Labor zur Vorlesung Physik

Größe: px
Ab Seite anzeigen:

Download "Labor zur Vorlesung Physik"

Transkript

1 Labor zur Vorlesung Physik 1. Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Freie und erzwungene harmonische Schwingungen, Eigenfrequenz, Schwingungsdauer, Dämpfungsgrad, bklingkonstante, logarithmisches Dekrement, uslenkung, Erregerfrequenz, Resonanz Schwingungen.doc Seite 1 von 8 Stand: 1.9.8

2 Inhaltsverzeichnis Vorbereitung Gerätebeschreibung Theoretische Grundlagen Beschreibung des Effekts Differentialgleichung der freien harmonischen Drehschwingung3 3.3 Erzwungene harmonische Drehschwingungen Versuchsdurchführung Freie harmonische Schwingungen Erzwungene Schwingungen rbeitsprogramm Literatur Gerätebeschreibung Das Pohlsche Rad Das schwingende System ist ein kugelgelagertes Rad aus Kupfer. n dessen chse ist eine Spiralfeder befestigt, deren anderes Ende mit einem Hebel verbunden ist. Über diesen Hebel wird mit einem Exzenter und einer Schubstange die Drehbewegungen eines Gleichstromgetriebemotors in periodische Druck- und Zugbewegungen der Spiralfeder umgesetzt. Der Motor wird mit einer Gleichspannung von 4V und 65m betrieben. Die Regelung der Drehzahl und damit der Erregerfrequenz geschieht durch Potentiometer für die Grob- bzw. Feineinstellung. Die Drehfrequenz des Motors kann mittels einer Reflexionslichtschranke und eines Digitalzählers bestimmt werden. Eine zweite Reflexionslichtschranke ist in der Nähe des schwingenden Kupferrades angebracht, um die Frequenz bei freien Schwingungen zu ermitteln. Die mplitude des Erregers lässt sich durch Verschieben der Schubstange in der Führung des Hebels einstellen. Die eigentliche Dämpfung des schwingenden Systems, von der Lager- und Luftreibung einmal abgesehen, wird durch eine Wirbelstrombremse über einen Elektromagneten, zwischen dessen Pole das Rad schwingt, bewirkt. Durch Änderung der Stromstärke im Elektromagneten lässt sich die Dämpfung kontinuierlich regeln. Wir arbeiten mit den Strömen.,.3 und Theoretische Grundlagen 3.1 Beschreibung des Effekts Wirkt auf ein schwingungsfähiges Drehsystem (in unserem Fall das Pohlsche Rad) von außen periodisch ein Drehmoment mit der Frequenz E, so stellt sich nach bklingen des Einschwingvorgangs ein stabiler Schwingungszustand ein. Die ntwort des Systems ist eine erzwungene Schwingung mit der Kreisfrequenz E des Erregers. Die sich einstellende Schwingungsamplitude ist stark von E abhängig. Sie erreicht bei schwacher Dämpfung ein stark ausgeprägtes Maximum. Dieses Verhalten heißt Resonanz, die zum Maximum gehörende Frequenz Resonanzfrequenz. Bei starker Dämpfung wird das Maximum flacher und die Resonanzfrequenz wird kleiner. Schwingungen.doc Seite von 8 Stand: 1.9.8

3 3. Differentialgleichung der freien harmonischen Drehschwingung Zunächst stellen wir die Differentialgleichung für eine freie gedämpfte harmonische Schwingung eines Drehpendels auf. Lenken wir das Pohlsche Rad um einen bestimmten uslenkungswinkel zur Senkrechten aus und lassen das System einfach los, so wird es harmonische Schwingungen ausführen. uf das Kupferrad wirken während der Schwingung folgende Drehmomente: das Drehmoment M 1, das von der Spiralfeder mit der sogenannten Winkelrichtgröße c * erzeugt wird: M1 (1) * c das Drehmoment M, das von der Wirbelstrombremse mit der Dämpfungskonstante b erzeugt wird und proportional der Winkelgeschwindigkeit ɺ ist: M - b ɺ () Das resultierende Drehmoment bewirkt eine Winkelbeschleunigung. Daraus folgt: M1 + M ɺ (3) wobei das Massenträgheitsmoment des Schwingungssystems bedeutet. Somit erhalten wir die DGL einer freien gedämpften harmonischen Drehschwingung: ɺ + bɺ * + c (4) oder ɺ + δɺ + (5) * b c mit δ und δ nennt man die bklingkonstante und die Eigen(kreis)frequenz (Begründung siehe 3..) Lösung der DGL Mit den Methoden zur Lösung von Differentialgleichungen aus Mathematik (Exponentialansatz) kann die DGL (5) wie folgt gelöst werden: p + δp + (6) (charakteristische Gleichung) p (7) -δ ± δ - 1, (Lösungen der char. Gleichung) Wir beschränken uns auf den Fall δ < (schwache Dämpfung), d.h. die Lösungen p 1 und p sind in diesem Fall komplex und führen zu (gedämpften) Schwingungen als Lösungen der DGL: Schwingungen.doc Seite 3 von 8 Stand: 1.9.8

4 -δ ± -δ 1, p j. Die Lösung der DGL (5) hat somit folgende Form: (t) e -δt (c 1 cos t + c sin t) oder (t) e -δt cos (t +γ) mit -δ und und γ werden aus den nfangsbedingungen bestimmt. Mit den Bezeichnungen der Physik (t) ˆ ( t +γ) mit - δt e cos d d δ (8) 3.. Dämpfungsgrad D Der Dämpfungsgrad ist wie folgt definiert: D δ (9) Wir unterscheiden 4 Fälle: a) Die ungedämpfte harmonische Schwingung bei D (d.h. δ ) Die Lösung nimmt folgende Form an: ( t +γ) (t) ˆ cos (1) d.h. ist die Frequenz der freien ungedämpften Schwingung. heißt Eigenfrequenz. b) Die gedämpfte harmonische Schwingung bei < D < 1 Die Lösung ergibt sich aus (8) mit (9) zu ( t +γ) mit der Frequenz 1- D ˆ e -D t cos d d (11) c) Der aperiodische Grenzfall bei D 1 Die Lösung ist eine abklingende Exponentialfunktion (charakteristische Gleichung hat eine doppelte reelle Nullstelle). d) Der Kriechfall bei D > 1 (charakteristische Gleichung hat zwei reelle Nullstellen). Die Lösung ist eine abklingende Exponentialfunktion Das logarithmische Dekrement Das Dämpfungsverhältnis k ist definiert als k n n+1 (1) wobei n und n+1 zwei aufeinanderfolgende gleichsinnige mplituden bei der Dämpfung δ bedeuten. D.h. n und n+1 unterscheiden sich zeitlich um eine Schwingungsdauer T d π/ d. Mit Gleichung (11) folgt: Schwingungen.doc Seite 4 von 8 Stand: 1.9.8

5 k n n+1 (t) e (t + T ) d δ T d (13) d.h. der Quotient zweier aufeinanderfolgenden mplituden ist konstant. Gleichung (13) aufgelöst nach δ ergibt: 1 n δ ln T d n+1 (14) Daraus ist das logarithmische Dekrement definiert zu: Λ ln n δt n+1 d (15) Durch Umformen von Gleichung (15) mit den Logarithmenregeln folgt: Λ ln - ln δt bzw. n n+1 d lnn+1 - lnn - Λ (16) d.h. der bstand zwischen aufeinanderfolgenden logarithmierten mplituden ist immer konstant. Daraus folgt: Trägt man ln n über n auf, entsteht eine Gerade mit der Steigung -Λ, das negative Dekrement. Der chsenabschnitt dieser Geraden kann aus Gleichung (11) bestimmt werden. 3.3 Erzwungene harmonische Drehschwingungen Lösung der Differentialgleichung nalog zu 3. kann man die DGL einer erzwungenen Schwingung aufstellen. Für ein Erregersystem, das ein harmonisches Moment auf das System ausübt, ergibt sich folgende Gleichung: ɺ + b+c ɺ * M cose t (17) mit M - maximal "erzwungenes" Drehmoment E - Frequenz der erzwungenen Schwingung Division mit ergibt: ɺ + δ ɺ + cose t (18) mit b δ, * c und M Schwingungen.doc Seite 5 von 8 Stand: 1.9.8

6 Dies ist eine inhomogene Differentialgleichung, deren Lösung eine Summe aus homogener Lösung und partikulärer Lösung ist. Der homogene nteil ist flüchtig und verschwindet nach dem Einschwingvorgang. Der partikuläre nteil kann z.b. mit Hilfe des Störgliedansatzes bestimmt werden: (t) cos ( ) E t -α (19) und α (die Phasendifferenz zwischen Erreger und Resonator) be- Durch Einsetzen in die DGL müssen ˆ stimmt werden. Es ergibt sich: 1 E 1 δe + () δe und α arctan E Setzen wir : δ D Dämpfungsgrad und so vereinfacht sich die Lösung zu: E ( ) η ( normierte Kreisfrequenz) ( 1 η ) 1 + (Dη) (1) und Dη arctan 1 η α Im folgenden Diagramm ist der Phasenwinkel α für verschiedene Dämpfungsgrade D über η dargestellt: Für kleine E ist die Phasenverschiebung nahe bei, bei der Eigenfrequenz π/ und für große E nahe π. Schwingungen.doc Seite 6 von 8 Stand: 1.9.8

7 3.3. Resonanzfrequenz Offensichtlich hängt die mplitude der erzwungenen Schwingung von der Erregerfrequenz E ab. Unter der Resonanzfrequenz res verstehen wir die Erregerfrequenz, bei der die mplitude maximal wird. Diese erhalten wir durch bleiten der Wurzelfunktion nach. (Maximum der mplitude ergibt sich beim Minimum der Wurzelfunktion) Die Lösung lautet: η 1- D und daraus folgt für res res 1- D () e größer der Dämpfungsgrad, desto kleiner wird die Resonanzfrequenz. Im folgenden Diagramm ist die mplitude der erzwungenen Schwingung für verschiedene Dämpfungsgrade D über η dargestellt: 4. Versuchsdurchführung 4.1 Freie harmonische Schwingungen Eigenfrequenz-Messung Für die gemessene Frequenz f gilt: f (3) π Um freie Schwingungen mit dem Pohlschen Rad zu erzeugen, muss lediglich das Rad auf circa. 18 Skalenteile ausgelenkt und danach losgelassen werden. Das System schwingt frei und harmonisch. Um die Eigenfrequenz zu messen, ist eine Reflexionslichtschranke in der Nähe des Schwingers angebracht. Das Kabel (FR) der Lichtschranke für freie Schwingungen wird mit dem Frequenzzähler verbunden. Ein Reflektor befindet sich bei Ruhelage unmittelbar vor der Lichtschranke und erzeugt einen Reflex. Bei jeder vollständigen Schwingung wird -mal die Reflexionslichtschranke ausgelöst. Der Frequenzzähler zeigt daher die doppelte Frequenz an. Schwingungen.doc Seite 7 von 8 Stand: 1.9.8

8 4.1. Bestimmung des logarithmischen Dekrements Das logarithmische Dekrement ist nach Gleichung (15) wie folgt definiert: n Λ ln( ). n+ 1 Um die statistischen Fehler der Messung zu verringern, bietet sich hier eine graphische Lösung an. Man liest für verschiedene Dämpfungen immer auf der gleichen Seite 6 aufeinanderfolgende mplituden ab und logarithmiert die Werte. Danach trägt man für jede Dämpfung ln n über n auf. Die Punkte konstanter Dämpfung liegen alle auf einer Geraden. Ermittelt man die Steigung der Geraden mit linearer Regression, so ist die negative Steigung der Geraden nach Gleichung (16) das logarithmische Dekrement. 4. Erzwungene Schwingungen 4..1 Resonanzkurven Mit einem Gleichstrommotor wird über eine Schubstange das Pohlsche Rad zum Schwingen angeregt. Die Erregerfrequenz wird direkt über eine Reflexionslichtschranke am Motor und einem Reflektor auf der Welle mit einem Frequenzzähler analog 4.1 gemessen. Das entsprechende Kabel (EZ) muss mit dem Frequenzzähler noch verbunden werden. Nun lassen sich die Frequenzen im Messbereich.4 bis.8hz einstellen. Nach Erreichen der Messfrequenz beginnt der sog. Einschwingvorgang; erst nach dessen Ende (d.h. nach bklingen des homogenen nteils der Lösung, siehe 3.3.1) stellt sich eine konstante mplitude ein, die erfasst wird. Um die Lage der Resonanzfrequenz graphisch gut auflösen zu können, müssen in der Nähe der Resonanz mehrere Messpunkte gesetzt werden. Die Resonanzkurve entsteht, wenn die mplitude über der Frequenz aufgetragen wird. Dies ist für die Dämpfungsströmen.,.3 und.4 durchzuführen. Zeichnet man alle 3 Resonanzkurven in ein Diagramm ein, so kann man die Verlagerung der Kurven bei höherer Dämpfung zu kleineren Frequenzen gut erkennen. 4.. Phasenlage Die Phasenlage bei kleinen bzw. bei hohen Frequenzen lässt sich leicht erkennen. Die Phasenlage bei ermittelt man am besten aus der Gleichung durch Limesbildung E nach. 5. rbeitsprogramm Finden Sie in der Excel-Datei Schwingungen.xls 6. Literatur 1. Hering, Martin, Stohrer; Physik für Ingenieure; VDI-Verlag. Bergmann, Schäfer; Band 1, Mechanik, kustik, Wärme; Walter de Gruyter-Verlag 3. Hauger, Schnell, Gross; Technische Mechanik 3; Springer Verlag 4. Eichler, Kronfeldt, Sahm; Das Neue Physikalische Grundpraktikum; Springer Verlag 5. Walcher, Praktikum der Physik, Teubner Studienbücher Schwingungen.doc Seite 8 von 8 Stand: 1.9.8

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung

M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Universität Potsdam Institut für Physik und Astronomie Grundpraktikum S4 Erzwungene Schwingungen Dieses Experiment enthält zwei Bestandteile: Es werden Zusammehänge zwischen erregender und erregter Schwingung

Mehr

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe:

Versuch III. Drehpendel. Oliver Heinrich. Bernd Kugler Abgabe: Versuch III Drehpendel Oliver Heinrich oliver.heinrich@uni-ulm.de Bernd Kugler berndkugler@web.de 12.10.2006 Abgabe: 03.11.2006 Betreuer: Alexander Berg 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3

Mehr

Dieter Suter - 223 - Physik B3, SS03

Dieter Suter - 223 - Physik B3, SS03 Dieter Suter - 223 - Physik B3, SS03 4.4 Gedämpfte Schwingung 4.4.1 Dämpfung und Reibung Wie bei jeder Bewegung gibt es bei Schwingungen auch dissipative Effekte, d.h. es wird Schwingungsenergie in Wärmeenergie

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Messprotokoll 13.9.1907, Partner Albert Einstein

Messprotokoll 13.9.1907, Partner Albert Einstein Messprotokoll 3.9.97, Partner Albert Einstein Aufgabe Eigenfrequenz des Drehpendels messen Dauer von 5 Schwingungen bei anfänglicher Auslenkung von 8 Skalenteilen: Dauer von 5 Schwingungen bei anfänglicher

Mehr

Versuch 1 Der Pohlsche Resonator

Versuch 1 Der Pohlsche Resonator Physikalisches A-Praktikum Versuch 1 Der Pohlsche Resonator Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 26.6.212 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis

Vorlesungen: 16.1. 2006 30.1. 2006. 7 Differentialgleichungen. Inhaltsverzeichnis Vorlesungen: 16.1. 2006 30.1. 2006 7 Differentialgleichungen Inhaltsverzeichnis 7 Differentialgleichungen 1 7.1 Differentialgleichungen 1. Ordnung...................... 2 7.1.1 Allgemeine Bemerkungen zu

Mehr

Physikalisches Praktikum Pohlsches Rad Freie und erzwungene Schwingungen

Physikalisches Praktikum Pohlsches Rad Freie und erzwungene Schwingungen Physikalisches Praktikum Pohlsches Rad Freie und erzwungene Schwingungen utoren: Markus Krieger Nicolai Löw Erstellungsdatum: 4. Juni 2000 Disclaimer: lle von mir im Internet unter http://www.krieger-online.de

Mehr

Drehpendel nach R.W. Pohl

Drehpendel nach R.W. Pohl Drehpendel nach R.W. Pohl Technische Daten: Eigenfrequenz: Erregerfrequenz: Motorspannung: Stromaufnahme: ca. 0,55 Hz 0,1... 1,3 Hz 24 V=, an den Prüfbuchsen 0...20 V max. 650 ma Wirbelstromdämpfung: 0...20

Mehr

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl YS 2013-08 Mechanik Schwingungslehre Drehpendel nach Pohl LD Handblätter Physik P1.5.3.4 Erzwungene harmonische und chaotische Drehschwingungen Aufzeichnung und Auswertung mit CASSY Versuchsziele Aufnahme

Mehr

Inhaltsverzeichnis. 1 Einleitung 2

Inhaltsverzeichnis. 1 Einleitung 2 Inhaltsverzeichnis 1 Einleitung Physikalische Grundlagen.1 Dynamik am Pohlschen Rad............................ Herleitung der Schwingungsgleichung...................... 3.3 Lösung der Schwingungsgleichung........................

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M6 Physikalisches Grundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

POHLsches 1 Drehpendel

POHLsches 1 Drehpendel POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische

Mehr

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss

Drehpendel. Praktikumsversuch am Gruppe: 3. Thomas Himmelbauer Daniel Weiss Drehpendel Praktikumsversuch am 10.11.2010 Gruppe: 3 Thomas Himmelbauer Daniel Weiss Abgegeben am: 17.11.2010 Inhaltsverzeichnis 1 Einleitung 2 2 Versuchsaufbau 2 3 Eigenfrequenzbestimmung 2 4 Dämpfungsdekrementbestimmung

Mehr

A02 Schwingung Resonanz Dämpfung

A02 Schwingung Resonanz Dämpfung A Schwingung Resonanz Dämpfung (A) x t t A Schwingung Resonanz Dämpfung Ziele In diesem Versuch untersuchen Sie Schwingungsphänomene und deren Gesetzmäßigkeiten mit einem Drehschwingsystem ein Beispiel

Mehr

2. Schwingungen eines Einmassenschwingers

2. Schwingungen eines Einmassenschwingers Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen

Mehr

MR Mechanische Resonanz

MR Mechanische Resonanz MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

M6 PhysikalischesGrundpraktikum

M6 PhysikalischesGrundpraktikum M6 PhysikalischesGrundpraktikum Abteilung Mechanik Resonanzkurven 1 Vorbereitung Physikalische Größen der Rotationsbewegung, Zusammenhang zwischen Drehmoment, Winkelbeschleunigung und Trägheitsmoment,

Mehr

Erzwungene Schwingungen

Erzwungene Schwingungen In diesem Experiment sollen Sie die grundlegenden Eigenschaften von harmonischen Schwingungen kennenlernen. Dabei ist der ausführliche theoretische Abschnitt nicht nur für diesen Versuch, sondern auch

Mehr

MR - Mechanische Resonanz Blockpraktikum Herbst 2005

MR - Mechanische Resonanz Blockpraktikum Herbst 2005 MR - Mechanische Resonanz, Blockpraktikum Herbst 5 7. September 5 MR - Mechanische Resonanz Blockpraktikum Herbst 5 Assistent Florian Jessen Tübingen, den 7. September 5 Vorwort In diesem Versuch ging

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

2.7. Pohlscher Resonator

2.7. Pohlscher Resonator 2.7 Pohlscher Resonator 93 2.7. Pohlscher Resonator Ziel Das Experiment soll durch anschauliche Betrachtung ein besseres Verständnis für Schwingungsvorgänge ermöglichen. Dazu werden nacheinander freie

Mehr

Resonanzverhalten eines Masse-Feder Systems (M10)

Resonanzverhalten eines Masse-Feder Systems (M10) Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Schwingung, Resonanz, Dämpfung

Schwingung, Resonanz, Dämpfung In diesem Versuch untersuchen Sie Schwingungen und ihre Gesetzmäßigkeiten mit einem Drehschwingssystem als ein Beispiel für die unzähligen Oszillatoren, die Ihnen in fast allen Gebieten der Physik begegnen

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Grundpraktikum der Physik. Versuch 3: Freie und erzwungene Schwingung mit dem Drehpendel

Grundpraktikum der Physik. Versuch 3: Freie und erzwungene Schwingung mit dem Drehpendel Grundpraktikum der Physik Versuch 3: Freie und erzwungene Schwingung mit dem Drehpendel Konrad Steible Anne Götz 14. Oktober 2005 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Mechanische harmonische

Mehr

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3

Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3 Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene

Mehr

Laborversuche zur Physik 1 I - 8. Mechanische Schwingungen und Resonanz mit dem Pohl'schen Rad

Laborversuche zur Physik 1 I - 8. Mechanische Schwingungen und Resonanz mit dem Pohl'schen Rad FB Physik Laborversuche zur Physik 1 I - 8 Pohlsches Rad Reyher Mechanische Schwingungen und Resonanz mit dem Pohl'schen Rad Ziele Beobachtung von freien und erzwungenen Torsionsschwingungen, Einfluss

Mehr

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden.

Reihenschwingkreis. In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis untersucht werden. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E 13 Reihenschwingkreis In diesem Versuch soll das Verhalten von ohmschen, kapazitiven und induktiven Widerständen im Wechselstromkreis

Mehr

Der Pohlsche Resonator

Der Pohlsche Resonator Physikalisches Praktikum für das Hauptfach Physik Versuch 01 Der Pohlsche Resonator Sommersemester 005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Physikalisches Praktikum I. Erzwungene Schwingung und Resonanz

Physikalisches Praktikum I. Erzwungene Schwingung und Resonanz Fachbereich Physik Physikalisches Praktikum I Name: Erzwungene Schwingung und Resonanz Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen

Mehr

Erzwungene Schwingung und Resonanz

Erzwungene Schwingung und Resonanz M30 Name: Erzwungene Schwingung und Resonanz Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

P1-12,22 AUSWERTUNG VERSUCH RESONANZ

P1-12,22 AUSWERTUNG VERSUCH RESONANZ P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Freie und erzwungene Schwingungen mit dem Drehpendel

Freie und erzwungene Schwingungen mit dem Drehpendel Anfängerpraktikum Versuch 3 Freie und erzwungene Schwingungen mit dem Drehpendel Gruppe WP 8 Uwe Schwarz uwe.schwarz@student.uni-ulm.de Stefan Rapski huha@gmx.de Gruppe WP 4 Stefan Mohr stefan.mohr@uni-ulm.de

Mehr

A02 Schwingungen - Auswertung

A02 Schwingungen - Auswertung A2 Schwingungen - Auswertung 6. Messungen 6.1 Bestimmung der Eigenfrequenz mit der Stoppuhr Vorbereitung: Erfassen der Messunsicherheit Reaktionszeit,12,3,8,12,11,9,2,6,8,16 s, 87s,1 s 1 Bei auf Nullmarke

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Physikalisches Anfaengerpraktikum. Pohlsches Rad

Physikalisches Anfaengerpraktikum. Pohlsches Rad Physikalisches Anfaengerpraktikum Pohlsches Rad Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 6. März 25 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de ()Einführung

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI Versuch 1.5 Erzwungene Schwingungen und Dämpfungen (Drehpendel nach Pohl) MI2AB Prof. Ruckelshausen MI2AB Prof. Ruckelshausen Seite 1 von 6 Inhaltsverzeichnis 1.) Versuch 1:

Mehr

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum:

Vorbereitung. Resonanz. Stefan Schierle. Versuchsdatum: Vorbereitung Resonanz Stefan Schierle Versuchsdatum: 17. 01. 2012 Inhaltsverzeichnis 1 Drehpendel, freie Schwingung 2 1.1 Der Versuchsaufbau.............................. 2 1.2 Trägheitsmoment des Pendelkörpers.....................

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

M 1a Freie und erzwungene Schwingungen

M 1a Freie und erzwungene Schwingungen M 1a Freie und erzwungene Schwingungen Aufgabenbeschreibung In dem Versuch sollen anhand von Drehschwingungen freie und erzwungene Schwingungen untersucht werden. Bei den freien Schwingungen sollen Begriffe

Mehr

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Aufgaben 19 Resonanz Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen, was eine

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Formelzusammenstellung

Formelzusammenstellung Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad

Laborversuche zur Physik I. Versuch I-03: Pohlsches Rad Laborversuche zur Physik I Versuch I-03: Pohlsches Rad Versuchsleiter: Autoren: Kuschel Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 5.12.2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise 2 2.1 Inbetriebnahme...................................

Mehr

Was gibt es in Vorlesung 6 zu lernen?

Was gibt es in Vorlesung 6 zu lernen? Was gibt es in Vorlesung 6 zu lernen? Beispiele für Schwingfähige Systeme - Federpendel - Schwerependel - Torsionspendel Energiebilanz Schwingungen gedämpfte Schwingungen - in der Realität sind praktisch

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Elektrische Schwingungen

Elektrische Schwingungen E05 Elektrische Schwingungen Elektrische Schwingungen am Serien- und Parallelschwingkreis werden erzeugt und untersucht. Dabei sollen Unterschiede zwischen den beiden Schaltungen und Gemeinsamkeiten mit

Mehr

4. Einführung in die Baudynamik

4. Einführung in die Baudynamik Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

S4 Erzwungene Schwingung Protokoll

S4 Erzwungene Schwingung Protokoll Christian Müller Jan Philipp Dietrich S4 Erzwungene Schwingung Protokoll I. Freie Schwingung a) Erläuterung b) Bestimmung der Eigenkreisfrequenz c) Bestimmung des Dämpfungsmaß β II. Erzwungene Schwingung

Mehr

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen

Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Übung 19 Resonanz Erzwungene Schwingung, Resonanz, Selbstgesteuerte Schwingungen Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen, was eine

Mehr

Versuch 1: Pohlscher Resonator

Versuch 1: Pohlscher Resonator Versuch 1: Pohlscher Resonator Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Herleitung der Differentialgleichung...................... 3 2.2 Lösung der Differentialgleichung........................

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Anwendungen komplexer Zahlen

Anwendungen komplexer Zahlen nwendungen komplexer Zahlen rbeitsblatt Dieser bschnitt eignet sich für fächerübergreifenden Unterricht mit Physik. In der Physik, speziell der Elektrotechnik, ist das chnen mit komplexen Zahlen ein wichtiges

Mehr

Erzwungene Schwingung - das Pohl sche Drehpendel mit measure Dynamics. Material TEP

Erzwungene Schwingung - das Pohl sche Drehpendel mit measure Dynamics. Material TEP Erzwungene Schwingung - das Pohl sche TEP Verwandte Begriffe Winkelgeschwindigkeit, charakteristische Frequenz, Resonanzfrequenz, Drehpendel, Drehschwingung, Rückstellmoment, gedämpfte/ungedämpfte freie

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Freie Gedämpfte Schwingungen

Freie Gedämpfte Schwingungen PHYSIKALISCHE GRUNDLAGEN Freie Gedämpfte Schwingungen durchgeführt am 4.06.200 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Physikalische Grundlagen. Schwingungen Als Schwingung bezeichnet

Mehr

Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen)

Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen) Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum 17a Drehpendel nach Pohl (Lineare und nichtlineare Schwingungen) Aufgaben 1. Bestimmen Sie die Frequenz f d, die Abklingkonstante

Mehr

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz

Versuch M3b für Physiker Erzwungene Schwingung / Resonanz Versuch M3b für Physiker Erzwungene Schwingung / Resonanz I. Physikalisches Institut, Raum HS0 Stand: 3. April 04 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner angeben

Mehr

Drehpendel. Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 2003 FB 2 ET / IT

Drehpendel. Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 2003 FB 2 ET / IT FB ET / IT Drehpendel Laborbericht Für Labor Physik und Grundlagen der Elektrotechnik SS 003 Erstellt von: G. Schley, B. Drollinger Mat.-Nr.: 90933, 91339 Datum: 9.04.003 G. Schley, B. Drollinger / 9.04.003-1

Mehr

2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte

2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte Hochschule Merseburg (FH) FB INW Praktikum Virtuelle Instrumentierung 2L: Verfahren der Messtechnik FFT, Triggerung und gedämpfte Schwingung NI LabVIEW - NI-DAQ-Karte National Instruments DAQ-Karte National

Mehr

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907

Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907 Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter

Mehr

Versuch: Drehpendel. Labor Physik und Grundlagen der Elektrotechnik. Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer

Versuch: Drehpendel. Labor Physik und Grundlagen der Elektrotechnik. Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Labor Physik und Grundlagen der Elektrotechnik Versuch: Drehpendel Prof. Dr. Karlheinz Blankenbach Dipl.-Phys. Michael Bauer Blankenbach / drehpendel.doc 1 Drehpendel Das Drehpendel nach R.W. Pohl ist

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob

Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob Ausarbeitung Pohlsches Rad / Chaos Autoren: Simone Lingitz, Sebastian Jakob 1. Vorarbeiten zu Hause 1.1 Erzwungene Schwingung einer Feder mit Dämpfung Bewegungsgleichung: m & x + b x& + k x m g = F cos(

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

7 Harmonischer Oszillator & Schwingungen

7 Harmonischer Oszillator & Schwingungen 7 Haronischer Oszillator & Schwingungen 7.1 Motivation Als haronischen Oszillator bezeichnet an in der Mechanik ein Syste, das ein Potentialiniu besitzt und bei einer Auslenkung x aus diese Miniu eine

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. Physik Schwingungen 3 Physik 2. Schwingungen. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Fluide 5 Themen Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Torsionsoszillator

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Torsionsoszillator Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Torsionsoszillator 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 3 II. Grundlagen 3 1. Torsionsfeder 3 2. Trägheitsmoment

Mehr