Interpolation und Approximation

Größe: px
Ab Seite anzeigen:

Download "Interpolation und Approximation"

Transkript

1 Interpolation und Approximation Fakultät Grundlagen Mai 2006 Fakultät Grundlagen Interpolation und Approximation

2 Übersicht 1 Problemstellung Polynominterpolation 2 Kubische Fakultät Grundlagen Interpolation und Approximation Folie: 2

3 Ausgangsproblem Problemstellung Polynominterpolation Ein wichtiges Problem in der numerischen Mathematik ist, eine Funktion oder eine Folge von Messpunkten durch eine Näherungsfunktion zu approximieren. Dabei sind folgende Überlegungen anzustellen: Auswahl einer Grundmenge von Näherungsfunktionen. Gebräuchlich sind folgende Funktionenklassen: 1 Polynome 2 3 Trigonometrische Polynome für periodische Vorgänge 4 Exponentialfunktionen Festlegung eines messbaren Kriteriums für die Auswahl der am besten geeigneten Funktion aus der vorgegebenen Grundmenge. Fakultät Grundlagen Interpolation und Approximation Folie: 3

4 Approximationsprinzip Problemstellung Polynominterpolation Meist bildet man die Approximationsfunktion ϕ(x) als Linearkombination von charakteristischen Vertretern der Grundmenge {g i (x)} ϕ(x) = n i=1 c i g i (x) und versucht dann, die Koeffizienten c i so zu bestimmen, dass die Differenz zur zu approximierenden Funktion f (x) in irgend einem Sinne häufig wird als Maß die Summe der Abstandquadrate benutzt minimal wird. f ϕ! = Min Fakultät Grundlagen Interpolation und Approximation Folie: 4

5 Interpolation Problemstellung Polynominterpolation Im Falle von Messpunkten ist es auch möglich, aus einer Grundmenge eine Funktion auszuwählen, die durch alle Punkte geht in diesem Fall spricht man von Interpolation. Interpolationsfunktionen werden benötigt, um an einer beliebigen Stelle einen y-wert bestimmen zu können. um Steigungen (Ableitungen) und Flächen (Integrale) für solche nur durch diskrete Punkte bekannten Zusammenhänge zu bestimmen. Fakultät Grundlagen Interpolation und Approximation Folie: 5

6 Polynominterpolation Problemstellung Polynominterpolation Aufgabenstellung: zu n + 1 verschiedenen Stützstellen (x k y k ) ein Polynom p n (x) vom Höchstgrad n zu finden, das durch alle Punkte geht. x x 0 x 1... x n y y y 0 y 1... y i = p n (x i ) = n n k=0 a k x k i Die Punktprobe ergibt ein lineares Gleichungssystem für die (n + 1) Koeffizienten des Polynoms. a 0 + a 1 x 0 + a 2 x a n x n 0 = y 0 a 0 + a 1 x 1 + a 2 x a n x n 1 = y a 0 + a 1 x n + a 2 x 2 n a n x n n = y n Fakultät Grundlagen Interpolation und Approximation Folie: 6

7 Beispiel Problemstellung Polynominterpolation Zahlenbeispiel: x y mit y = x 2 p 4 (x) = x x x x 4. y f (x) p 4 (x) x Die Graphik zeigt deutlich die Schwäche der Interpolation mit Polynomen. Zwischen 1 und 7 hat die Interpolationskurve p 4 (x) nichts mehr mit der Funktion f (x) gemein. Polynome ab der Ordnung 4, 5 werden stark wellig und eignen sich daher nicht mehr zur globalen Interpolation. Fakultät Grundlagen Interpolation und Approximation Folie: 7

8 Modellierung Kubische Wir wollen ein Kurvenlineal mathematisch nachbilden und betrachten es idealisiert als dünnen, elastischen Stab. Das Kurvenlineal wird nur in den Stützpunkten festgehalten; darüber hinaus wirken keine Kräfte oder Momente. Die Krümmung s des Lineals ändert sich zwischen den Stützpunkten linear. Dafür gilt: s = f (x) (1 + f (x)) 3/2 f (x) (falls f (x) 1) Folglich muss in jedem Intervall x k < x < x k+1 gelten: f (x) = ax + b f (x) = a 2 x 2 + bx + c f (x) = a 6 x 3 + b 2 x 2 + cx + d Fakultät Grundlagen Interpolation und Approximation Folie: 8

9 Kubische Eigenschaften der Interpolationsfunktion f : (S1) In jedem Intervall x k < x < x k+1, (k = 0, 1,..., n 1) stimmt f mit einem Polynom vom Grad 3 überein. An den Stützstellen x k muss f die folgenden Bedingungen erfüllen: (S2) f (x k ) = y k, (k = 0, 1,..., n) (Kurvenlineal geht durch die Messpunkte!) (S3) f stetig in x k, (k = 0, 1,..., n) (Kurvenlineal nicht abgebrochen!) (S4) f stetig in x k, (k = 0, 1,..., n) (Kurvenlineal nicht geknickt!) (S5) f stetig in x k, (k = 0, 1,..., n) (Keine äußeren Biegemomente!) Fakultät Grundlagen Interpolation und Approximation Folie: 9

10 Visualisierung Kubische y S 3 (x) S 4 (x) S 2 (x) S 5 (x) S 0 (x) S 1 (x) 1 S 6 (x) S 7 (x) 1 x Fakultät Grundlagen Interpolation und Approximation Folie: 10

11 Definition Kubische Das Splinekonzept ist auch der Hintergrund aller CAD-Anwendungen. Bei der Darstellung beliebiger geometrischer Formen sind neben der Interpolationseigenschaft auch noch zusätzliche Modellierungseigenschaften erforderlich. Als Kern dieser Freiformgeometrie entpuppt sich die folgende Problemstellung: Eine Interpolationskurve zwischen zwei Punkten mit vorgegebenen Tangentenrichtungen in den Interpolationspunkten ist zu konstruieren. Zusätzlich soll noch eine weitere Modellierungseigenschaft vorhanden sein. Fakultät Grundlagen Interpolation und Approximation Folie: 11

12 Visualisierung Bezier Kubische B 2 b2 B 1 b1 b0 b3 B 0 B 3 O Fakultät Grundlagen Interpolation und Approximation Folie: 12

13 Interpolationsgleichung Kubische Wir geben uns zusätzlich zu den Interpolationspunkten B 0 und B 3 noch zwei Richtungspunkte B 1 und B 2 vor. Sind b 0, b 1, b 2, b 3 die zugehörigen Ortsvektoren, so hat der Interpolationsansatz x(t) = b 0 (1 t) b 1 (1 t) 2 t + 3 b 2 (1 t) t 2 + b 3 t 3 die folgenden Eigenschaften: x(0) = b 0 x(1) = b 3 d.h. die Kurve geht durch die beiden Punkte B 0, B 3. x(t) = 3 b 0 (1 t) b 1 (1 t) 2 6 b 1 (1 t) t + 6 b 2 (1 t) t 3 b 2 t b 3 t 2 x(0) = 3( b 1 b 0 ) Analog ergibt sich für x(1) = 3( b 3 b 2 ). Fakultät Grundlagen Interpolation und Approximation Folie: 13

14 Gummihauteigenschft Kubische B 2 B 1 B 0 B 3 Fakultät Grundlagen Interpolation und Approximation Folie: 14

15 Zusammengesetzte Kubische B8 B 7 B 6 B 9 B 0 B 1 B 5 B 2 B 3 B 4 Fakultät Grundlagen Interpolation und Approximation Folie: 15

16 Datenreduktion Kubische Soll die Interpolationskurve höhere Differentiationseigenschaften haben, so dürfen die Richtungspunkte der Beziersegmente auch wenn benachbarte Punkte kollinear sind nicht mehr beliebig gewählt werden. Fordern wir, dass die Interpolationskurve durch (n + 1) Punkte zweimal stetig differenzierbar ist, so lässt sich zeigen, dass es genügt, für innere Segmente einen Hilfspunkt abzuspeichern, aus dem sich die übrigen Bezierpunkte rekonstruieren lassen. Dies ermöglicht für CAD-Anwendungen eine wichtige Datenreduktion. Fakultät Grundlagen Interpolation und Approximation Folie: 16

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

Interpolation und Approximation von Funktionen

Interpolation und Approximation von Funktionen Kapitel 6 Interpolation und Approximation von Funktionen Bei ökonomischen Anwendungen tritt oft das Problem auf, dass eine analytisch nicht verwendbare (oder auch unbekannte) Funktion f durch eine numerisch

Mehr

9. Parametrische Kurven und Flächen

9. Parametrische Kurven und Flächen 9. Parametrische Kurven und Flächen Polylinien bzw. Polygone sind stückweise lineare Approximationen für Kurven bzw. Flächen Nachteile: hohe Zahl von Eckpunkten für genaue Repräsentation erforderlich interaktive

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2011 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dr Slobodan Ilic Numerisches Programmieren, Übungen 6 Übungsblatt: Stückweise Interpolation

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

0.1 Modellierung von Kurven und Flächen mittels B-Splines

0.1 Modellierung von Kurven und Flächen mittels B-Splines Vorlesung vom 28.04.06 Skript erstellt von Antonia Wittmers und Maria Gensel 0.1 Modellierung von Kurven und Flächen mittels B-Splines Das Wort Spline, übersetzt mit längliches, dünnes Stück Holz oder

Mehr

Polynome im Einsatz: Bézier-Kurven im CAD

Polynome im Einsatz: Bézier-Kurven im CAD Polynome im Einsatz: Bézier-Kurven im CAD Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 25 Kurven im Raum Eine Kurve im

Mehr

Approximation durch Polynome

Approximation durch Polynome durch n Anwendungen: zur Vereinfachung einer gegebenen Funktion durch einen Polynomausdruck. Dann sind übliche Rechenoperation +,,, / möglich. zur Interpolation von Daten einer Tabelle n Beispiel Trotz

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven

Teil 2: Kurven und Flächen. Kurven und Flächen. Kurven. Parametrische Objekte. Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Teil 2: Kurven und Flächen

Teil 2: Kurven und Flächen Parametrische Objekte Kurven und Flächen Kurven: 1D-Objekte Flächen: 2D-Objekte, basierend auf Kurven Kurven Welche Form der Darstellung? Beispiel: 2D-Linie Explizit: y = k x + d x = (x, y) T Implzit:

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

Approximationsverfahren für die Kurvendarstellung

Approximationsverfahren für die Kurvendarstellung Approximationsverfahren für die Kurvendarstellung (a) Bézier-Kurven spezielle Form polynomialer Kurven spezifiziert durch n+1 Kontrollpunkte P 0, P 1,..., P n Kurve läuft nicht durch alle Kontrollpunkte,

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013

Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013 Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Polynominterpolation

Polynominterpolation Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

Kapitel 7. Interpolation und Approximation II. Inhalt: 7.1 Spline-Interpolation 7.2 Trigonometrische Interpolation 7.3 Tschebyscheff-Approximation

Kapitel 7. Interpolation und Approximation II. Inhalt: 7.1 Spline-Interpolation 7.2 Trigonometrische Interpolation 7.3 Tschebyscheff-Approximation Kapitel 7. Interpolation und Approximation II Inhalt: 7.1 Spline-Interpolation 7.2 Trigonometrische Interpolation 7.3 Tschebyscheff-Approximation Numerische Mathematik I 275 Interpolation als lineares

Mehr

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN

QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN QUASI-SPLINE-INTERPOLATION BEZÜGLICH GLEICHMÄSSIGER UNTERTEILUNGEN IRYNA FEUERSTEIN Es wir ein Verfahren zur Konstruktion einer quasiinterpolierenden Funktion auf gleichmäßig verteilten Konten vorgestellt.

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

Tangente als Näherung

Tangente als Näherung Mathematik I für Informatiker Satz von Taylor Taylorreihen p. 1 Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion p 1 (x) eine Näherung für f(x): f(x) p 1 (x)

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 =

(c) Gegeben sei der zweidimensionale Raum L mit den Basisfunktionen. [ φ i, φ j ] 3 i,j=1 = 1. (a) i. Wann besitzt A R n n eine eindeutige LR-Zerlegung mit R invertierbar? ii. Definieren Sie die Konditionszahl κ(a) einer Matrix A bzgl. einer Norm.! iii. Welche Eigenschaften benötigt eine Matrix

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 07 / 08 Institut für Informatik Univ-Prof Dr Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 3 Übungsblatt:

Mehr

KAPITEL 9 Splinefunktionen

KAPITEL 9 Splinefunktionen KAPITEL 9 Splinefunktionen 9.1 Splineräume und Approximationsgüte Bei der Behandlung von Splines ist es bequemer, statt mit dem Grad von Polynomen, mit der Ordnung k := Grad + 1 zu arbeiten. Für eine Knotenmenge

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Splines und B-Splines

Splines und B-Splines 5. Mai 2009 Wozu Splines? Ausgangssituation: Punkte Möglichst weiche Kurve mittels der Punkte generieren Interpolation zwischen den Punkten Lineare Interpolation replacements P(1) P(0) P(t) P(t) = t P(1)

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Verarbeitung von Messdaten

Verarbeitung von Messdaten HTL Steyr Verarbeitung von Messdaten Seite von 8 Bernhard Nietrost, HTL Steyr Verarbeitung von Messdaten Mathematische / Fachliche Inhalte in Stichworten: Regression, Polynominterpolation, Extremwertberechnung,

Mehr

Interpolation, numerische Integration

Interpolation, numerische Integration Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische

Mehr

Ableitung einer Betragsfunktion Differenzierbarkeit

Ableitung einer Betragsfunktion Differenzierbarkeit Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x

Mehr

Splines. Splines. Vom Gebilde zur Geometrie. Katharina Birner. Institut für Angewandte Geometrie Splines

Splines. Splines. Vom Gebilde zur Geometrie. Katharina Birner. Institut für Angewandte Geometrie Splines Vom Gebilde zur Geometrie 10.6.2016 Motivation Figure: Schrift Figure: Bézierkurve Motivation Wir wollen etwas in 2D zeichnen. Was benötigen wir? Geraden Kurven Motivation Wir wollen etwas in 2D zeichnen.

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Coputergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransforationen Objektrepräsentation und -Modellierung Sichttransforationen

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

2. Spezielle anwendungsrelevante Funktionen

2. Spezielle anwendungsrelevante Funktionen 2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für

Mehr

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz

Mathematik II. Vorlesung 49. Der Banachsche Fixpunktsatz Prof. Dr. H. Brenner Osnabrück SS 2010 Mathematik II Vorlesung 49 Der Banachsche Fixpunktsatz Satz 49.1. Es sei M ein nicht-leerer vollständiger metrischer Raum und f :M M eine stark kontrahierende Abbildung.

Mehr

Formelanhang Mathematik II

Formelanhang Mathematik II Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) =

Splines. Bézier-Kurven. Beispiel zur Approximation. Interpolation & Approximation. Schiffbau Automobilbau Architektur. f(x) f(x) = Institut für Geometrie Abteilung für Geometrie im Bauwesen und im Scientific Computing Prof. Dr. H. Pottmann Interpolation & Approximation Splines Geg: Menge von Punkten Ges: Kurve, welche die Punkte interpoliert

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e

Mehr

Trassierung. c Roolfs

Trassierung. c Roolfs -6-5 - - - 5 x Modellieren Sie mit einem knickfreien Übergang den Verlauf einer Umgehungsstraße, die durch P(0 ) verlaufen soll (Angaben in km). Ermitteln Sie den kürzesten Abstand zum Ortsrand. -6-5 -

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b.

Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. Kapitel 4: Interpolation Sei U eine Klasse von einfach strukturierten Funktionen, z.b. - Polynome, - rationale Funktionen, - trigonometrische Polynome, - Splines. Interpolationsproblem 4: Sei f : [a,b]

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Spline-Interpolation

Spline-Interpolation Spline-Interpolation Tim Schmölzer 20 November 2009 Tim Schmölzer Spline-Interpolation 20 November 2009 1 / 38 Übersicht 1 Vorbemerkungen 2 Lösbarkeit des Interpolationsproblems 3 Stabilität der Interpolation

Mehr

5. DIFFERENZIEREN UND INTEGRIEREN

5. DIFFERENZIEREN UND INTEGRIEREN 5. DIFFERENZIEREN UND INTEGRIEREN 1 Sei f eine auf R oder auf einer Teilmenge B R definierte Funktion: f : B R Die Funktion heißt differenzierbar in x 0 in B, falls sie in diesem Punkt x 0 lokal linear

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 20 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 6 Übungsblatt:

Mehr

11. Darstellung von Kurven und Flächen

11. Darstellung von Kurven und Flächen H.J. Oberle Approximation WS 23/4. Darstellung von Kurven und Flächen Bézier Kurven. Unser Ziel ist es, polynomiale Kurven auf dem Rechner möglichst effizient darzustellen. Hierzu nutzen wir die Basisdarstellung

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept home/lehre/vl-mhs--e/deckblatt.tex. p./ Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente. Finite-Element-Typen. Geometrie. Interpolations-Ansatzfunktion

Mehr

Modellierung eines Weinglases mit Hilfe von kubischen Splines D. S.

Modellierung eines Weinglases mit Hilfe von kubischen Splines D. S. Modellierung eines Weinglases mit Hilfe von kubischen Splines D S Inhaltsverzeichnis 1 Einleitung 2 11 Grundlagen und Geschichte des Weinglasdesigns 2 2 Splineinterpolation 3 21 Kubische Splines 3 22 Natürlich

Mehr

GFS im Fach Mathematik. Florian Rieger Kl.12

GFS im Fach Mathematik. Florian Rieger Kl.12 file:///d /Refs/_To%20Do/12_09_04/NewtonVerfahren(1).html 27.02.2003 GFS im Fach Mathematik Florian Rieger Kl.12 1. Problemstellung NewtonApproximation Schon bei Polynomen dritter Ordnung versagen alle

Mehr

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15

Mathematisches Argumentieren und Beweisen Beweisarten Besipiele. Hagen Knaf, WS 2014/15 Mathematisches Argumentieren und Beweisen Beweisarten Besipiele Hagen Knaf, WS 2014/15 Im Folgenden sind einige der in der Vorlesung besprochenen Beispielbeweise für die verschiedenen Beweisarten aufgeführt

Mehr

Übungsblatt 1 Musterlösung

Übungsblatt 1 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

De Gruyter Studium. Numerische Methoden. Bearbeitet von Hermann Friedrich, Frank Pietschmann

De Gruyter Studium. Numerische Methoden. Bearbeitet von Hermann Friedrich, Frank Pietschmann De Gruyter Studium Numerische Methoden Bearbeitet von Hermann Friedrich, Frank Pietschmann 1. Auflage 2010. Buch. 538 S. ISBN 978 3 11 021806 0 Format (B x L): 17 x 24 cm Gewicht: 896 g Weitere Fachgebiete

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

2 Fortführung der Differenzialrechnung... 48

2 Fortführung der Differenzialrechnung... 48 Inhaltsverzeichnis Inhaltsverzeichnis 1 Folgen und Grenzwerte................................................................................... 10 1.1 Rekursive und explizite Vorgabe einer Folge...........................................................

Mehr

Zweite Prüfung zur Vorlesung

Zweite Prüfung zur Vorlesung Prof O Scherzer P Elbau, L Mindrinos Numerische Mathematik Fakultät für Mathematik Universität Wien 4 Oktober 23 Zweite Prüfung zur Vorlesung Numerische Mathematik Erlaubte Hilfsmittel: Schriftliche Unterlagen

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N fc HOCHSCHULBÜCHER FÜR MATHEMATIK H E R A U S G E G E B E N VON H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N 1955 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 20 Wiederholung: Fehlerbetrachtung.

Mehr

HTL Kapfenberg SPLINE Interpolation Seite 1 von 7.

HTL Kapfenberg SPLINE Interpolation Seite 1 von 7. HTL Kapfenberg SPLINE Interpolation Seite von 7 Roland Pichler roland.pichler@htl-kapfenberg.ac.at SPLINE Interpolation Mathematische / Fachliche Inhalte in Stichworten: Polynome, Gleichungssysteme, Differenzialrechnung

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr

Numerik 1. Ch. Helzel. Vorlesung: Mi. + Do. 10:30-12:15

Numerik 1. Ch. Helzel. Vorlesung: Mi. + Do. 10:30-12:15 Numerik 1 Ch. Helzel Vorlesung: Mi. + Do. 10:30-12:15 Organisatorisches Mitarbeiter: David Kerkmann und Marina Fischer (Übungen), Felix Lieder (Organisatorisches), Andreas Troll (Programmierübungen) Organisatorisches

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Interpolation Prof Dr-Ing K Warendorf, Prof Dr-Ing P Wolfsteiner Hochschule für Angewandte Wissenschaften München Fakultät 03 WS 13/14 Prof Dr-Ing K Warendorf (Fakultät 03) Numerische

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen. Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Analysis für Ingenieure

Analysis für Ingenieure Analysis für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VMVERLX3 Inhaltsverzeichnis GRUNDLAGEN 1 Mengen 13 2 Zahlen 14 3 Übungen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr