Setze = oder ein. a) b) c) Berechne im Kopf. a) =... b) =... c) =...

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Setze = oder ein. a) 6 3... 9 2 b) 8 8 9 7 c) 8 3. 4 6. Berechne im Kopf. a) 10 10 =... b) 20 20 =... c) 30 30 =..."

Transkript

1 A Grundrechnungsarten 2. Multiplizieren und Dividieren MULTIPLIZIEREN NATÜRLICHER ZAHLEN 1 Multipliziere. Finde das Lösungswort. 1) 3 4 = 9) 3 8 = 2) 8 8 = 10) 9 4 = 3) 6 6 = 11) 2 6 = 4) 5 8 = 12) 4 10 = 5) 4 8 = 13) 9 7 = 6) 6 4 = 14) 9 2 = 7) 3 6 = 15) 3 9 = 8) 8 9 = 16) 7 8 = Z 32 U 63 T 40 S 12 P 64 N 18 L 72 I 36 G 27 E 24! Setze = oder ein. a) b) c) Berechne im Kopf. a) =... b) =... c) =... d) =... e) =... f) =... g) =... h) =... i) =... 4 Vervollständige die Rechnung. a) 5. = 250 b) 7.. = 490 c) 9.. = 540 d).. 50 = 200 e). 80 = 480 f). 60 = 360 1

2 5 Male die Felder mit den richtigen Lösungen färbig an. Wenn deine Lösungen richtig sind, ergibt sich ein Tier = = = = = = = = = = = = Multipliziere. a) 4 5 b) Schülerinnen und Schüler fahren mit dem Bus ins Kino. Eine Kinokarte für die Sondervorstellung kostet 8 Euro. Der Bus kostet pro Kind 5 Euro. Wie viel Geld muss für die 90 Schülerinnen und Schüler eingesammelt werden? 2

3 8 In der Zeichnung sind alle richtigen Lösungen enthalten. Findest du deine Lösung nicht, dann überprüfe deine Rechnung auf Fehler. a) b) c) d) e) f) g) h) i) Berechne a) b) c) d) ÜBERSCHLAGSRECHNUNG Mit vereinfachten Zahlen bekommst du einen Näherungswert. 10 Runde beide Teile der Multiplikation. Abrunden bei 0, 1, 2, 3, 4. Aufrunden bei 5, 6, 7, 8, a) b) c) Runde beide Teile der Multiplikation und berechne a) b) c) =

4 12 Multipliziere mit einer zweistelligen Zahl. Gehe so vor: ) Führe die Multiplikation mit der Zehnerzahl durch ) Vergiss nicht die 0 anzuhängen. 4) 3) Addiere Multipliziere zum Schluss nun mit die der beiden Einerzahl. Teilergebnisse der Multiplikation. a) b) Kreuze die richtige Lösung an. Führe eine Überschlagsrechnung durch. a) b) Male die Felder mit den richtigen Lösungen färbig an. Wenn deine Lösungen richtig sind, ergibt sich ein Tier

5 DIVIDIEREN NATÜRLICHER ZAHLEN 15 Rechne im Kopf. a) 56 : 8 =... b) 72 : 8 =... c) 45 : 5 =... d) 81 : 9 =... e) 49 : 7 =... f) 30 : 6 =... g) 42 : 7 =... h) 64 : 8 =... i) 63 : 9 = Vervollständige die Rechnungen. a) b) c) d).. 4 = = = = = = = = = = = = Mit welcher Multiplikation ergibt sich die Zahl? a) 72 = b) 45 = c) 32 = d) 63 = e) 42 = f) 81 = Bestimme zuerst den Stellenwert. Zeichne für die 1. Stelle einen Bogen ein. Stellenwert: Mache einen Punkt für jede deiner Lösungsziffern. ) 915 : 4 =... 9 H kann man durch 4 teilen, darum nimm für jede Stelle einen Punkt. 3 Stellen ) 428 : 6 =.. 4 H kann man nicht durch 6 teilen, darum rechne mit 42 Z durch 6. 2 Stellen a) 575 : 5 = b) 279 : 6 = c) 349 : 5 = d) 745 : 8 = 5

6 19 SCHRIFTLICHES DIVIDIEREN Dividiere Gehe so vor: 8 2 : 2 = 4 1 1) Bestimme den Stellenwert. 2) Beginne mit dem Zehner. (8 : 2 = 4) 0 2 3) Überprüfe: 4 2 = 8 und 0 ist 8 4) Nächste Stelle 2 herab; 2 : 2 = 1 5) Überprüfe: 1 2 = 2 und 0 ist 2 0 R 6) 0 Rest. ) a) 93 : 3 = b) 128 : 4 = DIVIDIEREN DURCH 10, 100, Schau auf die Nullen. Bei der Division durch 10, 100 und kannst du bei beiden Zahlen der Division die gleiche Anzahl der Nullen wegstreichen : 10 = 600 a) : 10 =... b) : 10 = : 100 = : 100 = : 100 = : 1000 = : = : = Vereinfache zuerst die gegebene Division. 540 : 60 = a) : 700 = b) : 80 = c) : 800 = 54 : 6 = Rechne im Kopf. a) 450 : 30 = b) 360 : 90 = c) 660 : 60 = d) 810 : 90 = DIVIDIEREN MIT REST Der Rest muss immer kleiner sein, als die Zahl durch die dividiert wird. 23 Rechne im Kopf. 11 : 5 = 2 R (Rest) 1 a) 25 : 6 =... b) 27 : 4 =... c) 49 : 6 = Kopfrechnungen a) 65 : 9 =... b) 31 : 8=... c) 58 : 8 =... 6

7 25 In der Zeichnung sind alle richtigen Lösungen enthalten. Findest du deine Lösung nicht, dann überprüfe deine Rechnung auf Fehler. 132 : 3 = : 4 = : 3 = : 4 = : 7 = : 4 = : 7 = : 8 = : 5 = : 8 = : 9 = : 6 = : 2 = : 6 = : 7 = : 5 = : 5 = : 8 = : 6 = : 3 = : 2 = : 8 = : 9 = : 4 = : 6 = : 4 = : 7 = : 4 = : 9 =

8 26 Berechne und führe die Probe durch. 8 6 : 2 = 4 3 Probe: R ) Gehe so vor: 1) Bestimme den Stellenwert. Führe die Division durch. 2) Die Probe zur Division ist eine Multiplikation. (43 2 = 86) a) 96 : 8 = b) 98 : 7 = c) 78 : 2 = d) 60 : 4 = Berechne Hinweis: Es kann auch ein Rest übrig bleiben. a) 69 : 5 = b) 83 : 4 = c) 57 : 6 = d) 111 : 2 = e) 809 : 4 = Dividiere. a) : 50 = b) : 70 = c) : 60 = 29 Bestimme den Stellenwert und dividiere. Führe auch eine Überschlagsrechnung mit gerundeten Zahlen durch : 6 2 = 4 2 Ü: : 60 = : Gehe so vor: R 1) Bestimme den Stellenwert. 2) Überlege: Wie oft ist 62 in 260 enthalten? 3) Multipliziere 62 mit 4 und schreibe das Ergebnis an. 4) Subtrahiere. ( = 12) 5) Nächste Stelle 4 herab. 6) Überlege: Wie oft ist 62 in 124 enthalten? Tipp: Wie oft ist 6 in 12 enthalten? (2-mal) 7) Multipliziere (62 2 = 124) 8) Subtrahiere ( = 0 Rest) Tipp: Wie oft ist 6 in 26 enthalten? (4-mal) a) 308 : 22 = b) 656 : 41 = c) 972 : 81 = d) : 42 = e) : 32 = f) : 51 = 8

9 30 Male die Felder mit den richtigen Lösungen färbig an. Wenn deine Lösungen richtig sind, ergibt sich ein Wort. a) 789 : 4 =.... b) 226 : 20 =.... c) 757 : 21 = : 9 = : 30 = : 32 = : 7 = : 40 = : 46 = : 8 = : 50 = : 55 = : 3 = : 60 = : 96 = R2 45 R8 36 R R1 62 R R9 31 R3 63 R11 69 R8 451 R3 11 R6 52 R30 48 R62 31 R2 49 R5 124 R5 36 R52 36 R1 49 R6 812 R1 31 Wie viel kostet eine Zeitschrift? In einer Trafik werden 27 Stück einer Zeitschrift verkauft. Die Trafikantin nimmt 81 ein. 32 In der Zeichnung sind alle richtigen Lösungen enthalten. Findest du deine Lösung nicht, dann überprüfe deine Rechnung auf Fehler. Führe auch eine Überschlagsrechnung durch. 708 : 59 = 944 : 59 = : 18 = 968 : 88 = 928 : 29 = 897 : 69 =

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen D Rechnen mit natürlichen Zahlen 15. Dividieren natürlicher Zahlen 1 Führe die Divisionen mit den Bohnen durch. (Material: trockene Bohnen Teile 2 Bohnen auf 8 Schülerinnen auf. Teile 20 Bohnen auf 4 Schüler

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Darstellen, Ordnen und Vergleichen

Darstellen, Ordnen und Vergleichen Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei

Mehr

Dividieren durch zweistellige Zahlen - reine Übungssache! Für diese schwierigen Rechnungen musst

Dividieren durch zweistellige Zahlen - reine Übungssache! Für diese schwierigen Rechnungen musst Elisabeth Fuchs Dividieren durch zweistellige Zahlen - reine Übungssache! Und wir sind immer mit dabei! Für diese schwierigen Rechnungen musst du viele verschiedene Teilrechnungen gut beherrschen. layout:

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million 1. Addieren (Zusammenzählen), 3 Seiten Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 2.1. Subtrahieren (Abziehen) Abziehverfahren 1 *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 2.2. Subtrahieren

Mehr

Grundrechnungsarten mit Brüchen

Grundrechnungsarten mit Brüchen ganz klar: Mathematik - Das Ferienheft mit Erfolgsanzeiger Unechte Brüche gemischte Zahlen, 9_,,... unechte Brüche (Zähler > Nenner) _, _,,... gemischte Zahlen Unechte Brüche kann man immer in eine gemischte

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Mathematik für Klasse 6 Rechnen mit Dezimalzahlen

Mathematik für Klasse 6 Rechnen mit Dezimalzahlen Mathematik für Klasse 6 Rechnen mit Dezimalzahlen 16 Trainingseinheiten zum Unterricht Dazu gehört auch eine Einführung in die Anfänge der Prozentrechnung. Datei Nr. 10310 Friedrich W. Buckel Stand: Stand

Mehr

Vorrangregeln der Grundrechnungsarten

Vorrangregeln der Grundrechnungsarten Vorrangregeln der Grundrechnungsarten Wenn verschiedene Rechenzeichen in einer Rechnung vorkommen, so gelten folgende Regeln:. Klammerrechnung. Punktrechnungen von links nach rechts ( ) vor vor +. Strichrechnungen

Mehr

Vorrangregeln der Grundrechnungsarten

Vorrangregeln der Grundrechnungsarten Vorrangregeln der Grundrechnungsarten Wenn verschiedene Rechenzeichen in einer Rechnung vorkommen, so gelten folgende Regeln:. Klammerrechnung. Punktrechnungen von links nach rechts ( ) vor vor +. Strichrechnungen

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259 Klammerrechnung Lösungen 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3= 60 3= 180 (3+ 36) 6= 70 6= 0 (63+ 17) 3= 80 3= 0 (19+ 1) 6= 0 6= 0 (7+ 16) 9= 90 9= 810 (36+ ) 8= 80 8= 60 (8+

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Dividieren durch zweistellige Zahlen - reine Übungssache! Für diese schwierigen Rechnungen musst

Dividieren durch zweistellige Zahlen - reine Übungssache! Für diese schwierigen Rechnungen musst Elisabeth Fuchs Dividieren durch zweistellige Zahlen - reine Übungssache! Und wir sind immer mit dabei! Für diese schwierigen Rechnungen musst du viele verschiedene Teilrechnungen gut beherrschen. layout:

Mehr

9 = c) a) = b) = c) = d) =

9 = c) a) = b) = c) = d) = A Grundrechnungsarten. Rechnen mit Brüchen Addieren und Subtrahieren von Brüchen Addiere und subtrahiere die Brüche. a) 0 0 0 b) - 0...... Brüche mit gleichem Nenner werden addiert, indem du die Zähler

Mehr

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra Brüche und zahlen zahlen vergleichen zahlen runden 4 Addieren & subtrahieren Multiplizieren & dividieren mit Zehnerzahlen zahlen multiplizieren 7 8 Periodische zahlen 9 + Addition Z E z h t 4,4 9,9 4,4

Mehr

Schriftliches Rechnen bis zur Million

Schriftliches Rechnen bis zur Million Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 1. Addieren (Zusammenzählen), 3 Seiten 2. Subtrahieren (Abziehen) Abziehverfahren *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 3. Subtrahieren (Abziehen)

Mehr

Wenn ich z. B. auf Zehner (Rundungsstelle) runden will, unterstreiche ich die Einerzahl. Beispielzahl 1: 54

Wenn ich z. B. auf Zehner (Rundungsstelle) runden will, unterstreiche ich die Einerzahl. Beispielzahl 1: 54 LM Grundrechenarten/ Kopfrechnen S. 7 Übergang Schule - Betrieb Beispiel 1: Runden auf die Zehnerstelle Wenn ich z. B. auf Zehner (Rundungsstelle) runden will, unterstreiche ich die Einerzahl. Beispielzahl

Mehr

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 =

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 = Name: 1) SUBTRAHIERE DIE KLEINERE ZAHL VON DER GRÖßEREN: a) 43,86 521,43 b) 15864,2 85,8 c) 0,8 0,643 2) RECHNE VORTEILHAFT! a) 1,45 + 25,0 44,1 d) 63,8 + 40,03 35,4 b) 0,85 + 1,0835 0,084 e),6 30,04 +

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Schriftliche Addition 1. Schriftliche Subtraktion 2

Schriftliche Addition 1. Schriftliche Subtraktion 2 Schriftliche Addition Addiere folgende Zahlen und rechne die Probe! 0 99 / 0 0 5 05 / 55 09 0 9 / 0 0 0 00 / 9 590 0 / 05 9 / 0 90 90 / 0 0 5 0 / 509 0 0 / 9 Schriftliche Subtraktion Subtrahiere folgende

Mehr

Zehntausenderschritte ZR 100 000 1

Zehntausenderschritte ZR 100 000 1 Zehntausenderschritte ZR 100 000 1 Ordne folgende Zahlen der Größe nach! Beginne bei der kleinsten Zahl! a) 30 000, 50 000, 20 000, 40 000, 60 000 b) 40 000, 60 000, 50 000, 20 000, 30 000 c) 90 000, 100

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 2. Zehnerschritte bis 1000: Von wo bis wo? 3. Zehnerschritte bis 1000: Wo ist

Mehr

Rechentraining. 4 a) b) c) d) e) f) g) h)

Rechentraining. 4 a) b) c) d) e) f) g) h) Rechentraining Kopfrechenaufgaben 1 a) 27 + 13 b) 45 + 25 c) 78 + 22 d) 64 + 36 e) 205 + 95 f) 909 + 91 g) 487 + 23 h) 630 + 470 i) 777 + 333 j) 34 23 k) 42 33 l) 177 78 m) 555 444 n) 1010 101 o) 808 88

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

Würfelbauten Geometrie. Perspektiven Ansichten von Körpern malen. Würfelbauten. Geometrie

Würfelbauten Geometrie. Perspektiven Ansichten von Körpern malen. Würfelbauten. Geometrie Wiederholung (S. 4 9) Der Zahlenraum Seite (S. 10 23) Schätzen und zählen Zahlen Zahlen vergleichen () Das Hunderterfeld Zehnerzahlen Zehner und Einer Zahlen Zahlbilder erkennen Zahlbilder Zahlen Zahlbilder

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

1. Grundlagen der Arithmetik

1. Grundlagen der Arithmetik 1. Grundlagen der Arithmetik Die vier Grundrechenarten THEORIE Addition (plus-rechnen, addieren, zusammenzählen): Summand + Summand = Summe Subtraktion (minus-rechnen, subtrahieren, wegzählen): Minuend

Mehr

36 Schriftliches Rechnen

36 Schriftliches Rechnen 36 Schriftliches Rechnen Mit bayerischem Abziehverfahren (gültig seit 2015) Subtrahieren ohne Zehnerüberschreitung Du sollst schriftlich rechnen: 3 765 2 512 = 3 7 6 5 Beginne immer mit den Einern, und

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 4. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte bis 1000: Wie heißen die Zahlen? 7. Hunderterschritte bis 10000: Wo ist die Zahl? 2. Zehnerschritte bis 1000: Von wo bis wo? 8. Hunderterschritte bis

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an? 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 1. Semester ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q ARBEITSBLATT 6 VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst kann man sagen, dass alles beim Alten bleibt. Es bleiben also sämtliche

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

(53+ 3) 5 = = Summe der Ergebnisse: 3.530 Summe der Ergebnisse: 3.259

(53+ 3) 5 = = Summe der Ergebnisse: 3.530 Summe der Ergebnisse: 3.259 Klammerrechnung 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3 = = (3+ 36) 6 = = (63+ 17) 3 = = (19+ 1) 6 = = (7+ 16) 9 = = (36+ ) 8 = = (8+ 7) 8 = = (3+ 8) 3 = = (13+ 6) = = (8+ 76)

Mehr

Voransicht. Grundrechen Führerschein: Aufwärmtraining

Voransicht. Grundrechen Führerschein: Aufwärmtraining Grundrechen Führerschein: Aufwärmtraining Mit dieser Seite kannst du dich auf den Grundrechen Führerschein vorbereiten. 1 Additionspuzzle. Zerschneide das Bild rechts, rechne die Aufgabe links in deinem

Mehr

36 Schriftliches Rechnen

36 Schriftliches Rechnen 36 Schriftliches Rechnen Mit bayerischem Abziehverfahren (gültig seit 2015) Du sollst schriftlich rechnen: 3 765 2 512 = 3 7 6 5 Subtrahieren ohne Zehnerüberschreitung Beginne immer mit den Einern, und

Mehr

r587c2 Name: Klasse: Datum:

r587c2 Name: Klasse: Datum: Testen und Fördern r587c2 Lösungen Audio Audio Lösungen r587c2 Name: Klasse: Datum: 1) Du hörst Zahlen. Schreibe diese in Ziffernschreibweise auf. a) d) b) e) c) 2) Eine Zahl ist mit Kugeln in der Stellenwerttafel

Mehr

Vorbereitung auf den Hauptschulabschluss Mathematik

Vorbereitung auf den Hauptschulabschluss Mathematik Katrin Hiemer/Elisabeth Vogt Vorbereitung auf den Hauptschulabschluss Mathematik MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Rechnen mit Variablen

Rechnen mit Variablen E Rechnen mit Variablen 5. Gleichungen 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten

Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten Halbschriftliche Multiplikation und Division / Karte 00 Kartei Halbschriftliche Multiplikation und Division Halbschriftliche Multiplikation und Division / Karte 01 Schriftliche Multiplikation und Division

Mehr

nachsehen, ob zwei etwas ausrechnen Dinge gleich sind oder ob es Unterschiede gibt etwas aussieht richtig ist Arbeitsanweisungen - Quartett berechnen

nachsehen, ob zwei etwas ausrechnen Dinge gleich sind oder ob es Unterschiede gibt etwas aussieht richtig ist Arbeitsanweisungen - Quartett berechnen Arbeitsanweisungen - Quartett nachsehen, ob zwei Dinge gleich sind oder ob es vergleichen - etwas ausrechnen - nachsehen, ob alles richtig ist - genau sagen, wie etwas aussieht etwas ausrechnen berechnen

Mehr

Wiederholen und vertiefen

Wiederholen und vertiefen Wiederholen und vertiefen 350 + 20 480 60 910 70 470 + 90 230 + 80 840 70 370 420 840 560 310 770 370 760 230 610 720 710 510 460 + 150 380 150 570 + 140 920 160 430 + 290 740 370 610 230 710 760 720 370

Mehr

Lerneinheit 3: Mit Euro und Cent rechnen

Lerneinheit 3: Mit Euro und Cent rechnen LM Maßeinheiten S. 11 Übergang Schule - Betrieb Lerneinheit 3: Mit Euro und Cent rechnen A: Werden mehrere Größen addiert (+) oder voneinander subtrahiert (-), muss man alle Größen zuvor in die gleiche

Mehr

Mathematik-Arbeitsblatt Klasse:

Mathematik-Arbeitsblatt Klasse: Mathematik-Arbeitsblatt Klasse: 23.10.2012 Aufgabe 1 (5A1.01-031-m) Martin, Michael und Max möchten für die Mama zu Weihnachten gemeinsam ein Buch als Geschenk kaufen. Es kostet 27. Jeder der drei hat

Mehr

Aufgabe 8: Runden, schriftliches Rechnen

Aufgabe 8: Runden, schriftliches Rechnen Schüler/in Aufgabe 8: Runden, schriftliches Rechnen LERNZIELE: Zahlen runden und Resultate schätzen Die schriftlichen Verfahren kennen Achte darauf: 1. Du hältst dich beim Runden an die Rundungsregel (Aufgabe

Mehr

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

In s Ziel treffen - durch Multiplizieren und Dividieren

In s Ziel treffen - durch Multiplizieren und Dividieren In s Ziel treffen - durch Multiplizieren und Dividieren Multipliziere oder dividiere so, dass du mit möglichst wenigen Versuchen ins Zielgebiet triffst. Jeder Versuch kostet einen Punkt. Notiere die Anzahl

Mehr

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N . Schularbeit: MTHEMTIK KL.: M/I. - S. Kommen in einer Rechnung mehrere Rechnungsarten bzw. Klammern vor, so muss folgende Reihenfolge eingehalten werden: ) Rechne zuerst den Wert einer Klammer aus! )

Mehr

Tausenderschritte ZR 10 000 1

Tausenderschritte ZR 10 000 1 Tausenderschritte ZR 10 000 1 Ordne folgende Zahlen der Größe nach! Beginne bei der kleinsten Zahl! a) 3 000, 5 000, 2 000, 4 000, 6 000 b) 4 000, 6 000, 5 000, 2 000, 3 000 c) 9 000, 10 000, 3 000, 5

Mehr

Rechentrainer 3. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger

Rechentrainer 3. Schroedel. Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Rechentrainer Herausgegeben von Prof. Dr. Hans-Dieter Rinkens Kurt Hönisch Gerhild Träger Erarbeitet von Nadine Franke-Binder, Kurt Hönisch, Claudia Neuburg, Dr. Thomas Rottmann, Michaela Schmitz, Gerhild

Mehr

1 Strichlisten und Diagramme Die Schülerinnen und Schüler fertigen Strichlisten an und beantworten Fragen mithilfe eines Diagramms.

1 Strichlisten und Diagramme Die Schülerinnen und Schüler fertigen Strichlisten an und beantworten Fragen mithilfe eines Diagramms. Inklusionsmaterial Nummer Titel Beschreibung 1 Strichlisten und Diagramme Die Schülerinnen und Schüler fertigen Strichlisten an und beantworten Fragen mithilfe eines Diagramms. 2 Säulendiagramme Die Schülerinnen

Mehr

Gleichungen. 1. 3 x = 12. 2. 5 x = 40. 3. 3 x+11 = 32. 4. 8 x 9 = 31. 5. 9 x 13 = 23. 6. 5 (x 2) = 20. 7. 6 (x+5) = 42. 8.

Gleichungen. 1. 3 x = 12. 2. 5 x = 40. 3. 3 x+11 = 32. 4. 8 x 9 = 31. 5. 9 x 13 = 23. 6. 5 (x 2) = 20. 7. 6 (x+5) = 42. 8. Gleichungen. x = 2 2. x = 40. x+ = 2 4. 8 x 9 =. 9 x = 2 6. (x 2) = 20 7. 6 (x+) = 42 8. 4 x+ x = 2 9. x x = 4 0. 2 (x+)+ (x ) = 9. (x+2)+ (x ) = 2 2. 9+4 (x ) = 7. 4+2 (x+) = 20 4. 2 (9 x) =. (x+2) =

Mehr

Inhalt. 1. Addition und Subtraktion bis 100. 3. Die Zahlen bis 1000. 4. Rechnen bis 1000. 2. Multiplikation und Division bis 100. Lehrerteil...

Inhalt. 1. Addition und Subtraktion bis 100. 3. Die Zahlen bis 1000. 4. Rechnen bis 1000. 2. Multiplikation und Division bis 100. Lehrerteil... Inhalt 1. Addition und Subtraktion bis 100 Lehrerteil................................. 6 Hallo! Mein Name ist Hase!................... 12 Hallo! Ich bin der Igel!....................... 13 Wie viele Hasen

Mehr

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel:

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel: 8 Brüche Zä hler Bruchstrich Nenner Wie kann man einen Bruch erkennen / ablesen? Zähle zuerst alle Bruchstücke cke eines Ganzen. Die Anzahl sagt dir, wie der Nenner heißt. Jetzt zählst z du alle gefärbten

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr.

Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr. Download Martin Gehstein Mathematik Üben Klasse 5 Multiplikation und Division Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Multiplikation

Mehr

Dorothee Raab. Mathematik 4. Klasse. Einfach lernen mit Rabe Linus. Extra: 100 Belohnungssticker

Dorothee Raab. Mathematik 4. Klasse. Einfach lernen mit Rabe Linus. Extra: 100 Belohnungssticker Dorothee Raab Mathematik 4. Klasse Mathematik 4. Klasse Einfach lernen mit Rabe Linus Extra: 100 Belohnungssticker Vorwort Liebe(r) (dein Name), in diesem Buch kannst du alles lernen, üben und wiederholen,

Mehr

Gleiche Zahlen gleicher Rahmen. Immer drei gehören zusammen. Male die Rahmen passend an. 6HT + 1T + 7H + 4Z + 4E E

Gleiche Zahlen gleicher Rahmen. Immer drei gehören zusammen. Male die Rahmen passend an. 6HT + 1T + 7H + 4Z + 4E E l Zahlen bis 000 000 einander zuordnen Gleiche Zahlen gleicher Rahmen. Immer drei gehören zusammen. Male die Rahmen passend an. 94 785 900000 + 0000 + 4000 + 700 + 80 + 5 78 90 78 09 60 744 600000 + 0000

Mehr

Orientieren im Zahlenraum bis 1 Million

Orientieren im Zahlenraum bis 1 Million Inhalt A Orientieren im Zahlenraum bis 1 Million 1 Stellentafel und Zahlenstrahl 6 2 Nachbarzahlen und Runden 8 3 Anordnen 10 B Addieren und Subtrahieren 1 Mündliches Addieren und Subtrahieren 12 2 Schriftliches

Mehr

Multiplikation und Division - Division

Multiplikation und Division - Division Multiplikation und Division - Division Qualifizierungseinheit Multiplikation und Division Lernziele: Wenn Sie diese Qualifizierungseinheit bearbeitet haben, können Sie ganze Zahlen multiplizieren und dividieren

Mehr

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b)

1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) 1 Rätselrechnungen Welches Streichholz muss umgelegt werden, damit die Rechnung stimmt? (Material: Streichhölzer) a) b) Berechne den Wert der Variablen. Eine Gleichung kannst du dir als eine Balkenwaage

Mehr

Mein Mathebild Arbeiten in der mathewerkstatt

Mein Mathebild Arbeiten in der mathewerkstatt Seite MB 1 Mein Mathebild Arbeiten in der mathewerkstatt Seite im Materialblock: Wissensspeicher Seite MB 2 MB 2 Wissensspeicher Dreiecke und Vielecke Flächen 1 Wissensspeicher Dreiecke und Vielecke Wenn

Mehr

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse

Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse netzwerk sims Sprachförderung in mehrsprachigen Schulen 1 von 11 Mathe-Wortschatz für Textaufgaben 4. Klasse bis 6. Klasse à Zusatzmaterial zum Dokument «Mathe-Wortschatz für Textaufgaben 2. Klasse bis

Mehr

Entnimm die Lösungsbuchstaben der Tabelle. Wie heißt das Lösungswort?...

Entnimm die Lösungsbuchstaben der Tabelle. Wie heißt das Lösungswort?... A Grundrechnungsarten 1. Addieren und Subtrahieren ADDIEREN NATÜRLICHER ZAHLEN 1 Ausflug Zwei Klassen besuchen mit drei Lehrerinnen eine Ausstellung. In der ersten Klasse sind 22 Schülerinnen und Schüler,

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 Turmzimmer 1: Zahlenstrahl 1. Zehnerschritte: Wie heißt die Zahl? 7. Einerschritte: Wie heißt die Zahl? 2. Zehnerschritte: Wie heißen die Zahlen? 1 8. Einerschritte: Wie heißen die Zahlen? 1 3.

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Aufgaben zu Lambacher Schweizer 5 Hessen

Aufgaben zu Lambacher Schweizer 5 Hessen Aufgaben zu Kapitel I Kopfrechenaufgaben 1 Berechne im Kopf. a) 60 + 32 b) 57 + 41 c) 130 + 72 d) 504 + 91 e) 75 + 47 f) 76 + 85 g) 124 + 127 h) 295 + 76 i) 129 + 396 j) 747 + 239 2 a) 3800 + 4600 b) 5700

Mehr

Aufgabe 6: Schätzen, halbschriftlich und schriftlich rechnen

Aufgabe 6: Schätzen, halbschriftlich und schriftlich rechnen Schüler/in Aufgabe 6: Schätzen, halbschriftlich und schriftlich rechnen LERNZIELE: Runden und schätzen (inkl. Dezimalzahlen) Halbschriftliches und schriftliches Rechnen anwenden (inkl. Dezimalzahlen) Achte

Mehr

Lernzirkel Schriftliches Rechnen

Lernzirkel Schriftliches Rechnen Lernzirkel Schriftliches Rechnen Name: An jeder Station müssen mindestens drei Aufgaben gerechnet werden, davon mindestens eine Textaufgabe ( ). An jeder Station gibt es leichte, mittelschwere und schwere

Mehr

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche MEMO Brüche Zähler, Nenner, Stammbruch, einfache und gemischte Brüche )Brüche: Grundbegriffe a) Zähler und Nenner die obere Zahl heisst Zähler die untere Zahl heisst Nenner Der Nenner Der Zähler ist der

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 3. Klasse Seite 1 1. Zahlenstrahl 1. Zehnerschritte: Wie heißt die Zahl? 2. Zehnerschritte: Wie heißen die Zahlen? 1 3. Zehnerschritte: Wie heißen die Zahlen? 2 4.

Mehr

Bilde die Quersumme! Wie heißen die Nachbarzehner? Wie heißen Nachbarhunderter? Wie heißen Nachbartausender?

Bilde die Quersumme! Wie heißen die Nachbarzehner? Wie heißen Nachbarhunderter? Wie heißen Nachbartausender? Arbeit mit der gelegten Zahl Bilde die Quersumme! Wie heißen die Nachbarzehner? Wie heißen Nachbarhunderter? Wie heißen Nachbartausender? Wie heißen Nachbarzehntausender? Wie heißen die Nachbarzahlen?

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

= Rechne nach - das Ergebnis ist immer 1!

= Rechne nach - das Ergebnis ist immer 1! Was ist ein Bruch? Bisher kennst du genau eine Art der Zahlen, die sogenannten "Natürlichen Zahlen". Unter den Natürlichen Zahlen versteht man die Zahlen 0, 1,,,... bis Unendlich. Mit diesen Zahlen lassen

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Wiederholung: schriftliches Addieren, schriftliches Subtrahieren 7. Wiederholung: schriftliches Addieren, schriftliches Subtrahieren 12

Wiederholung: schriftliches Addieren, schriftliches Subtrahieren 7. Wiederholung: schriftliches Addieren, schriftliches Subtrahieren 12 Inhaltsverzeichnis Erarbeitungsteil Malreihen und Teilungsrechnungen üben 3 1, 2 Mündliches und schriftliches Addieren 4 3, 4 Mündliches und schriftliches Subtrahieren 5 5, 6 Wiederholung: schriftliches

Mehr

DOWNLOAD. Potenzgesetze für natürliche Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Potenzgesetze für natürliche Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michael Körner Potenzgesetze für natürliche Exponenten Michael Körner Grundwissen Wurzeln und Potenzen. 0. Klasse Bergedorfer Kopiervorlagen Downloadauszug aus dem Originaltitel: Potenzgesetz

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

In Arbeit! Bruchungleichungen. Aufgaben mit Lösungsweg zur Webseite 2008 by Josef Raddy. 1

In Arbeit! Bruchungleichungen. Aufgaben mit Lösungsweg zur Webseite  2008 by Josef Raddy.  1 In Arbeit! Bruchungleichungen Aufgaben mit Lösungsweg zur Webseite www.mathematik.net 8 by Josef Raddy Version:..8 6.5 Uhr www.mathematik.net Aufgaben. Bruchungleichungen mit einem Bruch: Lösen durch Fallunterscheidung

Mehr

MT3 jahresplanung Stoffverteilung zum Mathetiger

MT3 jahresplanung Stoffverteilung zum Mathetiger MATHE IGER 3 B R DA N A ST ve! S G si UN nklu D i IL DS MT3 jahresplanung Stoffverteilung zum Mathetiger 2 1 Üben und wiederholen 1 Im Einmaleins-Dschungel Zurück aus den Ferien Das ganze Einmaleins üben

Mehr

Lernplan für die Wiederholung im 8. Schuljahr. Rechne die Aufgaben im Heft. Kontrolliere deine Ergebnisse mit dem Kontrollbogen. Bewerte dein Können.

Lernplan für die Wiederholung im 8. Schuljahr. Rechne die Aufgaben im Heft. Kontrolliere deine Ergebnisse mit dem Kontrollbogen. Bewerte dein Können. Lernplan für die Wiederholung im 8. Schuljahr Name: Rechne die Aufgaben im Heft. Kontrolliere deine Ergebnisse mit dem Kontrollbogen. Bewerte dein Können. 1. a) 473, 68 + 275, 987 + 7 + 13,869 = b) 273

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Lernkontrolle zur Multiplikation

Lernkontrolle zur Multiplikation Lernkontrolle zur Multiplikation 1.) 8 Ÿ 400 = f.) 4 Ÿ 5000 = 60 Ÿ 9000 = g.) 60 Ÿ 300 = 300 Ÿ 70 = h.) 500 Ÿ 800 = 90 Ÿ 90 = i.) 7 Ÿ 600 = e.) 8000 Ÿ 700 = j.) 80'000 Ÿ 90 = 2.) Rechne mit dem Malkreuz

Mehr

1. Schularbeit Mathematik Oktober 2015

1. Schularbeit Mathematik Oktober 2015 1. Schularbeit Mathematik 3 14. Oktober 2015 Name: Klasse: Wichtige Anmerkungen: Rechne OHNE Taschenrechner! Schreibe alle Rechenwege oder Nebenrechnungen übersichtlich auf! Ergebnisse ohne Nebenrechnung,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

DOWNLOAD. Freiarbeit: Bruchzahlen. Günther Koch. Materialien für die 6. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Freiarbeit: Bruchzahlen. Günther Koch. Materialien für die 6. Klasse in zwei Differenzierungsstufen. Downloadauszug aus dem Originaltitel: DOWNLOAD Günther Koch Freiarbeit: Bruchzahlen Materialien für die. Klasse in zwei Differenzierungsstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem

Mehr

Bildungsstandards Grundschule MATHEMATIK. Skriptum

Bildungsstandards Grundschule MATHEMATIK. Skriptum Bildungsstandards Grundschule MATHEMATIK Skriptum erstellt auf Basis der vom Bildungsministerium zur Verfügung gestellten Fassung Bildungsstandards für Mathematik 4. Schulstufe Version 2.2. von den Mitgliedern

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Die Arbeitsblätter eignen sich auch als Hausaufgaben. Je nach Bedarf mit oder ohne Lösungsseite.

Die Arbeitsblätter eignen sich auch als Hausaufgaben. Je nach Bedarf mit oder ohne Lösungsseite. Vorwort/Einleitung Vorwort Sind die Mengen erfasst und die Rechenoperationen verstanden, hilft nur noch eins: üben üben üben. Die vorliegende Mappe entlastet Sie, zugunsten der Unterstützung einzelner

Mehr

Trachtenberg-Division

Trachtenberg-Division Trachtenberg-Division Wiederum in [Trachtenberg] findet man eine Divisionsmethode, deren zentrale Idee es ist, vor dem Dividieren eine Liste aller Vielfachen von bis 9 des Divisors aufzuschreiben; Die

Mehr

Zahlen auf Stufenzahlen ergänzen S. 28 in Zahlen Vielfache erkennen S. 30

Zahlen auf Stufenzahlen ergänzen S. 28 in Zahlen Vielfache erkennen S. 30 Operationen Ich kann... 27 Zahlen zerlegen Zahlen auf Stufenzahlen ergänzen S. 28 in Zahlen Vielfache erkennen S. 30 Operationen mit Handlungen und Situationen verbinden Multiplikationen auf die Stellentafel

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr