10. Schwingungen(oscilación (la), vibración, la)

Größe: px
Ab Seite anzeigen:

Download "10. Schwingungen(oscilación (la), vibración, la)"

Transkript

1 Schwingungen Hofer Schwingungen(oscilación (la), vibración, la) A1: Was ist eine Schwingung? A2: Gib Beispiele von Schwingungen an! Alle periodischen Bewegungen können aus harmonischen Schwingungen (oscilación (la) armónica) zusammengesetzt werden Harmonische Schwingungen(oscilación (la) armónica) Das Zeit-Weg-Diagramm einer harmonischen Schwingung : Versuch: Stimmgabelschreiber Schwingungen, deren Zeit-Weg-Diagramm eine Sinuskurve (Cosinuskurve) ist, werden harmonische Schwingungen genannt. A1: Zeichne eine Sinuskurve!

2 Schwingungen Hofer 2 Grundlegende Begriffe: Schwingungsdauer (duración (la) de la oscilación) T : Elongation (elongación, la) s : Amplitude (amplitud, la) r : Frequenz (frecuencia, la) f : A2: Hänge einen kleinen Körper an eine Schraubenfeder! Bestimme einige Male T bzw. f und schließlich den Mittelwert! A3: Bestimmung der Federkonstante: Hänge an eine Schraubenfeder einen Körper mit bekannter Masse m und bestimme die Federkonstante k! Führe den Versuch auch mit einer anderen Masse durch! m T = 2π k A4: Verwende dieselbe Feder wie in Aufgabe A2 und bestimme die Schwingungsdauer T mit verschiedenen Massen! Trage die erhaltene Schwingungsdauer T in Abhängigkeit von den Massen in ein Diagramm ein. Verbinde die Massenpunkte und beschreibe die erhaltene Kurve. A5: Führe einen Versuch durch, der zeigt, dass die Schwingungsdauer eines Federpendels nicht von der Amplitude abhängt! A6: Bestimme die Abhängigkeit der Schwingungsdauer eines Federpendels von der Federkonstante.

3 Schwingungen Hofer Die mathematische Beschreibung der harmonischen Bewegung A1: Wiederhole die Begriffe Winkelgeschwindigkeit und Bogenmaß! Mit Hilfe der Kreisbewegung kann man die Bewegungsgesetze der harmonischen Schwingung kennen lernen. V: Projektion der Kreisbewegung Abb.1: Wir projizieren eine Kreisbewegung seitlich auf einen Schirm und beobachten die Bewegung des Schattenbildes. Für die Kreisbewegung haben wir die Winkelgeschwindigkeit ω (velocidad angular, la) so definiert: ω = = T f ω Wir wollen nun die Bewegung des Schattens, also die Projektion der Kreisbewegung beschreiben.

4 Schwingungen Hofer 4 A2: Welche physikalischen Größen benötigt man um eine Bewegung zu beschreiben? Elongation (elongación, la) s(t) : Abb. 2 : Projektion der kreisenden Bewegung auf einen Schirm. Dadurch erhält man die wechselnde Auslenkung aus der Ruhelage. Geschwindigkeit (velocidad, la) v(t) Abb.3: Projektion der Geschwindigkeit auf einem Schirm. Dadurch erhält man die Geschwindigkeit in der Abhängigkeit der Zeit.

5 Schwingungen Hofer 5 Beschleunigung (aceleración, la) a(t): Abb.4: Die Beschleunigung ist der momentanen Auslenkung entgegengesetzt und schwankt ebenfalls periodisch. Die harmonische Bewegung: s(t) = r sin (ω t) v(t) = r ω cos (ωt) a(t) = - ω 2 r sin (ωt) s(t)...momentane Auslenkung (elongación, la) v(t)...momentane Geschwindigkeit (velocidad, la) a(t)...momentane Beschleunigung (aceleración, la) r Amplitude (amplitud, la) ω Winkelgeschwindigkeit (velocidad angular, la) t Zeit (tiempo, el) Herleitung der Schwingungsdauer T einer harmonischen Schwingung: Kraftgesetz einer harmonischen Schwingung: Die Kraft F, die auf einen harmonischen schwingenden Körper mit der Masse m wirkt, ist direkt proportional zu seiner Auslenkung s. r r F = k.s Hook sches Gesetz Allgemein gilt für den Betrag der Kraft: F(t) = = m.[- r ω 2 sin(ωt)] =

6 Schwingungen Hofer 6 Schwingungsdauer (duración (la) de la oscilación) T: T = 2π m k k Proportinalitätsfaktor (factor (el) de proporcionalidad) m Masse (masa, la) T Schwingungsdauer (duración (la) de la oscilación) 10.2 Das Fadenpendel(péndulo (el) con pita ó hilo) Abb.1: Das Fadenpendel A1: Beschrifte die Abb.1. Trage dabei die auftretenden Kräfte und den Ablenkungswinkel ein. Ein Fadenpendel besteht aus einem Körper der Masse m, der an einem Faden der Länge l hängt. Am Körper m greift die Kraft F = mg an. Für kleine Elongationen ist die rücktreibende Kraft proportional zur Auslenkung. Das Fadenpendel schwingt harmonisch. Daher gilt: F =

7 Schwingungen Hofer 7 Schwingungsdauer T des Fadenpendels: T = 2π l g T Schwingungsdauer (duración (la) de la oscilación) l Länge des Fadens (longitud del hilo) g Erdbeschleunigung (aceleración (la) terrestre) A2: Zeige, dass die Einheit der Schwingungsdauer s ist! V: Bestimme mit Hilfe des Fadenpendels die Erdbeschleunigung g in Guatemala City!

8 Schwingungen Hofer Die Energie des harmonisch schwingenden Körpers (la energía de la oscilación armónica) Um die Schwingungsenergie (energía (la) de oscilaciónes o vibraciones) eines Federpendels zu berechnen, berücksichtigen wir die Bewegungsenergie (energía (la) cinética o de movimiento) und die Dehnungsernergie bzw. potenzielle Energie (energía (la) potencial) der Feder! 2 mv Bewegungsnergie : EK = 2 2 ks Dehnungsenergie : Ep = 2 A1:Überlege: Wann und wo hat der Pendelkörper seine größte potenzielle, seine größte kinetische Energie und wann seine kleinste potenzielle seine kleinste kinetische Energie? A2: Zeichne in ein Energie-Zeit-Diagramm die potentielle, die kinetische und die Gesamtenergie eines Federpendels ein! Für die Gesamtenergie erhalten wir: E ges. ks mv = A3: Setze für k, s, und v die im Skriptum oben errechneten Werte ein! Man erhält dann: Energie eines harmonischen Oszillators (la energía de la oscilación armónica) π 2 2 E = 2 mf r

9 Schwingungen Hofer 9 E Energie (energía, la) m Masse (masa, la) f Frequenz (frecuencia, la) r Amplitude (amplitud, la) 10.5 Überlagerung von Schwingung (interferece; interferencia, la) Phasenkonstante einer harmonischen Schwingung A1: Erarbeite gemeinsam mit dem Lehrer den Begriff Phasenunterschied zweier Schwingungen anhand eines Elongation - Zeit-Diagramms zweier Schwingungen! Abb.1: Loslassen eines ausgelenkten Pendelkörpers Abb.2: Anstoßen eines Pendelkörpers in der Ruhelage

10 Schwingungen Hofer Addition von Schwingungen Werden zwei harmonische Schwingungen mit gleicher Frequenz überlagert, so entsteht wieder eine harmonische Schwingung! A2: Zeichne drei Elonagtion-Zeit-Diagramme: 1. Überlagerung zweier gleichphasiger Schwingungen (konstruktive Interferenz; interferencia (la) constructiva)! 2. Überlagerung zweier gegenphasiger Schwingungen(destruktive Interferenz; interferencia (la) desconstructiva)! 3. Überlagerung zweier harmonischer Schwingungen mit gleicher Frequenz, die weder gleich- noch gegenphasig sind! Abb.1: Überlagerung von gleichphasigen Schwingungen Abb.2: Überlagerung von gegenphasigen Schwingungen

11 Schwingungen Hofer 11 Abb.3: Überlagerung zweier harmonischer Schwingungen mit gleicher Frequenz, die weder gleich- noch gegenphasig sind! Werden zwei harmonische Schwingungen mit verschiedenen Frequenzen überlagert, so entsteht keine harmonische Schwingung.! 10.6 Eigenschwingungen(frecuencia (la) natural) Ein einzelnes Pendel kann nur in einer bestimmten Weise schwingen; diese Schwingung heißt Eigenschwingung. Die Frequenz dieser Eigenschwingung heißt Eigenfrequenz f. Zwei gekoppelte Pendel können gleichsinnig oder gegensinnig schwingen. Zwei gekoppelte Pendel weisen also zwei verschiede Eigenschwingungen mit der Frequenz f 1 und f 2 auf. Versuch: (gekoppelte Federpendel) A1: Skizziere und beschreibe den Versuch Mit der Anzahl der Pendelkörper, die miteinander verbunden sind, steigt die Zahl der möglichen Eigenschwingungen. Abb1: Gekoppeltes Pendel mit drei Pendelkörper

12 Schwingungen Hofer 12 Ein Gummischlauch, der aus zahlreichen miteinander verbundenen Molekülen besteht, hat daher eine riesige Zahl verschiedener Eigenschwingungen. Eigenschwingungen eines Gummischlauches: Abb2: Grundschwingung eines eingespannten Gummischlaues. Abb2: Höhere Eigenschwingungen eines Gummischlauches Bei allen Eigenschwingungen bleiben bestimmte Teile des Schlauches in Ruhe: Schwingungsknoten Der Bereich zwischen zwei benachbarten Schwingungsknoten wird Schwingungsbauch genannt. Die Grundschwingung weist nur an den Schlauchenden Schwingungsknoten auf. Alle weiteren Eigenschwingungen haben weitere Schwingungsknoten zwischen den Schlauchenden. Diese Schwingungen werden Oberschwingungen genannt. Die Frequenz der Oberschwingungen ist ein ganzzahliges Vielfaches der Grundfrequenz.

13 Schwingungen Hofer 13 Beispiele: Saiteninstrumente Die gespannten Saiten der Gitarre, der Violine oder des Klaviers schwingen ähnlich wie ein gespannter Gummischlauch. Die Schwingungsform der Saite und damit der Klang des Instrumentes hängen eng mit dem Auslenkungspunkt der Saite und dem Auslenkungsmechanismus zusammen. Der Klang des Saiteninstrumentes ergibt sich aus den Überlagerungen der Eigenschwingungen. Trommeln Trommeln werden in Schwingungsbäuchen angeschlagen. A1: Schlage eine Gitarrensaite in der Nähe des Schallloches und nahe dem Steg und erkläre den verschiedenen Klang des Instrumentes. A2: Wie werden Saiteninstrumente zum klingen gebracht? 10.6 Gedämpfte Schwingungen (oscilación (la) amortiguada) Die Dämpfung Versuch: Dämpfung einer Schwingung A1: Beschreibe und skizziere den Versuch! Geht durch Reibung Schwingungsenergie verloren, so verringert sich die Amplitude der Schwingung! A2: Beschrifte die Achsen und zeichne den Amplitudenverlauf einer gedämpften Schwingung ein.

14 Schwingungen Hofer 14 Abb.1: Weg-Zeit-Diagramm einer gedämpften Schwingung A2: Überlege, wie die Schwingung eines aus der Ruhelage ausgelenkten Federpendels in einem zähen Medium(zB Honig) verlaufen wird. A3: Nenne Beispiele aus dem Alltag, in denen gedämpften Schwingungen auftreten. A4: Überlege, wodurch die Dämpfung einer Schwingung im Alltag beeinflusst wird? Die erzwungene Schwingung - Resonanz (resonancia, la) Die Dämpfung führt dazu, dass jede Schwingung Energie an die Umgebung abgibt und schließlich zum Stillstand kommt. Will man das verhindern, so muss man Energie zuführen. Solche Schwingungen nennt man dann erzwungene Schwingungen. Versuch: A1: Beschreibe und skizziere den Versuch! A2: Gib die Phasenverschiebung zwischen Anreger und Pendel an.

15 Schwingungen Hofer 15 Die Amplitude des Federpendels hängt jeweils von der Frequenz des Anregers ab. Wenn man in einem Diagramm die Amplitude der Schwingung als Funktion der Anregungsfrequenz einträgt, so erhält man die Resonanzkurve. A3: Zeichne in das Diagramm die Resonanzkurve für verschiedene Dämpfungen ein! Die Form der Resonanzkurve hängt von der Dämpfung ab. Bei geringer Dämpfung kann es zur Resonanzkatastrophe kommen! A4: Gib Beispiele der Resonanz aus dem Alltag an und Beschreibe diese!

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen

2 Mechanische Schwingungen und Wellen. 2.1 Mechanische Schwingungen 2 Mechanische Schwingungen und Wellen 2.1 Mechanische Schwingungen 2.1.1 Harmonische Schwingungen Federpendel, Fadenpendel 2.1.2 Gedämpfte Schwingungen 2.1.3 Erzwungene Schwingungen 2.2 Wellen 2.2.1 Transversale

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Schwingungen. Wir beginnen mit der Schwingung eines leicht beobachtbaren Körpers: 1.) Die Schwingung des Fadenpendels

Schwingungen. Wir beginnen mit der Schwingung eines leicht beobachtbaren Körpers: 1.) Die Schwingung des Fadenpendels Schwingungen Eine Schwingung ist eine periodische, d. h. in gleichen Zeiten sich wiederholende Bewegung eines Körpers um seine Ruhe- oder Gleichgewichtslage. Viele Schwingungsphänomene sind uns vertraut:

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. Physik Schwingungen 3 Physik 2. Schwingungen. SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Fluide 5 Themen Parameter einer Schwingung Harmonischer Oszillator Gedämpfter harmonischer Oszillator Resonanz

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Mechanische Schwingungen Aufgaben 1

Mechanische Schwingungen Aufgaben 1 Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Schwingung, Resonanz, Dämpfung

Schwingung, Resonanz, Dämpfung In diesem Versuch untersuchen Sie Schwingungen und ihre Gesetzmäßigkeiten mit einem Drehschwingssystem als ein Beispiel für die unzähligen Oszillatoren, die Ihnen in fast allen Gebieten der Physik begegnen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Grundwissen. Physik. Jahrgangsstufe 10

Grundwissen. Physik. Jahrgangsstufe 10 Grundwissen Physik Jahrgangsstufe 10 1. Impuls Grundwissen Physik Jahrgangsstufe 10 Seite 1 Definition: p=m v [ p]=1 kg m s Impulserhaltungssatz: p vorher = p nachher p= p ' p 1 p = p' 1 p ' m 1 =1kg stößt

Mehr

Schwingungen & Wellen

Schwingungen & Wellen Schwingungen & Wellen 2 2.1 Harmonische Schwingung, Dämpfung, Resonanz I Theorie Schwingungen spielen eine große Rolle in allen Bereichen der Physik. In Uhren sind sie fundamental, in mechanischen Maschinen

Mehr

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus. Versuch Beschreibung von Schwingungen Wir beobachten die Bewegung eines Fadenpendels Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.

Mehr

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen.

b) Sie sind in der Lage, Experimente mit dem PASCO System durchzuführen, die Daten zu exportieren und in Excel auszuwerten und darzustellen. Das ist das Paradebeispiel eines schwingenden, schwach gedämpften Systems. waren vor der Erfindung des Quarz Chronometers die besten Zeitgeber in Taschenuhren. Als Unruh bestimmten sie die Dauer einer

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional 18.04.2013 Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T

F r = m v2 r. Bewegt sich der Körper mit der konstanten Winkelgeschwindigkeit ω = 2π, T Kreisbewegung ================================================================== Damit sich ein Körper der Masse m auf einer Kreisbahn vom Radius r, dannmuss die Summe aller an diesem Körper angreifenden

Mehr

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.

Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00. Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00

Mehr

SCHWINGUNGEN (6.Klasse Oberstufe NTL-Versuchsanleitungen)

SCHWINGUNGEN (6.Klasse Oberstufe NTL-Versuchsanleitungen) 1 Schulversuchspraktikum WS 2000/2001 SCHWINGUNGEN (6.Klasse Oberstufe NTL-Versuchsanleitungen) Pickhardt Gunther III.1. Rückkopplung 10 III.2. Erzwungene harmonische Schwingungen und Resonanz 11 IV. LERNZIELE

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM I

PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM I WS 02 / 03 PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM I Schwingungen und Wellen (Oberstufe) 1. Versuch: 23.1.2003 Protokoll: 24.1.2003 Adelheid Denk 9955832 412 / 406 24.1.2003 1 / 20 Inhaltsverzeichnis:..Seite

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.

ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN. ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender

Mehr

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung

Physik LK 11, 3. Klausur Schwingungen und Wellen Lösung Die Rechnungen bitte vollständig angeben und die Einheiten mitrechnen. Antwortsätze schreiben. Die Reibung ist bei allen Aufgaben zu vernachlässigen, wenn nicht explizit anders verlangt. Besondere Näherungen

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

Die schwingende Saite Theoretische und experimentelle Betrachtungen

Die schwingende Saite Theoretische und experimentelle Betrachtungen Die schwingende Saite Theoretische und experimentelle Betrachtungen T ψ(z,t) 0 ψ(z,t) = t ρ z 0 Facharbeit von Vera Schnells, Stufe 1, Schuljahr 006/007 Beratungslehrer: Herr Thul I n h a l t s v e r z

Mehr

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔!

Schwingungen. Harmonische Schwingung. Rückstellkraft. Newton. Schwingungsgleichung. mit 𝜔! = Ansatz: Einsetzen: Auch 𝑥! 𝑡 = 𝐵 sin 𝜔! Schwingungen Harmonische Schwingung 𝐹"#"$ = 𝑥 Rückstellkraft Newton 𝐹 = 𝑚𝑎 𝑥 = 𝑚𝑥 = 𝑚 Bewegungsgleichung + 𝜔 𝑥 = 0 mit 𝜔 = Ansatz: 𝑥 𝑡 = 𝐴𝜔 sin 𝜔 𝑡 𝑥 𝑡 = 𝐴𝜔 cos 𝜔 𝑡 Schwingungsgleichung 𝑥 𝑡 = 𝐴 cos 𝜔 𝑡

Mehr

Das Hook sche Gesetz

Das Hook sche Gesetz Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional Wenn man eine Messung durchführt und die beiden Größen gegeneinander

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Gekoppelte Pendel an der Hafttafel

Gekoppelte Pendel an der Hafttafel Prinzip Schwingungen treten in der Physik in den verschiedensten Zusammenhängen auf, sie sind bei Schaukeln, Federungen im Auto oder Hängebrücken makroskopisch beobachtbar. In der Natur hat man jedoch

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

Versuch Erzwungene Schwingung

Versuch Erzwungene Schwingung Versuch Erzwungene Schwingung erneuert aus Studiengebühren Vorbereitung: Drehschwingung, Gedämpfte Schwingung, Erzwungene Schwingung, Phasenraumdiagramme, Wirbelstrombremse Literatur: Standard-Lehrbücher

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Das Hook sche Gesetz. Wenn man eine Messung durchführt und die beiden Größen gegeneinander aufträgt erhält man. eine Ursprungsgerade.

Das Hook sche Gesetz. Wenn man eine Messung durchführt und die beiden Größen gegeneinander aufträgt erhält man. eine Ursprungsgerade. Das Hook sche Gesetz 04-09.2016 Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional F s Wenn man eine Messung durchführt und die beiden Größen

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein.

SCHWINGUNGEN. Aufgabe 1 Zeichnen Sie in Abbildung 1 qualitativ alle auf das Gewichtsstück wirkenden Kräfte ein. SCHWINGUNGEN sind besondere Formen der Bewegung. Sie sind in der modernen Physik grundlegend für die Beschreibung vieler Phänomene. Wir werden diese Bewegung zuerst wieder darstellen in Graphen und die

Mehr

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen.

Gekoppeltes Pendel. Abbildung 1: Erdbebenwellen ko nnen große Scha den anrichten. Man unterscheidet longitudinale und transversale Erdbebenwellen. c Doris Samm 008 1 Gekoppeltes Pendel 1 Der Versuch im U berblick Wasserwellen bereiten Ihnen Vergnu gen, Erdbebenwellen eher nicht, Schallwellen ko nnen manchmal nur Flederma use ho ren (Abb. 1, Abb.

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Freie Gedämpfte Schwingungen

Freie Gedämpfte Schwingungen PHYSIKALISCHE GRUNDLAGEN Freie Gedämpfte Schwingungen durchgeführt am 4.06.200 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Physikalische Grundlagen. Schwingungen Als Schwingung bezeichnet

Mehr

Feder-, Faden- und Drillpendel

Feder-, Faden- und Drillpendel Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht

Mehr

Weitere Beispiele zu harmonischen Schwingungen

Weitere Beispiele zu harmonischen Schwingungen Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;

Mehr

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen

Physik für Oberstufenlehrpersonen. Frühjahrssemester Schwingungen und Wellen Physik für Oberstufenlehrpersonen Frühjahrssemester 2018 Schwingungen und Wellen Zum Einstieg in das neue Semester Schwingungen Schwingungen spielen bei natürlichen Prozessen bedeutende Rolle: -Hören und

Mehr

Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten

Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten Physikprüfung: Schwingungen und Radioaktivität Zeit: Teil A maximal 15 Minuten, insgesamt 45 Minuten Teil A: Kurzfragen Hinweise:! keine Hilfsmittel (Taschenrechner, FoTa, Formelblatt) erlaubt! numerische

Mehr

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen

Fortschreitende Wellen. Station C. Was transportieren Wellen? Längs- und Querwellen Station A Fortschreitende Wellen a) Skizziere ein Wellental. Stelle darin die Schnelle und die Ausbreitungsgeschwindigkeit c dar. b) Die gemessene Ausbreitungsgeschwindigkeit: c = c) Warum kann nicht ein

Mehr

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen 5. Mechanische Schwingungen und Wellen Der Themenbereich mechanische Schwingungen und Wellen ist ein Teilbereich der klassischen Mechanik, der sich mit den physikalischen Eigenschaften von Wellen und den

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02

1. ZIEL 2. FRAGEN ZUR VORBEREITUNG. A02 Schwingungen A02 Schwingungen 1. ZIEL In diesem Versuch sollen Sie Schwingungen und ihre Gesetzmäßigkeiten untersuchen. Sie werden die Erdbeschleunigung messen und mit einem Foucault-Pendel die Drehung der Erde um ihre

Mehr

Die harmonische Schwingung

Die harmonische Schwingung Joachim Stiller Die harmonische Schwingung Alle Rechte vorbehalten Die harmonische Schwingung Beschreibung von Schwingungen 1. Das Federpendel zeigt, worauf es ankommt Eine Kugel hängt an einer Schraubenfeder

Mehr

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist.

Ruhelage. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen ist. WELLENLEHRE 1) Harmonische Schwingung 1.1) Fadenpendel Umkehrpunkt ŷ Umkehrpunkt y Ruhelage D: Ein Oszillator ist ein schwingfähiger Körper. D: Die Ruhelage nimmt ein Oszillator ein, wenn er nicht am Schwingen

Mehr

PS1. Grundlagen-Vertiefung Version

PS1. Grundlagen-Vertiefung Version PS1 Grundlagen-Vertiefung Version 14.03.01 Inhaltsverzeichnis 1 1.1 Freie Schwingung................................ 1 1.1.1 Gedämpfte Schwingung......................... 1 1.1. Erzwungene Schwingung........................

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

2 Schwingungen. 2.1 Die harmonische Schwingung. (Simple harmonic motion) a = r ω 2 verwendet.

2 Schwingungen. 2.1 Die harmonische Schwingung. (Simple harmonic motion) a = r ω 2 verwendet. 11 Unter Schwingungen (Oscillations) versteht man Vorgänge, bei denen sich eine physikalische Größe, z. B. Weg, Geschwindigkeit, etc., periodisch in Abhängigkeit der Zeit ändert. Eine Schwingung entsteht,

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 3 Gekoppelte Schwingungen Gruppe Nr.: 1 Theoretische Grundlagen Mathematisches Pendel: Bei einem mathematischen Pendel ist ein Massepunkt an einem Ende eines

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Physik 2. Schwingungen.

Physik 2. Schwingungen. 2 Physik 2. Schwingungen. SS 18 2. Sem. B.Sc. CH Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe unter gleichen Bedingungen 4.0 International Lizenz

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl YS 2013-08 Mechanik Schwingungslehre Drehpendel nach Pohl LD Handblätter Physik P1.5.3.4 Erzwungene harmonische und chaotische Drehschwingungen Aufzeichnung und Auswertung mit CASSY Versuchsziele Aufnahme

Mehr

1. Auflage 2010 Alle Rechte vorbehaltencopyright Pädagogische Hochschule PHBern

1. Auflage 2010 Alle Rechte vorbehaltencopyright Pädagogische Hochschule PHBern Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Wellen, Licht und Elektronen. Einführung in die Quantenchemie Korrektorat: Dina Baars, Bern Illustrationen: Christoph

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel

Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,

Mehr

Fadenpendel. Lagerbolzen

Fadenpendel. Lagerbolzen Fadenpendel Die Schnur soll etwa 1 m lang sein. Durch Multimuffe Verschieben der unteren Multimuffe kann die Pendellänge eingestellt werden. Die Pendellänge ist der Abstand zwischen Aufhängepunkt und Schwerpunkt

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung Schwingungen SW1: 2 Ein Körper bewegt sich harmonisch. Bei einer Auslenkung aus der Ruhelage um x = 7,5 mm erfährt er eine Beschleunigung von a = 1,85 m s 2. Wie viele Schwingungen pro Sekunde führt er

Mehr

HARMONISCHE SCHWINGUNGEN

HARMONISCHE SCHWINGUNGEN HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

1. Klausur ( )

1. Klausur ( ) EI K1PH-4 2012-13 PHYSIK 1. Klausur (15.10.2012) 1. Aufgabe (2 Punkte) Gib ein Beispiel für eine Bewegung an, bei der die Geschwindigkeit negativ, die Beschleunigung aber positiv ist. Skizziere ein entsprechendes

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

1 Fouriersynthese und Fourieranalyse

1 Fouriersynthese und Fourieranalyse Schwingungslehre in Kursstufe 5/ 57 Ernst Schreier Fouriersynthese und Fourieranalyse. Stehende Wellen / Eigenschwingungen / Resonanz Bei einfacher Reflexion bildet sich immer eine stehende Welle vor der

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Erzeugung ungedämpfter Schwingungen

Erzeugung ungedämpfter Schwingungen Erzeugung ungedämpfter Schwingungen Jede freie Schwingung ist eine gedämpfte Schwingung. Das System schwingt nach einmaliger Energiezufuhr mit seiner Eigenfrequenz f 0. Um die Dämpfung einer Schwingung

Mehr

Aufgaben zu Teil F, Kapitel 2

Aufgaben zu Teil F, Kapitel 2 Aufgaben zu Teil F, Kapitel 2 1. Fragen und Verständnisaufgaben a) Was verstehen Sie unter einem harmonischen Oszillator? b) Was ist Resonanz? Was ist ein Resonator (Gummiseil, Schall, Licht)? c) Studieren

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr

2. Übungstest aus Physik für ET A

2. Übungstest aus Physik für ET A 2. Übungstest aus Physik für ET 14.12.2012 A Zuname: Vorname(n): Matr.Nr.: Übungsgruppe: Jedes abgegebene Blatt muss oben Ihren Namen/Matr.Nr./ Übungsgruppe tragen. 1. Eine Masse m=0,3 kg schwingt ungedämpft

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Vorwort zur Ausgabe der deutschsprachigen Übersetzung

Vorwort zur Ausgabe der deutschsprachigen Übersetzung Vorwort Das Buch fasst das Grundwissen der Physik für diejenigen Schüler zusammen, die bereits einige Grundlagen der Physik erlernt haben. Dementsprechend will es die Basiskenntnisse der Optik, der modernen

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr