Analysis I: Übungsblatt 1 Lösungen

Größe: px
Ab Seite anzeigen:

Download "Analysis I: Übungsblatt 1 Lösungen"

Transkript

1 Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht. 2. Was versteht man unter einer Menge? Eine Menge ist eine Zusammenfassung wohlunterschiedener Objekte. 3. Was bedeutet wohlunterschieden? wohlunterschieden bedeutet vollständig unterscheidbar ; Die Elemente einer Menge sind daher wohlunterschieden, weil jedes Element von jedem anderen unterschieden werden kann.. Was wären zwei Beispiele für Objektbezeichnungen, welche nicht wohlunterschieden sind? (a) Eine Menge Zucker im Kaffee (b) Eine Menge Wasser 5. Wodurch ist eine Menge vollständig bestimmt? Eine Menge ist vollständig durch ihre Elemente bestimmt.. Welche Mengenrelationen sind in der Vorlesung behandelt worden? In der Vorlesung sind Gleichheit, Teilmenge und echte Teilmenge behandelt worden. 7. Welcher Unterschied besteht zwischen den Definitionen Teilmenge und echte Teilmenge? Eine Teilmenge kann gleich ihrer Obermenge sein. Eine echte Teilmenge kann das nicht. 8. Welche zwei (oder mehr) Begriffe bezeichnen diejenige Menge, aus der eine Untermenge gewählt wurde? Die Bezeichnungen sind z.b. Obermenge, Erweiterungsmenge oder auch Grundmenge. 9. Was versteht man unter einer Grundmenge? Eine Grundmenge ist eine Obermenge, aus der Teilmengen gewählt werden. 10. Wie ist die Komplementmenge zu einer Menge A definiert? A := {x x G x / A} Bem: Ohne eine Grundmenge G ist die Definition einer Komplementmenge zu A nicht sinnvoll. 11. Welche Eigenschaften haben die Mengen N, N 0, Z und Q gemeinsam (Nennen Sie mindestens drei.)? z.b.: Die Mengen sind alle abzählbar, besitzen alle unendlich viele Elemente, sidn abgeschlossen bezüglich der Addition und Multiplikation. 12. Welche Zahlen sind in R \ Q enthalten? Welche Eigenschaften haben diese Zahlen gemeinsam? Die Zahlen in R \ Q werden irrationale Zahlen genannt und können als unendliche, nicht periodische Dezimalbrüche geschrieben werden. 13. Was versteht man unter einer leeren Summe bzw. unter einem leeren Produkt? m 1 k=m m 1 k=m a k := 0 a k := 1 leere Summe leeres Produkt 1

2 1. Aus den Grundlagen zu welcher Zahlenmenge ist das Beweisverfahren der vollständigen Induktion abgeleitet worden? Das Beweisverfahren der vollständigen Induktion ist aus den Peano-Axiomen zur Festlegung der natürlichen Zahlen abgeleitet worden. 15. Wie lauten die Beweisschritte bei der Durchführung eines Beweises mittels vollständiger Induktion? Die Beweisschritte werden als Induktionsanfang, Induktionsvermutung und Induktionsschritt bezeichnet. 2

3 Aufgaben Lösungen: 1. (a) {x x = 2k, k N} = {2; ; ; 8;...} (b) {x x = 2k 1, k N} = {1; 3; 5; 7; 9;...} (c) {x (x = 2k 1, k N) x = 0} = {0; 1; 3; 5; 7; 9;...} (d) {x (x = 2k 1, k = 1; 2; 3; ) x = 2} = {1; 2; 3; 5; 7} (e) {x x = k 2, k = 1; 2; 3; ;... ; 19} = {1; ; 9; 1; 25; 3; 9; ; 81; 100; 121; 1; 19; 19; 225; 25; 289; 32; 31} (f) {x x = k, k = 1; 2; 3} = {1; 1; 81} 2. (a) A B C 3

4 (b) A B C (c) (A B) C

5 A (B C) (d) (A \ C) (B \ A) 5

6 (e) Die Menge aller in A und C aber nicht in B enthaltenen Elemente, zusammen mit der Menge aller in B und C aber nicht in A enthaltenen Elemente, zusammen mit der Menge aller in A und B aber nicht in C enthaltenen Elemente. 3. Bestimmen Sie jeweils die Potenzmenge zu (a) (b) (c) (d) (e). A = {1; 2; 3} P(A) = { ; {1}; {2}; {3}; {1; 2}; {2; 3}; {1; 3}; {1; 2; 3}} B = {a; {a}} P(B) = { ; {a}; {{a}}; {a; {a}}} C = P(C) = { } D = P(C) P(D) = { ; { }} E = P(D) P(E) = { ; { }; {{ }}; { ; { }}}

7 . Berechnen Sie jeweils den Wert der folgenden Summen bzw. Produkte: (a) (b) (c) (d) 1 (2k 1) = 1, 2 (2k 1) =, 1 (2k) = 2, 2 (2k) =, 3 (2k 1) = 9, 3 (2k) = 12, 200 (k 79) = 0 21 k + 1 k + 2 = 1 23 (2k 1) = 1 (2k) = Beweisen Sie mittels vollständiger Induktion: (a) IA: IV: IS: 1 k 2 = 1 = k 2 = 1 (1 + 1) ( ) n (n + 1) (2n + 1) n+1 k 2 = = = = = k 2 + (n + 1) 2 n (n + 1) (2n + 1) + (n + 1) 2 n (n + 1) (2n + 1) + (n + 1)2 (n + 1) (n (2n + 1) + (n + 1)) (n + 1) (n + 2) (2n + 3) 7

8 (b) IA: IV: IS: (c) IA: IV: IS: (d) IA: IV: IS: 1 k 3 = 1 = 12 (1 + 1) 2 n+1 k 3 = k 3 = n2 (n + 1) 2 k 3 + (n + 1) 3 = n2 (n + 1) 2 + (n + 1) 3 = (n + ( 1)2 n 2 + (n + 1) ) = (n + 1)2 (n + 2) 2 0 n+1 x k = x k = 1 = 1 x0+1 1 x x k = 1 xn+1 1 x x k + n n+1 = 1 xn+1 1 x + xn+1 = 1 xn+1 + (1 x) x n+1 1 x = 1 xn+2 1 x 1 (2k 1) = 1 = 1 2 n+1 (2k 1) = (2k 1) = n 2 (2k 1) + (2(n + 1) 1) = n 2 + (2(n + 1) 1) = (n + 1) 2 Die Summe der ersten n ungeraden Zahlen ist gleich n 2. 8

9 (e) IA: n = 1: Eine einelementige Menge {A 1 } besitzt nur eine Anordnung ihrer Elemente und 1! = 1. IV: Der Satz: Die Anzahl der möglichen Anordnungen einer n-elementigen Menge {A 1 ;... ; A n } ist gleich n! sei als wahr angenommen. IS: Die möglichen Anordnungen der (n+1-elementigen Menge {A 1 ;... ; A n+1 } zerfallen wie folgt in n + 1 Klassen K k, k = 1,..., n + 1: Die Anordnungen der Klassen K k haben das Element A k an erster Stelle, bei beliebiger Anordnung der übrigen n Elemente. Nach IV besteht jede Klasse aus n! Anordnungen. Die Gesamtzahl aller möglichen Anordnungen von {A 1 ;... ; A n+1 } ist also gleich (n + 1)n! = (n + 1)!. 9

Rudolf Brinkmann Seite 1 30.04.2008

Rudolf Brinkmann Seite 1 30.04.2008 Rudolf Brinkmann Seite 1 30.04.2008 Der Mengenbegriff und Darstellung von Mengen Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung und unseres Denkens welche

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Das Beweisverfahren der vollständigen Induktion

Das Beweisverfahren der vollständigen Induktion c 2004 by Rainer Müller - http://www.emath.de 1 Das Beweisverfahren der vollständigen Induktion Einleitung In der Mathematik gibt es im Prinzip drei grundlegende Beweismethoden, mit denen man versucht,

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

4 Elementare Mengentheorie

4 Elementare Mengentheorie 4 Elementare Mengentheorie 4 Elementare Mengentheorie 4.1 Mengen [ Partee 3-11, McCawley 135-140, Chierchia 529-531 ] Die Mengentheorie ist entwickelt worden, um eine asis für den ufbau der gesamten Mathematik

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:

Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Übungsblatt 2 Höhere Mathematik I WS 2010/2011. Teil B

Übungsblatt 2 Höhere Mathematik I WS 2010/2011. Teil B Prof. Dr. Rudolf Stens Lehrstuhl A für Mathemati RWTH Aachen Aachen, den 0.11.10 Übungsblatt Höhere Mathemati I WS 010/011 Aufgabe B. Teil B Beweisen Sie mit Hilfe der vollständigen Indution: (a (b 1 n(n

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Wintersemester 2014/15 Aufgaben I-1. Es seien die folgenden Mengen A = {5,7,9}, B = {5,6,7} und C = {1,3,5,7,9} gegeben.

Mehr

Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln

Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln Test 1: Grundrechenarten incl. Bruchrechnung und Vorzeichenregeln 1. a) Welche algebraischen "Vorfahrtsregeln" müssen Sie bei der Berechnung des folgenden Terms T beachten? T = 12x + 3 7x - 2 (x + 3) +

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen

1.) Rekursion und Induktion: Rechnen mit natürlichen Zahlen 1) Rekursion und Induktion: Rechnen mit natürlichen Zahlen Aufbauend auf: "Anwendungen: Sätze, Beweise, Algorithmen und Programme", "Fasern" Aufgaben: 9 > restart; Axiomatik der natürlichen Zahlen Wir

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Analysis II. Vorlesung 48. Die Hesse-Form

Analysis II. Vorlesung 48. Die Hesse-Form Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 48 Die Hesse-Form Wir sind natürlich auch an hinreichenden Kriterien für das Vorliegen von lokalen Extrema interessiert. Wie schon im eindimensionalen

Mehr

Demoseiten für

Demoseiten für Lineare Ungleichungen mit Variablen Anwendung (Vorübungen für das Thema Lineare Optimierung) Datei Nr. 90 bzw. 500 Stand 0. Dezember 009 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 90 / 500 Lineare Ungleichungen

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

Kombinatorische Geometrien

Kombinatorische Geometrien KAPITEL 5 Kombinatorische Geometrien Beispiele von Geometrien wurden schon als Inzidenzstrukturen (z.b. projektive Ebenen) gegeben. Wir nehmen hier einen anderen Standpunkt ein und verstehen unter einer

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }.

2. Mengen. festgelegt werden, zum Beispiel M = { x x ist eine Grundfarbe }. 2. Mengen Die Menge ist eines der wichtigsten und grundlegenden Konzepte der Mathematik. Man fasst im Rahmen der Mengenlehre einzelne Elemente (z. B. Zahlen) zu einer Menge zusammen. Eine Menge muss kein

Mehr

Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke

Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke Mathematische Vermehrung von Mengen, Flächen, Volumen und Geld? Alexander Mielke W eierstraßinstitut für Angew andte Analysis und Stochastik Mohrenstraße 39, 0 Berlin Institut für Mathematik HumboldtUniversität

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Fibonacci-Zahlen. Geschichte. Definition. Quotienten

Fibonacci-Zahlen. Geschichte. Definition. Quotienten Mathematik/Informatik Die Fibonacci-Zahlen Gierhardt Fibonacci-Zahlen Geschichte Im Jahre 0 wurde in Pisa ein Buch über das indischarabische Dezimalsystem von dem italienischen Mathematiker Leonardo Fibonacci

Mehr

A b, d, B a, b, c, d, e somit gilt: A B. A 4, 5, 6, B 4, 5, 6 somit gilt: A B

A b, d, B a, b, c, d, e somit gilt: A B. A 4, 5, 6, B 4, 5, 6 somit gilt: A B 1 1.1 egriff der Menge Unter einer Menge versteht man die Zusammenfassung von voneinander unterscheidbaren Dingen (Elementen) zu einem Ganzen. Eine Menge kann in aufzählender Form, mithilfe eines Mengenbildes

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26 28

Mehr

Lineare Algebra II 9. Übungsblatt

Lineare Algebra II 9. Übungsblatt Lineare Algebra II 9. Übungsblatt Fachbereich Mathematik SS Prof. Dr. Kollross 5./6. Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest: ohne Benutzung des Skripts und innerhalb von Minuten!)

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Technische Universität München WS 2012/13 Fakultät für Informatik Lösungsvorschläge zu Blatt 4 Dr. C. Herzog, M. Maalej 12.

Technische Universität München WS 2012/13 Fakultät für Informatik Lösungsvorschläge zu Blatt 4 Dr. C. Herzog, M. Maalej 12. 4/1 Technische Universität München WS 2012/13 Fakultät für Informatik Lösungsvorschläge zu Blatt 4 Dr. C. Herzog, M. Maalej 12. November 2012 Übungen zu Grundlagen der Programmierung Aufgabe 14 (Lösungsvorschlag)

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Lohntabelle gültig ab 1. Januar 2016

Lohntabelle gültig ab 1. Januar 2016 Klasse 1 A 34'953 2'912.75 16.00 37'865.75 B 36'543 3'045.25 16.73 39'588.25 C 38'130 3'177.50 17.46 41'307.50 1 39'720 3'310.00 18.19 43'030.00 2 41'307 3'442.25 18.91 44'749.25 3 42'897 3'574.75 19.64

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3.1 E Gegeben seien die folgenden Zahlen zur

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Analysis III. Vorlesung 87. Mannigfaltigkeiten mit Rand

Analysis III. Vorlesung 87. Mannigfaltigkeiten mit Rand Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Analysis III Vorlesung 87 Mannigfaltigkeiten mit Rand Eine zweidimensionale Mannigfaltigkeit mit Rand. Der Rand besteht aus den vier geschlossenen Bögen. Definition

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Kapitel I. Grundlagen. 1 Mengen und Aussagen

Kapitel I. Grundlagen. 1 Mengen und Aussagen Kapitel I Grundlagen 1 Mengen und Aussagen In der Wissenschaft ist es genau wie im täglichen Leben üblich, Begriffe, Dinge oder Lebewesen mit gemeinsamen Merkmalen durch Vergabe eines neuen Namens zu einem

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Dezimalzahlen. Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen.

Dezimalzahlen. Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen. Dezimalzahlen Information: Dezimalzahlen sind Zahlen, die ein Komma besitzen, es sind also keine natürlichen Zahlen. Beispiele für Dezimalzahlen mit Einheiten wären also:,8 7, kg,4 m 0,7 l 8,7 s, usw.

Mehr

Der Beginn der Formalen Spieltheorie: Zermelo (1913)

Der Beginn der Formalen Spieltheorie: Zermelo (1913) Der Beginn der Formalen Spieltheorie: Zermelo (1913) Christoph Eichhorn 21. Juni 2004 1 Einleitung Zermelo (1913) wird oft als Beginn der formalen Spieltheorie bezeichnet. Über das von ihm behauptete/bewiesene

Mehr

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der

Mehr

2 Grundbegriffe der Mengenlehre

2 Grundbegriffe der Mengenlehre Grundbegriffe der Mengenlehre. Mengen und Operationen auf Mengen Moderne Mengentheorie wird in Form eines axiomatischen Kalküls betrieben. Dieser Ansatz hat aber den Nachteil, daß einfache inhaltliche

Mehr

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3 Kombinatorik Die Kombinatorik beschäftigt sich damit, verschiedene mögliche Auswahlen und Anordnungen von Elementen aus endlichen Mengen zu untersuchen. Insbesondere wird die Anzahl dieser berechnet. BEISPIEL:

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Skript zur Vorlesung Analysis 1

Skript zur Vorlesung Analysis 1 Skript zur Vorlesung Analysis 1 im Wintersemester 2013/14, Heidelberg Hans Knüpfer October 30, 2013 Abstract Dies Skript ist eine Zusammenfassung der von mir gehaltenen Vorlesung Analysis 1 im Wintersemester

Mehr

Elemente der Algebra. Dr. Theo Overhagen Fakultät IV Dep. Mathematik Universität Siegen

Elemente der Algebra. Dr. Theo Overhagen Fakultät IV Dep. Mathematik Universität Siegen Elemente der Algebra Dr. Theo Overhagen Fakultät IV Dep. Mathematik Universität Siegen I Vorbemerkung In der folgenden Vorlesung werden zunächst die Mengenoperationen und die grundlegenden aussagenlogischen

Mehr

Begegnungen mit Mathematik

Begegnungen mit Mathematik Begegnungen mit Mathematik 1. Vorlesung: Zahlen 1. Große Zahlen: Million - Milliarde Nach einer weit verbreiteten Meinung hat Mathematik vor allem mit Zahlen zu tun. Mathematiker müssen Leute sein, die

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

1 Logik und Mengenlehre

1 Logik und Mengenlehre 1 LOGIK UND MENGENLEHRE 1 1 Logik und Mengenlehre Definition. (Cantor, 1895) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Mathematische Grundlagen der Informatik

Mathematische Grundlagen der Informatik Skriptum zur Vorlesung Mathematische Grundlagen der Informatik gehalten in WS 2015/16 von Sven Kosub 4. Februar 2016 Version v4.20 Inhaltsverzeichnis Prolog 1 1 Logik 5 1.1 Aussagen.....................................

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum

Analysis I III. Vorlesungsskriptum WS 2005/06 WS 2006/07. Fakultät für Mathematik, Ruhr-Universität Bochum Analysis I III Vorlesungsskriptum WS 2005/06 WS 2006/07 R. Verfürth Fakultät für Mathematik, Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Aufbau des Zahlsystems 5 I.1. Die natürlichen Zahlen

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Geraden und Ebenen

Einführung in das mathematische Arbeiten im SS 2007. Geraden und Ebenen Workshops zur VO Einführung in das mathematische Arbeiten im SS 2007 Geraden und Ebenen Handout von Thérèse Tomiska (Oktober 2006) überarbeitet von Evelina Erlacher 9. & 13. März 2007 1 Geradengleichungen

Mehr

Quantitative Methoden Wissensbasierter Systeme

Quantitative Methoden Wissensbasierter Systeme Quantitative Methoden Wissensbasierter Systeme Probabilistische Netze und ihre Anwendungen Robert Remus Universität Leipzig Fakultät für Mathematik und Informatik Abteilung für Intelligente Systeme 23.

Mehr

Mathematische Problemlösungsstrategien

Mathematische Problemlösungsstrategien Uwe Nowak 7. 9. Februar 006 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Färbungsbeweise 3. Einführung...................................... 3. Aufgaben.......................................

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion. rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),

Mehr