.

Kostenfunktionen. Der Stückpreis (Preis pro Einheit) beträgt 4 Geldeinheiten. Die durch Verkauf zu erzielenden Gesamteinnahmen heißen Umsatz. Kostenfunktionen 1. Ein Unternehmen stellt ein Produkt her. Die Produktion eines Wirtschaftsgutes verursacht Kosten. Die Gesamtkostenfunktion lautet: K(x) = 512+0,44x+0,005x 2. Um x Einheiten des Produkts

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 7 2 Gebrochenrationale

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

1. Übungsaufgabe zu Exponentialfunktionen

1. Übungsaufgabe zu Exponentialfunktionen 1. Übungsaufgabe zu Exponentialfunktionen Die folgende Funktion y = f(t) = 8 t e stellt die Konzentration eines Stoffes in einer Flüssigkeit dar. y ist die Konzentration des Stoffes in mg / Liter. t ist

Mehr

De Taschäräschnr Casio (Reihe: 9750, 9850,...)

De Taschäräschnr Casio (Reihe: 9750, 9850,...) De Taschäräschnr Casio (Reihe: 9750, 9850,...) Übersicht: 1. Nullstellen 2. Gleichungen 2. oder 3. Grades lösen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. Steigung

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 26 (von 09.03 bis 13.03) Hausaufgaben 1 Bis Mittwoch 11.03: Auf dem Planungsblatt stehen einige Aufgaben als Übung für die SA. Bereite diese Aufgaben vor! Vor

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

Analysis I. 11. Beispielklausur mit Lösungen

Analysis I. 11. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 11. Beispielklausur mit en Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Ein angeordneter Körper. ) Eine Folge in

Mehr

Berufsbezogene Mathematik für die Fachoberschule

Berufsbezogene Mathematik für die Fachoberschule Klaus Schilling, Marion Patyna Berufsbezogene Mathematik für die Fachoberschule Nichttechnische Fachrichtungen Klasse 1. Auflage Bestellnummer 0608 Haben Sie Anregungen oder Kritikpunkte zu diesem Produkt?

Mehr

ARBEITSHEFT. Mathematik mit CAS. Lösungen für TI-Geräte C.C.BUCHNER

ARBEITSHEFT. Mathematik mit CAS. Lösungen für TI-Geräte C.C.BUCHNER ARBEITSHEFT Mathematik mit CAS Lösungen für TI-Geräte C.C.BUCHNER 2 Inhaltsverzeichnnis 2 Einführung in die Arbeit mit einem CAS 3 Kreis und Kugel 5 Kreis und Kugel Kann ich das? 8 Sinus- und Kosinusfunktion

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra

Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra Selbständiges Arbeiten Oberstufe - KSOe (SprachProfil) GeoGebra Klasse 6bw Okt. 2011 / R. Balestra Inhaltsverzeichnis 1 Ziel 2 2 freeware GeoGebra - Der Download 3 3 Die Eingabe von Funktionen 4 3.1 Bearbeitungsmöglichkeiten......................

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Inhaltsverzeichnis VB 2003

Inhaltsverzeichnis VB 2003 VB Inhaltsverzeichnis Inhaltsverzeichnis Die Integralrechnung Die Stammfunktion Wie kommt man zur Stammfunktion am Beispiel der Potenzfunktion Beispiele für Stammfunktionen: Beispiele mit Wurzelfunktionen

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus

Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus EvBG Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen Wahrscheinlichkeitsrechnung 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1

1 Konvexe Funktionen. 1.1 Definition. 1.2 Bedingung 1.Ordnung. Konvexität und Operationen, die die Konvexität bewahren Seite 1 Konvexität und Operationen, die die Konvexität bewahren Seite 1 1 Konvexe Funktionen 1.1 Definition Eine Funktion f heißt konvex, wenn domf eine konvexe Menge ist und x,y domf und 0 θ 1: f(θx + (1 θ)y)

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade

Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade Eric Müller Ungewöhnliche Gleichungssysteme bei der Mathematik- Olympiade Unter den in den vier Runden der Mathematik-Olympiade (MO) gestellten Aufgaben finden sich immer wieder Systeme von Gleichungen

Mehr

Schaubilderanalyse. Arbeiten mit Schaubildern von Funktionen. Funktionsgleichungen aufstellen - identifizieren uva.

Schaubilderanalyse. Arbeiten mit Schaubildern von Funktionen. Funktionsgleichungen aufstellen - identifizieren uva. Dieser Text ist noch in Arbeit. Jetzt also nur zur Vorinformation! Schaubilderanalyse Arbeiten mit Schaubildern von Funktionen Abitur-Vorbereitung Funktionsgleichungen aufstellen - identifizieren uva.

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Angewandte Mathematik

Angewandte Mathematik Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil A Korrekturheft Handreichung zur Korrektur der standardisierten schriftlichen Reife-

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle

CAS-Ansicht Computer Algebra System & Cas spezifische Befehle CAS-Ansicht Computer Algebra System & Cas spezifische Befehle GeoGebra Workshop Handout 10 1 1. Einführung in die GeoGebra CAS-Ansicht Die CAS-Ansicht ermöglicht die Verwendung eines CAS (Computer Algebra

Mehr

Normalverteilung und Dichtefunktionen

Normalverteilung und Dichtefunktionen Normalverteilung und Dichtefunktionen Ac Einführung der Normalverteilung als Approximationsfunktion der Binomialverteilung Da die Binomialverteilung für große n das Aussehen einer Glockenkurve besitzt

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Versuch 20. Kennlinie der Vakuum-Diode

Versuch 20. Kennlinie der Vakuum-Diode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuum-Diode Name: Henning Hansen Datum der Durchführung: 9.09.2006 Gruppe Mitarbeiter: Christian Köhler ssistent: testiert: 3 Einleitung Die Vakuum-Diode

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr