Versuch 2 aktive Bauelemente (1)

Größe: px
Ab Seite anzeigen:

Download "Versuch 2 aktive Bauelemente (1)"

Transkript

1 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 1 Versuch 2 aktive Bauelemente (1) 1. Das statische Verhalten des Bipolartransistors Das Aufnehmen vollständiger Kennlinien wäre viel zu zeitaufwendig. Wir beschränken uns deshalb auf eine gleichsam stichprobenhafte Betrachtung verschiedener Arbeitspunkte (Abb. 1.1). Anschließend werden anwendungspraktisch wichtige Grundschaltungen im statischen Betrieb untersucht (Abb. 1.2 bis 1.6). Abb. 1.1 Grundsatzuntersuchungen am Bipolartransistor (Grundschaltung zur Kennlinienaufnahme) 1. Alle Spannungsregler der Labornetzgeräte auf Null (linker Anschlag). Stets vorsichtig betätigen! 2. Kollektorspannung U CE anfänglich auf 5 V. 3. Basisspannung langsam (!) hochdrehen. Instrumente beobachten! a) Was passiert bei U BE = 200 mv? b) Wann fängt ein nennenswerter Basisstrom I B zu fließen an (z. B. 10 µa)? c) Welcher Kollektorstrom fließt bei einem Basisstrom von 10 µa? d) Welcher Kollektorstrom fließt bei einem Basisstrom von 30 µa? Wie hoch ist dabei U BE? e) Was geschieht, wenn man die Basisspannung U BE weiter erhöht? Bei Kollektorstrom I C > 30 ma Versuch abbrechen (Basispannung auf Null). f) Basisspannung auf linken Anschlag zurück. Kollektorspannung U CE auf 10 V. Versuchsschritte a) bis d) wiederholen. Versuch abbrechen (alles aus), wenn Transistor beginnt, merklich warm zu werden.

2 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 2 Abb. 1.2 Der Bipolartransistor in Emitterschaltung 1. Alle Spannungsregler der Labornetzgeräte auf Null (linker Anschlag). Stets vorsichtig betätigen! 2. Betriebsspannung U B auf 10 V. 3. Steuerspannung langsam (!) hochdrehen. Instrumente beobachten! a) Ab wann (Basisspannung U BE, Basisstrom I B ) bewegt sich die Ausgangsspannung U A? b) Wann sinkt die Ausgangsspannung auf 0,5 V? c) Wann sinkt die Ausgangsspannung auf 0,1 V? d) Was geschieht, wenn man die Steuerspannung weiter erhöht? Bei Basisspannung U BE > 0,8 V Versuch abbrechen (Steuerspannung auf Null). e) Steuerspannung auf linken Anschlag zurück. Kollektorspannung U CE auf 20 V. Versuchsschritte a) bis d) wiederholen. Versuch abbrechen (alles aus), wenn Transistor beginnt, merklich warm zu werden. Abb. 1.3 Der Bipolartransistor in Kollektorschaltung

3 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH Alle Spannungsregler der Labornetzgeräte auf Null (linker Anschlag). Stets vorsichtig betätigen! 2. Betriebsspannung U B auf 10 V. 3. Steuerspannung langsam (!) hochdrehen. Instrumente beobachten! a) Ab wann (Steuerspannung U S, Basisstrom I B ) bewegt sich die Ausgangsspannung? b) Wie hoch ist die Ausgangsspannung U A, wenn Steuerspannung U S = Betriebsspannung U B? Um den in Rede stehenden Grenzfall genau darzustellen, Steuerspannungszuführung ans Labornetzgerät 2 (Betriebsspannung) anschließen. Welcher Basisstrom fließt in diesem Betriebsfall? c) Welche Steuerspannung ist erforderlich, damit die Ausgangsspannung der Betriebsspannung entspricht? (Steuerspannung wieder vom Labornetzgerät 1.) Abb. 1.4 Spannungsstabilisierung 1. Zunächst Widerstand 2k2 bestücken. 2. Betriebsspannung U B auf 10 V. 3. Steuerspannung so, daß sich eine Ausgangsspannung von 5 V ergibt. a) Betriebsspannung verändern (zwischen5 und 15 V). Wie ändert sich die Ausgangsspannung? b) Betriebsspannung wieder auf 10 V. Widerstand verändern (Widerstandsdekade oder steckbare Widerstände). Durchprobieren: 1k, 500R, 100R. Wie ändert sich die Ausgangsspannung? Dann (bei jedem Widerstandswert) Betriessapnnung gemäß Punkt a) ändern.

4 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 4 Abb. 1.5 Konstantstromquelle mit npn-transistor. Last an Betriebsspannung Abb. 1.6 Konstantstromquelle (Prinzip) U A = U S U BE(on) I L UA = = RA U S U RA BE(on) Die Last, durch die ein konstanter Strom fließen soll, wird zunächst durch eine Widerstandsdekade oder steckbare Widerstände nachgebildet und anschließend durch eine LED dargestellt. 1. Alle Spannungsregler der Labornetzgeräte auf Null (linker Anschlag). Stets vorsichtig betätigen! 2. Lastwiderstand R L ) zunächst auf 0 Ω (Überbrücken oder Widerstandsdekade auf Null). 3. Betriebsspannung U B auf 10 V. 3. Steuerspannung langsam (!) hochdrehen. Instrumente beobachten!

5 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 5 a) Wie hängt der Laststrom von der Steuerspannung U S ab? Hinweis: Der Laststrom wird indirekt gemessen, und zwar anhand der über dem Arbeitswiderstand R A abfallenden Spannung U A. b) Welche Steuerspannung U S ist nötig, um einen Laststrom von 10 ma fließen zu lassen? c) Lastwiderstand R L erhöhen (mit 100R beginnen). Bis zu welchem Wert ist eine hinreichende Konstanz des Laststroms gewährleistet? Welche Kollektorspannung U C ergibt sich dabei? d) Lastwiderstand R L durch LED ersetzen. Verschiedene Typen (IR, farbig, weiß) ausprobieren. 2. Der Bipolartransistor als Schalter Wir untersuchen zunächst die Schaltzeiten (Einschaltverzögerung, Ausschaltverzögerung) der anwendungspraktisch wichtigsten Grundschaltungen (Abb. 2.1 und 2.2). Anschließend wird eine Transistorschaltstufe dimensioniert (Abb. 2.3). Abb. 2.7 Kollektorschaltung im Schaltbetrieb 1. Betriebsspannung U B auf 10 V. 2. Impulsgenerator = Funktionsgenerator, Rechtecksignale, Amplitude anfänglich + 5 V, Low-Pegel = 0 V (Offset-Einstellung). Frequenz um 5 khz. a) Wie sehen die Signalverläufe aus? Erklärung? b) Einschalt- und Ausschaltverzögerung messen. c) Betriebsspannung hochdrehen (bis 20 V). Was ändert sich (Ausgangsspannung, Schaltzeiten)? d) Betriebsspannung auf 10 V zurück. Impulsamplitude ebenfalls auf 10 V (gleich bzw. knapp unter Betriebsspannung. Was ändert sich (Ausgangsspannung, Schaltzeiten)?

6 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 6 e) Was geschieht (Ausgangsspannung, Schaltzeiten), wenn die Impulsamplitude über die Betriebsspannung hinaus erhöht wird (auf ca. 12 V)? Erklärung? Abb. 2.8 Emitterschaltung im Schaltbetrieb 1. Betriebsspannung U B auf 10 V. 2. Impulsgenerator = Funktionsgenerator, Rechtecksignale, Amplitude anfänglich 0,5 V, Low-Pegel = 0 V (Offset-Einstellung). Frequenz um 5 khz. a) Wie sehen die Signalverläufe aus? Erklärung? b) Einschalt- und Ausschaltverzögerung messen. c) Impulsamplitude auf 0,6 V. Einschalt- und Ausschaltverzögerung messen. d) Impulsamplitude auf 1,0 V. Einschalt- und Ausschaltverzögerung messen. e) Überlegen: Wie hängen Ein- und Ausschaltzeiten von der Impulsamplitude ab?was geschieht (Ausgangsspannung, Schaltzeiten). f) Arbeitswiderstand im Kollektorkreis gegen 510R auswechseln. Wie sehen die Signalverläufe jetzt aus? Erklärung?

7 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 7 Abb. 2.9 Transistorschaltstufe in Emitterschaltung 1. Betriebsspannung U B auf 10 V. Zunächst keine negative Hilfsspannung. 2. Impulsgenerator = Funktionsgenerator, Rechtecksignale, Amplitude anfänglich 5 V, Low-Pegel = 0 V (Offset-Einstellung). Frequenz um 5 khz. a) Betrieb ohne Speedup-Kondensator mit 5 V Impulsamplitude. Einschalt- und Ausschaltverzögerung messen. b) Impulsamplitude auf 8 V erhöhen. Einschalt- und Ausschaltverzögerung messen. c) Speedup-Kondensator einsetzen. Was ändert sich? d) Zurück auf 5 V Impulsamplitude. Einschalt- und Ausschaltverzögerung bei eingesetztem Speedup- Kondensator messen. e) Speedup-Kondensator raus. Impulsamplitude verringern. Bis zu welcher Amplitude funktioniert es noch? Einschalt- und Ausschaltverzögerung messen. f) Speedup-Kondensator wieder rein. Einschalt- und Ausschaltverzögerung messen. Impulsamplitude weiter verringern. Bis zu welcher Amplitude funktioniert es jetzt noch? g) Negative Hilfsspannung anlegen. Zunächst 0 V (linker Anschlag). Betriebsspannung U B auf 10 V, Impulsamplitude 2,5 V. Negative Hilfsspannung vorsichtig erhöhen. Welche der beiden Verzögerungszeiten sollte hierdurch beeinflußt werden? Von welchem Betrag der Hilfsspannung an it eine merkliche Änderung zu beobachten? Bei Hilfsspannung = -3 V Versuch abbrechen (Hilfsspannung auf Null). h) Negative Hilfsspannung zunächst wieder auf Null. Impulsamplitude 8 V. Mit diesen Anfangswerten Schritt g) wiederholen.

8 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH Impulsschaltungen mit Transistoren Es werden sechs typische Impulschaltungen (Tabelle 3.1) untersucht: eine Begrenzer- bzw. Impulsformerstufe (Abb. 3.1), der Schmitt-Trigger (Abb. 3.2), der Miller-Integrator (Abb. 3.3) sowie astabile, monostabile und bistabile Multivibratoren (Abb. 3.4 bis 3.6). Schaltung Funktion Schaltung Funktion Begrenzer/Impulsformer Schmitt-Trigger Erzeugung exakter Rechteckimpulse aus beliebigen eingansseitigen Signalverläufen astabiler Multivibrator monostabiler Multivibrator (Univibrator, Monoflop) Erzeugung von Rechteckschwingungen Erzeugung von Einzelimpulsen bestimmter Dauer Miller-Integrator Erzeugung fon Sägezahnimpulsen, Flankenverschleifung bistabiler Multivibrator (Flipflop) Signalspeicherung (RS-Flipflop), Frequenzteilung (T- Flipflop) Tabelle 3.1 Typische Impulsschaltungen Abb Begrenzerstufe (Impulsformer) mit Bipolartransistor

9 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 9 Versuchsdurchführung (beide Schaltungen): Abb Schmitt-Trigger 1. Betriebsspannung U B auf 10 V. 2. Signalgenerator = Funktionsgenerator, Sinus- und Dreiecksignale mit symmetrischer Polarität (kein Offset), Amplitude anfänglich 0 V (linker Anschlag). Frequenz um 5 khz. a) Kontrolle der Funktionsweise. Signalamplitude langsam erhöhen. Von welchem Betrag an erscheinen Impulse am Ausgang? b) Bis zu welcher Signalfrequenz ist die jeweilige Schaltung betriebsfähig? Abb Miller-Integrator

10 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH Betriebsspannung U B auf 10 V. 2. Impulsgenerator = Funktionsgenerator, Rechtecksignale (asymmetrisch), Amplitude 5 V, Low- Pegel = 0 V (Offset-Einstellung). Frequenz anfänglich um 5 khz. a) Kontrolle der Funktionsweise. Wie sieht das Ausgangssignal aus? Signalfrequenz erhöhen und verschiedene Tastverhältnisse durchprobieren. b) Mit weiteren Kondensatoren probieren (z. B. 47 nf). Abb Astabiler Multivibrator. Die Schaltung soll Rechteckimpulse abgeben a) Kontrolle der Funktionsweise. Wie sieht das Ausgangssignal aus? Signalfrequenz? b) Mit weiteren Kondensatoren und Widerständen probieren (z. B. Elkos 100 µf).

11 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 2 11 Abb Monostabiler Multivibrator 1. Betriebsspannung U B auf 10 V. 2. Impulsgenerator = Funktionsgenerator, Rechtecksignale (asymmetrisch), Amplitude 5 V, Low- Pegel = 0 V (Offset-Einstellung). Frequenz anfänglich um 5 khz. a) Kontrolle der Funktionsweise. Wie sieht das Ausgangssignal aus? Signalfrequenz erhöhen und verschiedene Tastverhältnisse durchprobieren. Wann (bezogen auf die Breite der Eingangsimpulse) funktioniert die Schaltung nicht mehr? b) Mit weiteren Kondensatoren probieren (z. B. 47 nf). Abb Bistabiler Multivibrator

12 PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH Betriebsspannung U B auf 10 V. 2. Impulsgenerator = Funktionsgenerator, Rechtecksignale (asymmetrisch), Amplitude 5 V, Low- Pegel = 0 V (Offset-Einstellung). Frequenz anfänglich um 5 khz. a) Speedup-Kondensatoren zunächst weglassen. Koppelkondensatoren nicht zusammengeschaltet. Kontrolle der Funktion als RS-Flipflop. Schaltung muß bleibend umschalten, wenn dem jeweils gesperrten Transistor ein Impuls zugeführt wird. b) Koppelkondensatoren zusammenschalten. Kontrolle der Funktion als Frequenzteiler (T-Flipflop). Funktioniert es so? (Wenn nicht: woran könnte es liegen?) c) Speeedup-Kondensatoren einbauen. Funktioniert es jetzt? Ausprobieren, in welchen Bereichen der Impulsfrequenzen und Impulsbreiten die Schaltung korrekt arbeitet.

Versuch 2 der Bipolartransistor

Versuch 2 der Bipolartransistor PRAKTIKUM ANALOGELEKTRONIK WS 2009/2010 VERSUCH 2 1 Versuch 2 der Bipolartransistor 1. Emitterschaltung Das Aufnehmen vollständiger Kennlinien wäre viel zu zeitaufwendig. Wir beschränken uns deshalb auf

Mehr

Versuch 2 Stand:

Versuch 2 Stand: PRAKTIKUM ANALOGELEKTRONIK WS 2013/2014 VERSUCHSANLEITUNG 2 1 Versuchsziele: Versuch 2 Stand: 18. 11. 13 Das Verhalten des Bipolartransistors im Experiment kennenlernen. Elementare Transistorschaltungen

Mehr

Versuch 3 Bipolar- und Feldeffekttransistoren

Versuch 3 Bipolar- und Feldeffekttransistoren PRAKTIKUM ANALOGELEKTRONIK WS 2010/2011 VERSUCHSANLEITUNG 3 1 Versuch 3 Bipolar- und Feldeffekttransistoren 1. NAND und NOR mit Transistoren Bauen Sie die beiden Gatterschaltungen von Abbildung 1 nacheinander

Mehr

Versuch 3 aktive Bauelemente (2)

Versuch 3 aktive Bauelemente (2) PRAKTIKUM ANALOGELEKTRONIK WS 2008/2009 VERSUCH 3 1 Versuch 3 aktive Bauelemente (2) 1. Das statische Verhalten des Feldeffekttransistors Wir untersuchen den FET als Leistungsschalter in Source- und Drainschaltung

Mehr

Versuch 2 Stand: 5. 11. 12

Versuch 2 Stand: 5. 11. 12 PRAKTIKUM ANALOGELEKTRONIK WS 2012/2013 VERSUCHSANLEITUNG 2 1 Versuchsziele: Versuch 2 Stand: 5. 11. 12 Grundschaltungen der Netzgleichrichtung aufbauen und erproben. Das Verhalten des Bipolartransistors

Mehr

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr.

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr. HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Schaltungs-Praktikum bistabiler Multivibrator Datum: WS/SS 201.. Gruppe: S Teilnehmer Name Matr.-Nr. 1 2 3 Testat R verwendete

Mehr

Laborübung, NPN-Transistor Kennlinien

Laborübung, NPN-Transistor Kennlinien 15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später

Mehr

Angewandte Elektronik AE

Angewandte Elektronik AE ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 20. 3. 2013 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 FH Dortmund FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 20. 3. 2013 Aufgaben und

Mehr

Multivibrator-Grundschaltungen

Multivibrator-Grundschaltungen Multivibrator-Grundschaltungen Multivibratoren sind Kippschaltungen, die man mit Transistoren, aber auch mit Operationsverstärkern bzw. Comparatoren aufbauen kann. Wir betrachten zunächst die elementaren

Mehr

Versuch 3 Stand:

Versuch 3 Stand: PRAKTIKUM ANALOGELEKTRONIK WS 2013/2014 VERSUCHSANLEITUNG 3 1 Versuch 3 Stand: 3. 12. 13 Versuchsziele: Elementare Schaltungen mit MOSFETs aufbauen und in Betrieb nehmen. Das Verhalten einer induktiven

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

Angewandte Elektronik AE

Angewandte Elektronik AE ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 25. 9. 2015 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 7 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 25. 9. 2015

Mehr

PROTOKOLL ZUM VERSUCH TRANSISTOR

PROTOKOLL ZUM VERSUCH TRANSISTOR PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker

Mehr

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski Operationsverstärker OPV-Kenndaten und Grundschaltungen Inhaltsverzeichnis 1 Eigenschaften von Operationsverstärkern 3 1.1 Offsetspannung..........................................

Mehr

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet. Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage

Mehr

Angewandte Elektronik AE

Angewandte Elektronik AE ANGEWANDTE ELEKTRONIK AE KLAUSUR VOM 21. 3. 2012 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 6 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Angewandte Elektronik AE Klausur vom 21. 3. 2012

Mehr

Aufgabe 1: Transistor, Diode (ca. 15 Punkte)

Aufgabe 1: Transistor, Diode (ca. 15 Punkte) Studienschwerpunkt Mechatronik/Vertiefungsrichtung Fahrzeugmechatronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2018/19 Angewandte

Mehr

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 4. Differenzverstärker Dienstag, 19.5.1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 4 Differenzverstärker 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Praktikum, Bipolartransistor als Verstärker

Praktikum, Bipolartransistor als Verstärker 18. März 2015 Elektronik 1 Martin Weisenhorn Praktikum, Bipolartransistor als Verstärker Einführung Die Schaltung in Abb. 1 stellt einen Audio Verstärker dar. Damit lassen sich die Signale aus einem Mikrofon

Mehr

(Operationsverstärker - Grundschaltung)

(Operationsverstärker - Grundschaltung) Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine

Mehr

Kippschaltung. Machen Sie sich mit den Grundschaltungen des Operationsverstärkers vertraut:

Kippschaltung. Machen Sie sich mit den Grundschaltungen des Operationsverstärkers vertraut: In diesem Versuch lernen Sie prominente en kennen. Eine wichtige Rolle hierbei werden die astabilen en einnehmen. Diese kippen zwischen zwei Zuständen hin und her und werden auch Multivibratoren genannt.

Mehr

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 6. Kippschaltungen

SS 98 / Platz 1. Versuchsprotokoll. (Elektronik-Praktikum) zu Versuch 6. Kippschaltungen Dienstag, 9. 6. 1998 SS 98 / Platz 1 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Elektronik-Praktikum) zu Versuch 6 Kippschaltungen 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Praktikum. Schaltungstechnik 1

Praktikum. Schaltungstechnik 1 Praktikum Schaltungstechnik 1 Versuch A Timerbaustein NE555 Gruppe 1 Team 10 Christian Kaiser Anton Ludwik Versuchsdurchführung am 07.06.06 Blattzahl (inkl. Deckblatt): 12 1. Versuchsvorbereitung Inhaltsverzeichnis

Mehr

Alle drei Baugruppen gehören zu den Standardbaugruppen der Elektronik werden in der Schule häufig angewendet und eignen sich für den Einstieg ins Fach

Alle drei Baugruppen gehören zu den Standardbaugruppen der Elektronik werden in der Schule häufig angewendet und eignen sich für den Einstieg ins Fach Drei wichtige Baugruppen der Elektronik. Der Schmitt-Trigger Ein Schwellwertschalter 2. Das S Flipflop Ein Speicher 3. Der astabile Multivibrator Ein Generator Alle drei Baugruppen gehören zu den Standardbaugruppen

Mehr

RC - Breitbandverstärker

RC - Breitbandverstärker Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll

Mehr

1. Konstantstromquelle

1. Konstantstromquelle ANGEWANDTE ELEKTONIK EECHNNGEN 1 1 1. Konstantstromquelle L L A S CE I L S A A I L L A S E(on) I L A A S A E(on) Der Laststrom I L hängt nur von S und A ab, nicht aber vom Lastwiderstand L. Wie groß darf

Mehr

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski Transistor Eigenschaften einstufiger Transistor-Grundschaltungen Inhaltsverzeichnis 1 Transistorverstärker - Bipolar 3 1.1 Dimensionierung / Einstellung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

Institut für Informatik. Aufgaben zum Seminar Technische Informatik

Institut für Informatik. Aufgaben zum Seminar Technische Informatik UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.4.. - Berechnung einer Transistorschaltung mit Emitterwiderstand

Mehr

Übungsaufgaben EBG für Mechatroniker

Übungsaufgaben EBG für Mechatroniker Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:

Mehr

Grundlagen der Elektronik Übungen für die Werkstätte

Grundlagen der Elektronik Übungen für die Werkstätte Grundlagen der Elektronik Übungen für die Werkstätte Zusammengestellt von Johannes Stehlik Grundlagen der Elektronik Übung 1 Einweggleichrichtung: 1k Schaltplan: 230V 50Hz ~ ~ U m - Erstellt von Johannes

Mehr

Kenngrößen von Transistoren und Eintransistorschaltungen. Protokoll. Von Jan Oertlin und Julian Winter. 7. Dezember 2012.

Kenngrößen von Transistoren und Eintransistorschaltungen. Protokoll. Von Jan Oertlin und Julian Winter. 7. Dezember 2012. Kenngrößen von Transistoren und Eintransistorschaltungen Protokoll Von Jan Oertlin und Julian Winter 7. Dezember 2012 Inhaltsverzeichnis 1 Einleitung 3 2 Transistorkenngrößen 3 2.1 Schaltung...........................................

Mehr

Dimensionierung vom Transistor Wechselspannungsverstärkern

Dimensionierung vom Transistor Wechselspannungsverstärkern Dimensionierung vom Transistor Wechselspannungsverstärkern mit NPN Transistor Schaltung Werte: V 1 = BC141; R L = 1 kω U B = 15 V Vorgaben: Der Arbeitspunkt des Transistors ist so einzustellen, dass U

Mehr

Versuch 1 passive Bauelemente

Versuch 1 passive Bauelemente PRAKTIKUM ANALOGELEKTRONIK WS 2009/2010 VERSUCHSANLEITUNG 1 1. Diodenkennlinien Versuch 1 passive Bauelemente Die Diodenkennlinie beschreibt die Abhängigkeit des durch die Diode fließenden Stroms von der

Mehr

6 Signalgeneratoren und gesteuerte Quellen

6 Signalgeneratoren und gesteuerte Quellen 6 Signalgeneratoren und gesteuerte Quellen Christoph Mahnke 17.5.2006 1 Sinusspannunsgenerator Im Wesentlichen ist die Verstärkung hierbei Im Versuch wurde ein Sinusspannungsgenerator gemäÿ Abb. 1 aufgebaut.

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet

Mehr

Humboldt-Universität zu Berlin Institut für Physik Versuch 7 Kopplung analoger und digitaler Schaltungen 1. Elektronische Schalter

Humboldt-Universität zu Berlin Institut für Physik Versuch 7 Kopplung analoger und digitaler Schaltungen 1. Elektronische Schalter Humboldt-Universität zu Berlin Institut für Physik Versuch 7 Kopplung analoger und digitaler Schaltungen 1. Elektronische Schalter Feldeffekt-Transistoren (FET) werden unter Nutzung ihres spannungssteuerbaren

Mehr

8. Endstufenschaltungen

8. Endstufenschaltungen 8.1 Einleitung Wie im Kapitel über die Audiotechnik bereits diskutiert, ist es die Aufgabe des Leistungsverstärkers, auch Endstufe genannt, den Innenwiderstand der Schaltung so weit herabzusetzen, dass

Mehr

AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER

AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER AUSWERTUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wurde

Mehr

4.Operationsverstärker

4.Operationsverstärker 4.Operationsverstärker Christoph Mahnke 4.5.2006 1 Eigenschaften Operationsverstärkern. 1.1 Osetspannung. Bei idealen Operationsverstärkern herrscht zwischen den beiden Eingängen die Potentialdierenz Null.

Mehr

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät!

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät! Übungen Elektronik Versuch 1 Elektronische Bauelemente In diesem Versuch werden die Eigenschaften und das Verhalten nichtlinearer Bauelemente analysiert. Dazu werden die Kennlinien aufgenommen. Für die

Mehr

Projektlabor WS 04/05 Ausarbeitung: Timer 555 Aurens Pratomo. - Timer Aurens Pratomo - 1 -

Projektlabor WS 04/05 Ausarbeitung: Timer 555 Aurens Pratomo. - Timer Aurens Pratomo - 1 - - Timer 555 - - 1 - Inhaltsverzeichnis 1 EINLEITUNG... 3 1.1 WAS IST EIN TIMER 555?... 3 1.2 EIGENSCHAFTEN... 3 1.3 BLOCKSCHALTBILD & INNENANSICHT... 3 1.4 BAUFORM... 5 2 PINS... 6 2.1 GROUND (MASSE)...

Mehr

Dioden und Transistoren Aufgaben

Dioden und Transistoren Aufgaben FACHBEREICH PHYSIK ElektronikPraktikum Dioden und Transistoren Aufgaben projekt1.tex KB 20061121 rev. 20091016 Das Teilprojekt ist relativ umfangreich, wir haben dafür vier Versuchsnachmittage eingeplant.

Mehr

Transistor- und Operationsverstärkerschaltungen

Transistor- und Operationsverstärkerschaltungen Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild

Mehr

Transistorkennlinien und -schaltungen

Transistorkennlinien und -schaltungen ELS-44-1 Transistorkennlinien und -schaltungen 1 Vorbereitung 1.1 Grundlagen der Halbleiterphysik Lit.: Anhang zu Versuch 27 1.2 p-n-gleichrichter Lit.: Kittel (14. Auflage), Einführung in die Festkörperphysik

Mehr

Schaltverhalten von Bipolartransistoren

Schaltverhalten von Bipolartransistoren Gruppe: 2 Team: 19 Fachhochschule Deggendorf Fachbereich Elektrotechnik PRAKTIKUM BAUELEMENTE Schaltverhalten von Bipolartransistoren VERSUCH 2 Versuchsdatum: 07.12.2005 Teilnehmer: Abgabedatum: Blattzahl

Mehr

Monostabile Kippstufe (Monoflop)

Monostabile Kippstufe (Monoflop) zum Thema Monostabile Kippstufe (Monoflop) 1 R1 470Ω R4 33kΩ R2 470Ω XSC1 Ext Trig + 3 C1 100nF R3 33kΩ 2 + A _ + V1 5 V U1 5 4 U2 C237P C237P 0 R5 33kΩ 6 J1 7 Taste = Leerzeichen 0 V2 5 V Datum: 03.04.2012

Mehr

Klausur "Elektronik" am 11.03.2001

Klausur Elektronik am 11.03.2001 Name, Vorname: Matr.Nr.: Klausur "Elektronik" 6037 am 11.03.2001 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind: Taschenrechner Formelsammlung auf maximal

Mehr

Serie 5: Operationsverstärker 2 26./

Serie 5: Operationsverstärker 2 26./ Elektronikpraktikum - SS 204 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-43 (Anfängerpraktikum). Stock, Raum 430 Serie 5: Operationsverstärker 2 26./27.06.204 I. Ziel der Versuche Aufbau und

Mehr

6. Signalgeneratoren und gesteuerte Quellen

6. Signalgeneratoren und gesteuerte Quellen Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 6. Signalgeneratoren und gesteuerte Quellen Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 18. Mai 2006

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung

Mehr

1. Wiederholen sie Grundlagen und Berechnung der Generatorschaltungen!

1. Wiederholen sie Grundlagen und Berechnung der Generatorschaltungen! Praktikum Elektronische chaltungstechnik Versuch: T0 ignalgeneratoren Vorbereitung Wiederholen sie Grundlagen und Berechnung der Generatorschaltungen! inus-generatoren Eine chwingung entsteht, wenn in

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein Lehrerfortbildung Elektronik - Versuchsanleitung Nichtlineare Bauelemente Zielsetzung

Mehr

Wechselstrom-Gegenkopplung

Wechselstrom-Gegenkopplung // Berechnung einer Emitterschaltung mit Wechselstrom-Gegenkopplung Diese Transistor-Schaltung stellt eine Abwandlung der " Emitterschaltung mit Arbeitspunktstabilisierung durch Stromgegenkopplung " dar.

Mehr

Institut für Informatik. Aufgaben zum Seminar Technische Informatik

Institut für Informatik. Aufgaben zum Seminar Technische Informatik UNIVERSITÄT LEIPZIG Institut für Informatik Abt. Technische Informatik Dr. Hans-Joachim Lieske Aufgaben zum Seminar Technische Informatik Aufgabe 2.4.. - Berechnung einer Transistorschaltung mit Emitterwiderstand

Mehr

Übungsserie, Bipolartransistor 1

Übungsserie, Bipolartransistor 1 13. März 2017 Elektronik 1 Martin Weisenhorn Übungsserie, Bipolartransistor 1 Aufgabe 1. Invertierender Verstärker Die Abbildung 1 stellt einen invertierenden Verstärker dar. Es sei = 10 kω und = 1 kω.

Mehr

Passive Bauelemente, Grundgrößen

Passive Bauelemente, Grundgrößen Passive Bauelemente, Grundgrößen 1. Wie lauten die beiden wichtigsten Parameter eines ohmschen Widerstandes? 2. Wie lauten die beiden wichtigsten Parameter eines Kondensators? 3. Wie lauten die beiden

Mehr

Aufgabe E1: Aufgabe E2: Aufgabe E3: Fachhochschule Aachen Lehrgebiet Flugzeug- Elektrik und Elektronik Prof. Dr. G. Schmitz

Aufgabe E1: Aufgabe E2: Aufgabe E3: Fachhochschule Aachen Lehrgebiet Flugzeug- Elektrik und Elektronik Prof. Dr. G. Schmitz Aufgabe E1: Gegeben sei eine Leuchtdiode (LED), die an einer Gleichspannung von 3V betrieben werden soll. Dabei soll sich ein Strom von 10mA einstellen. a) erechnen Sie den erforderlichen Vorwiderstand,

Mehr

Versuch P2-59: Operationsverstärker

Versuch P2-59: Operationsverstärker Versuch P2-59: Operationsverstärker Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 0.1 Einleitung... 2 1 Emitterschaltung eines Transistors...2 1.1 Einstufiger Transistorverstärker...

Mehr

Geregelte Stabilisierungsschaltung mit Längstransistor

Geregelte Stabilisierungsschaltung mit Längstransistor Geregelte Stabilisierungsschaltung mit Längstransistor I R1 R 1 U R1 I B3 U CE3 I B4 V 3 V 4 U CE4 I A I R2 U E R 2 U R2 U CE2 V 2 I R3 I Z V 1 U Z R 3 UR3 Eine Stabilisierung für ein Netzteil entsprechend

Mehr

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1 Fachhochschule Gießen-Friedberg,Fachbereich Elektrotechnik 1 Elektronik-Praktikum Versuch 24: Astabile, monostabile und bistabile Kippschaltungen mit diskreten Bauelementen 1 Allgemeines Alle in diesem

Mehr

Referat Operationsverstärker Wintersemester 2004/2005

Referat Operationsverstärker Wintersemester 2004/2005 Holger Markmann Referat Operationsverstärker Wintersemester 2004/2005... 1 Prinzipieller Aufbau eines OPs... 1 Grundschaltungen eines OPs mit dazugehörigen Kennlinien... 2 Frequenzverhalten eines OPs...

Mehr

Versuch 1 passive Bauelemente

Versuch 1 passive Bauelemente PRAKTIKUM ANALOGELEKTRONIK WS 2010/2011 VERSUCHSANLEITUNG 1 1 1. Diodenkennlinien Versuch 1 passive Bauelemente Die Diodenkennlinie beschreibt die Abhängigkeit des durch die Diode fließenden Stroms von

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering Experimentier-Box Mini 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische

Mehr

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel

3. Schaltungsentwicklung - Beispiel Taschenlichtorgel 3. - Beispiel Taschenlichtorgel Anforderungen: Drei farbige LEDs, Mikrofoneingang, Empfindlichkeitseinstellung, kleines Format, geringe Betriebsspannung und Leistung, geringster Material- und Arbeitsaufwand.

Mehr

Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:

Mehr

Fachbereich Physik Dr. Wolfgang Bodenberger

Fachbereich Physik Dr. Wolfgang Bodenberger UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter

Mehr

7. Aufgabenblatt mit Lösungsvorschlag

7. Aufgabenblatt mit Lösungsvorschlag + - Grundlagen der echnertechnologie Sommersemester 200 Wolfgang Heenes. Aufgabenblatt mit Lösungsvorschlag 0.06.200 Schaltungen mit Bipolartransistoren Aufgabe : Analyse einer Schaltung mit Bipolartransistor

Mehr

Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker

Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss

Mehr

HÖHERE TECHNISCHE BUNDESLEHRANSTALT HOLLABRUNN

HÖHERE TECHNISCHE BUNDESLEHRANSTALT HOLLABRUNN HÖHERE TECHNISCHE BUNDESLEHRANSTALT HOLLABRUNN Höhere Abteilung für Elektronik Technische Informatik Klasse / Jahrgang: 3BHELI Gruppe: 2 / a Übungsleiter: Prof. Dum Übungsnummer: V/3 Übungstitel: Transistor

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Praktikum zur Vorlesung Elektronik SS Serie

Praktikum zur Vorlesung Elektronik SS Serie Praktikum zur Vorlesung Elektronik SS 2009 3.Serie 26.05.2009 Di. 26.05.09 4:00-6:00 Uhr, Mi. 27.05.09 4:00-6:00 Uhr, Fr. 29.05.09 0:00-2:00 Uhr Ort: Gebäude 02-43 (Anfängerpraktikum). Stock, Raum 430

Mehr

Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr

Geschrieben von: Volker Lange-Janson Donnerstag, den 05. März 2015 um 16:31 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:15 Uhr // // Konstantstromquelle mit einem pnp-transistor - Berechnung Mit dieser einfachen Schaltung kann am Kollektor des Transistors ein konstanter Strom I gewonnen werden. Das Prinzip ist sehr einfach: An

Mehr

Diplomvorprüfung WS 2009/10 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2009/10 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10 Fach: Elektronik,

Mehr

E-Reihen. Beispiel der Reihenbildung (Reihe E 12): 1 @ 1,21. 1,2 1,2 @ 1,21. 1,5 1,5 @ 1,21. 1,8 usw. E-REIHEN 1. E-Reihe Toleranz Faktor E 6 ± 20 %

E-Reihen. Beispiel der Reihenbildung (Reihe E 12): 1 @ 1,21. 1,2 1,2 @ 1,21. 1,5 1,5 @ 1,21. 1,8 usw. E-REIHEN 1. E-Reihe Toleranz Faktor E 6 ± 20 % E-REIHEN 1 E-Reihen Die E-Reihen nach DIN/IEC beschreiben die Staffelung der Nennwerte passiver Bauelemente. Die einzelnen E-Reihen unterscheiden sich nach der jeweils zulässigen Toleranz der Nennwerte

Mehr

ELEKTRONIKPRAKTIKUM DIGITALTEIL. Institut für Kernphysik

ELEKTRONIKPRAKTIKUM DIGITALTEIL. Institut für Kernphysik ELEKTRONIKPRAKTIKUM DIGITALTEIL Institut für Kernphysik Version 2018 1 2 Projekt 1 Aufbau von Logikschaltungen mit diskreten Bauelementen Aufgabenstellung 1. Bestimmung einer Übertragungskennlinie und

Mehr

P2-59,60,61: TRANSISTOR- UND OPERATIONSVERSÄRKER. Vorbereitung

P2-59,60,61: TRANSISTOR- UND OPERATIONSVERSÄRKER. Vorbereitung Physikalisches Anfängerpraktikum Teil 2 P2-59,60,61: TRANSISTOR- UND OPERATIONSVERSÄRKER Vorbereitung Gruppe 34 Marc Ganzhorn Tobias Großmann 16. Juli 2006 1 Einleitung In diesem Versuch sollen die beiden

Mehr

von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG

von Robert PAPOUSEK 4.2 Gegentaktverstärker: Bild 1:PRINZIP DER DARLINGTONSCHALTUNG von Robert PAPOUSEK INHALTSVERZEICHNIS: 1.Anforderungen an Leistungsverstärker 2.Grundlagen 3.Leistungsstufen: 3.1 Parallelschalten von Transistoren 4. A- und B-Betrieb: 4.1 Eintaktverstärker 4.2 Gegentaktverstärker

Mehr

PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN

PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 1.3. Vorbetrachtungen 2 2. Versuchsdurchführung 6

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau

pn-übergang, Diode, npn-transistor, Valenzelektron, Donatoren, Akzeptoren, Ladungsträgerdiffusion, Bändermodell, Ferminiveau Transistor 1. LITERATUR: Berkeley, Physik; Kurs 6; Kap. HE; Vieweg Dorn/Bader und Metzler, Physik; Oberstufenschulbücher Beuth, Elektronik 2; Kap. 7; Vogel 2. STICHWORTE FÜR DIE VORBEREITUNG: pn-übergang,

Mehr

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung 1 Bipolartransistor. 1.1 Dimensionierung 3.Transistor Christoph Mahnke 7.4.006 Für den Transistor (Nr.4) stand ein Kennlinienfeld zu Verfügung, auf dem ein Arbeitspunkt gewählt werden sollte. Abbildung

Mehr

Table of Contents. Table of Contents UniTrain Projektarbeit. Lucas Nülle GmbH Seite 1/9 https://www.lucas-nuelle.de

Table of Contents. Table of Contents UniTrain Projektarbeit. Lucas Nülle GmbH Seite 1/9 https://www.lucas-nuelle.de Table of Contents Table of Contents UniTrain Projektarbeit 1 2 2 Lucas Nülle GmbH Seite 1/9 https://www.lucas-nuelle.de UniTrain UniTrain - das multimediale E-learning System mit integriertem, mobilem

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

Inhalt. 1 Einführung... 11

Inhalt. 1 Einführung... 11 Inhalt 1 Einführung................................................... 11 1.1 Impulstechnische Definitionen............................ 11 1.2 Fourier-Analyse......................................... 14

Mehr

Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden.

Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden. Transistoren David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden http://hobbyelektronik.de.tl/der-erste-transistor-der-welt.htm Gliederung Was ist ein Transistor Geschichte Bipolartransistor

Mehr

Skriptum zur 3. Laborübung. Operationsverstärker

Skriptum zur 3. Laborübung. Operationsverstärker Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 3. Laborübung Operationsverstärker Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter Wolfgang Puffitsch

Mehr

Komplexe Widerstände

Komplexe Widerstände Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

Operationsverstärker

Operationsverstärker Operationsverstärker Martin Adam Versuchsdatum: 17.11.2005 Betreuer: DI Bojarski 23. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

Operationsverstärker Versuchsauswertung

Operationsverstärker Versuchsauswertung Versuche P2-59,60,61 Operationsverstärker Versuchsauswertung Marco A. Harrendorf und Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 23.05.2011 1 Inhaltsverzeichnis

Mehr

5 Bipolar- und Feldeffekt-Transistoren

5 Bipolar- und Feldeffekt-Transistoren Fachbereich Physik Elektronikpraktikum 5 Bipolar- und Feldeffekt-Transistoren Stichworte zur Vorbereitung: Aufbau und Funktion, Löcherleitung, Elektronenleitung, Eingangskennlinien, Ausgangskennlinien,

Mehr

Protokoll zum Versuch Flip-Flop

Protokoll zum Versuch Flip-Flop Naturwissenschaft Torben Pfaff Protokoll zum Versuch Flip-Flop Praktikumsbericht / -arbeit Praktikum zu Elektronische Bauelemente und Schaltungstechnik Protokoll zum Versuch Flip-Flop Versuch Flip-Flop

Mehr

Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4

Grundlagen der Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Technische Informatik Prof. Dr. M. Bogdan Institut für Informatik Technischen Informatik 1 WS 2015/16 Übungsblatt 4 Abgabe: bis zum 06.01.2016 im weißen Briefkasten der TI Nähe Raum P 518 1 Hinweise: -

Mehr