9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

Größe: px
Ab Seite anzeigen:

Download "9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen"

Transkript

1 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel schon vorhanden ist) Erweiterung: Der eingefügte Schlüssel kann durch sog. Rotationen sukzessiv in Richtung Wurzel verschoben werden (Verbesserung der Baumstruktur) Allgemeines Schema: rekursive Formulierung 43

2 9.4 Binäre Suchbäume Beispiel: Einfügen des Schlüssels G (iterativ; die rekursive Version tut genau dasselbe) 44

3 9.4 Binäre Suchbäume Rotationen: Damit kann man Knoten im Baum verschieben, ohne die Suchbaumeigenschaft des Baumes zu verletzen. Eine lokale Umstrukturierung in einem Binärbaum, an der zwei Schlüssel und drei Teilbäume beteiligt sind. Links- und Rechtsrotation Rotation lässt die Struktur der Teilbäume A, B und C unverändert, ändert aber die Tiefe der Knoten in Teilbäumen A und C 45

4 9.4 Binäre Suchbäume Beispiel: Konstruktion eines binären Suchbaums mit A, S, E, R, C, H, I, N, G, X, M, P, L durch Einfügen an der Wurzel 46

5 9.4 Binäre Suchbäume Vorteil: Zuletzt eingefügte Schlüssel sind in der Nähe der Spitze. Für diese Schlüssel ist der Suchaufwand kleiner als mit dem Standardverfahren. Selbstorganisierender Suchalgorithmus: ordnet Elemente neu an, damit sich häufig angesprochene Elemente mit höherer Wahrscheinlichkeit bereits früh in einer Suchoperation finden lassen Realisierung durch Erweiterung der Suchmethode, um den gefundenen Knoten mithilfe von Rotationen zur Wurzel zu bringen 47

6 9.4 Binäre Suchbäume Weitere Suchbaum-Operationen: Auswahl: des k-kleinsten Elementes (Minimum: k=1). In jedem Knoten einen Zähler size für die Anzahl der Schlüssel vorzusehen, die in dem von diesem Knoten ausgehenden Teilbaum gespeichert sind. Alle Methoden, die den Zustand des Baumes ändern, müssen diesen Zähler aktualisieren. BSTNode<E> select(bstnode<e> t, int k) { if (t == null) return null; int i = (t.left == null)? 0 : node.left.size; if (i >= k) return select(t.left, k); else if (i < k) return select(t.right, k-i); return t.element; } Aufruf: select(root, k); 48

7 9.4 Binäre Suchbäume Zerlegen: Eng verwandt mit Auswählen ist das Zerlegen bezüglich einer Position k. Für k = size/2 kann man damit eine geordnete Menge in linke und rechte Hälfte aufteilen. Man bringt durch mehrfaches Rotieren das Element mit Index k an die Wurzel. Dann enthält der linke Teilbaum die Elemente mit den Indizes 0,..., k 1, der rechte die mit den Indizes k + 1,..., size 1. Die Laufzeit für Auswählen und Zerlegen ist im schlechtesten Fall von der Ordnung O(h) (h = Höhe das Suchbaums), weil immer ein Suchpfad durchlaufen wird. Im Mittel ist h O(log n), eine Garantie für logarithmische Laufzeit haben wir noch nicht. 49

8 9.4 Binäre Suchbäume Beispiel: Baum der Größe size = 9. Element M wird an die Wurzel gebracht. Anschließend enthält der linke Teilbaum Elemente, die kleiner als M sind. 50

9 9.4 Binäre Suchbäume Vereinigung von Suchbäumen: Seien a und b die beiden Bäume a.max < b.min Besonders effizient: Der Schlüssel a.max wird an die Wurzel von a rotiert, mit der Folge, dass a.right leer ist. Dann setzt man a.right = b. Wenn a logarithmische Höhe hat, braucht das O(log n) Zeit. Schlüssel in a und b sind beliebig Dann muss man einen der beiden Bäume traversieren und seine Elemente in den anderen Baum einfügen. Keine lineare Zeit, da jedes Einfügen lineare Zeit beanspruchen kann. 51

10 9.4 Binäre Suchbäume Rekursive Implementierung der Vereingung: Zuerst fügen wir die Wurzel w von a in den Baum b ein (durch Einfügen an der Wurzel) Zwei Teilbäume (a.left und b.left) mit Schlüssseln < w und zwei Teilbäume (a.right und b.right) mit Schlüsseln > w. Eine rekursive Anwendung am ersten (zweiten) Paar liefert den linken (rechten) Teilbaum der Wurzel w. BSTNode<E> joinr(bstnode<e> a, BSTNode<E> b) { if (a == null) return b; if (b == null) return a; insert(a.element, b); // Einfügen an der Wurzel b.left = joinr(a.left, b.left); r.right = joinr(a.right, b.right) return b; } 52

11 9.4 Binäre Suchbäume Beispiel: Zwei Bäume zur Vereinigung (oben); nach Einfügung der Wurzel w = G in den anderen Baum (Mitte); Vereinigung (unten) 53

12 9.5 Balancierte Bäume Mit binären Suchbäumen kann man eine Vielzahl von Anwendungen mit einer Laufzeit realisieren, die von der Höhe der beteiligten Bäume abhängt. Man möchte, dass diese Höhe garantiert logarithmisch ist. Daten sind meistens nicht zufällig verteilt, sondern teilweise geordnet mit langen Läufen monoton aufsteigender (absteigender) Elemente Degenerierung binärer Suchbäume in lineare Listen Idee: Überwache Struktur eines binären Suchbaums und restrukturiere ihn, falls er zu sehr degeneriert Idealfall eines ausgeglichenen Binärbaums hat man, wenn alle Ebenen bis auf die untersten ein bis drei Ebenen voll besetzt sind 54

13 9.5 Balancierte Bäume Es gibt zahlreiche Verfahren, mit denen man einen binären Suchbaum ausgleichen kann. Eine einfache Methode: Bringe den Median an die Wurzel und wiederhole dasselbe rekursiv für die Teilbäume. Laufzeit T(n) = n + 2T(n/2) O(n log n) (vgl. Mergesort) Diese Art des vollständigen Balancierens eines Suchbaums ist nur sinnvoll in Situationen, in denen der Baum wenig geändert wird. Durch weitere Einfüge und Entferne Operationen geht die Balance meistens schnell wieder verloren. 55

14 9.5 Balancierte Bäume Klasse B von Suchbäumen muss die folgenden beiden Bedingungen erfüllen, um praktisch nützlich zu sein Ausgewogenheitsbedingung: c > 0 T B : h T c log 2 n T h T : Höhe, n T : Anzahl Knoten eines Baumes T Restrukturierungsbedingung: Fällt ein Baum T B nach einer Einfüge- oder Löschoperation aus der Klasse B heraus, so muss es möglich sein, T mit Aufwand O(log n T ) so zu restrukturieren, dass er wieder zu B gehört Erfüllt eine Klasse B von Bäumen die Ausgewogenheitsbedingung und die Restrukturierungsbedingung, so lassen sich die Such-, Einfüge- und Löschoperation mit Aufwand O(log n) durchführen 56

15 9.5 Balancierte Bäume Klasse der fast vollständigen binären Bäume erfüllt die Ausgewogenheitsbedingung, aber nicht die Restrukturierungsbedingung, da im schlimmsten Fall O(n) Zeit benötigt wird, um solch einen binären Suchbaum zu restrukturieren C E G O(n) B D F B D F A C E G A 57

16 Die historisch erste Klasse dynamischer balancierbarer Bäume waren die AVL Bäume (1962 von G. M. Adelson Velskii und J. M. Landis eingeführt) AVL Eigenschaft eines Binärbaums: Für jeden Knoten darf sich die Höhe seiner beiden Teilbäume höchstens um 1 unterscheiden höhenbalancierter binärer Suchbaum Durch Rotationen wird unmittelbar nach jedem Einfügen und Entfernen diese Bedingung in logarithmischer Zeit wiederhergestellt Es gilt: Die Klasse der AVL Bäume erfüllt die Balanciertheitsbedingung mit h n log 2 n. Zugriffe auf AVL Bäume sind also höchstens um 44% langsamer als Zugriffe auf optimal ausbalancierte Bäume. Diese Abschätzung ist meistens viel zu pessimistisch. In der Praxis stellt man fest, dass zufällig erzeugte AVL Bäume Höhen h n log 2 n haben. 58

17 Beispiel: höhenbalancierte binäre Bäume Nicht höhenbalancierter Baum; der markierte Knoten verletzt die Höhenbedingung 59

18 Knoten t eines AVL-Baumes erfüllt genau eine der folgenden Ausgewogenheitseigenschaften: / linkslastig, wenn die Höhe des linken Teilbaums von t um 1 größer ist als die Höhe des rechten Teilbaums; - ausgeglichen, wenn beide Teilbäume von t gleiche Höhe haben; \ rechtslastig, wenn die Höhe des rechten Teilbaums von t um 1 größer ist als die Höhe des linken Teilbaums. 60

19 Einfügen: Beim Einfügen von x in einen AVL Baum wird der neue Knoten wie beim natürlichen Suchbaum eingefügt, dann wird rebalanciert. Das unbalancierte Einfügen kann also nur bei Knoten auf dem Suchpfad für x die AVL Bedingung verletzen Beim Rebalancieren wird der Suchpfad rückwärts durchlaufen. Bei jeder AVL-Verletzung wird eine lokale Restrukturierungsoperation durchgeführt, um in diesem Teilbaum die AVL-Bedingung wieder herzustellen. Lokale Restrukturierungsoperationen Rotation und Doppelrotation ermöglichen die Restrukturierung eines durch eine Einfügeoperation gestörten zuvor höhenbalancierten Baumes, indem sie ihn in Teilbäume zerlegen und auf neue Art wieder zusammenfügen 61

20 Die Höhenbedingung ist im roten Knoten verletzt a Rotation b 2 1 X Y b X a Y Z Z a Doppelrotation b c a c 2 1 W X b Z W Y Z X Y Analog spiegelbildliche Transformationen 62

21 Einfügen eines neuen Elementes erfolgt wie beim binären Suchbaum, der neue Knoten erhält die Ausgewogenheitseigenschaft. Dann beginne ausgehend vom neuen Knoten in Richtung Wurzel aufzusteigen und verbreite die Nachricht, dass der zum gegenwärtigen Knoten gehörende Teilbaum in der Höhe um 1 gewachsen ist. In jedem Knoten entlang dieses Weges wird entsprechend einer der folgenden Regeln I1, I2 und I3 eine Operation durchgeführt. 63

22 Regel I1: Knoten hat Ausgewogenheitseigenschaft und wird von seinem linken (bzw. rechten) Kind aus betreten ändere Ausgewogenheitseigenschaft zu / (bzw. \) Knoten = Wurzel breche Aufstieg ab Knoten Wurzel setzeaufstiegfort Regel I2: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor kürzeren Teilbaum aus betreten ändere Ausgewogenheitseigenschaft zu und breche Aufstieg ab, da Höhe des Teilbaums sich nicht geändert hat 64

23 Regel I3: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor schon längeren Teilbaum aus betreten Höhenbedingung im gegenwärtigen Knoten ist verletzt und wird folgendermaßen wiederhergestellt: (a) Erfolgten die letzten zwei Schritte aus der gleichen Richtung (beide von linken Kindern oder beide von rechten Kindern) Rotation (b) Erfolgten die letzten zwei Schritte aus unterschiedlichen Richtungen (einer vom linken Kind, einer vom rechten Kind) Doppelrotation In beiden Fällen ändert sich Höhe des Teilbaums nicht breche Aufstieg ab 65

24 Beispiel: Einfügen von 1, 2, 5, 3, 4, 6, 7 in einen initial leeren AVL-Baum 1 insert 2 1 insert 5 1 Rotation insert

25 insert 4 2 Doppelrotation insert Rotation

26 insert Rotation Insgesamt wird nach dem Einfügen höchstens eine Rotation oder Doppelrotation durchgeführt Aufwand für Einfügen wird bestimmt durch den Abstieg zur Einfügeposition und den Aufstieg, im schlimmsten Fall bis zur Wurzel Aufwand für Einfügen ist im schlimmsten Fall O(h), d.h. O(log n) 68

27 Entfernen: Ein Schlüssel x wird wie bei natürlichen Suchbäumen entfernt (entweder direkt entfernt oder durch seinen Inorder Nachfolger y ersetzt; siehe die Illustration auf der nächsten Folie) Dann beginne ausgehend vom Elternknoten von x oder y zur Wurzel aufzusteigen und verbreite die Nachricht, dass der zum gegenwärtigen Knoten gehörende Teilbaum in der Höhe um 1 geschrumpft ist. In jedem Knoten entlang dieses Wegs wird entsprechend einer der folgenden Regeln eine Operation durchgeführt. 69

28 9.4 Binäre Suchbäume Spezialfälle beim Entfernen in binären Suchbäumen: x ist in einem Knoten k enthalten, der keine Kinder hat: k wird gelöscht von Elternknoten von x=13, 12, zur Wurzel aufsteigen x ist in einem Knoten k enthalten, der ein Kind hat: k wird durch das Kind ersetzt von Elternknoten von x=16, 15, zur Wurzel aufsteigen 70

29 9.4 Binäre Suchbäume x ist in einem Knoten k enthalten, der zwei Kinder hat: Dann bleibt Knoten k erhalten. Das Element x in k wird ersetzt durch das größte Element im linken Teilbaum oder das kleinste Element im rechten Teilbaum von k. Jedes dieser beiden Elemente ist in einem Knoten gespeichert, der höchstens ein Kind besitzt und daher wie in Fall 1 oder 2 entfernt werden kann. von Elternknoten von y=6, 10, zur Wurzel aufsteigen 71

30 Regel D1: Knoten hat Ausgewogenheitseigenschaft und wird von seinem linken (bzw. rechten) Kind aus betreten ändere Ausgewogenheitseigenschaft zu \ (bzw. /) und breche Aufstieg ab, da die Höhe des Teilbaums sich nicht geändert hat Regel D2: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor längeren Teilbaum aus betreten ändere Ausgewogenheitseigenschaft zu und setze Aufstieg fort 72

31 Regel D3: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor schon kürzeren Teilbaum aus betreten Höhenbedingung des gegenwärtigen Knotens b ist verletzt und wird abhängig von der Ausgewogenheitseigenschaft des anderen Kindes a von b folgendermaßen wiederhergestellt: (a) Rotation b a a b Z Z X X Y Y Eine Rotation sorgt für die Einhaltung der Höhenbedingung am gegenwärtigen Knoten, ohne die Höhe des Teilbaums zu verändern breche Aufstieg ab 73

32 (b) X a Y b Z Rotation X a Y b Z Eine geeignete Rotation sorgt für die Einhaltung der Höhenbedingung am gegenwärtigen Knoten setzeaufstiegfort 74

33 (c) W a X c b Y Z Doppelrotation W a X c Y b Z Eine Doppelrotation sorgt für die Einhaltung der Höhenbedingung am gegenwärtigen Knoten setze Aufstieg fort Ähnliche Transformationen, falls X oder Y, aber nicht beide zugleich, um eine Stufe kürzer sind als in obiger Figur gezeigt Modifikation der Ausgewogenheitseigenschaft einiger Knote kein Einfluß auf die Höhe des Teilbaums Betrachte ebenso Spiegelbilder in (a), (b), (c)! 75

34 Im Gegensatz zum Einfügen kann beim Löschen mehr als eine Rotation oder Doppelrotation notwendig sein! Aufwand für eine Rotation oder Doppelrotation ist konstant, d.h. O(1) Kosten für Rebalancierung nur abhängig von der Höhe des Baumes Aufwand für Löschoperation ist im schlimmsten Fall O(log n) 76

35 delete Regel D

36 Regel D3 (c): Doppelrotation Regel D3 (b): Rotation

37 Beispiel: Ein natürlicher Suchbaum mit 200 zufälligen Schlüsseln 79

38 AVL-Baum mit denselben Schlüsseln: 80

39 Beispiel: Ein natürlicher Suchbaum mit Bias, 400 zufällige Schlüssel 81

40 AVL-Baum mit denselben Schlüsseln: 82

41 Ein schiefster höhenbalancierter binärer Baum T h ist ein höhenbalancierter binärer Baum der Höhe h mit einer minimalen Anzahl Knoten. Ausgehend von T 0 und T 1 erhält man T h, indem man T h 1 und T h 2 als Teilbäume an einen neuen Wurzelknoten anfügt: h = 0 h = 1 h = 2 h = 3 h = 4 Anzahl n h der Knoten in einem schiefsten höhenbalancierten binären Baum der Höhe h: n 0 = 1, n 1 = 2 n h = n h 2 + n h

42 Es gilt: Im schlimmsten Fall beträgt die Höhe eines AVL-Baums mit n Knoten etwa 1.44 log 2 n 84

43 Aufwand für die Einfüge- und Löschoperation ist im schlimmsten Fall O(log n) Klasse der AVL-Bäume erfüllt die Restrukturierungsbedingung AVL-Bäume mit ihren kleinen Knoten, die gewöhnlich ein einziges Datenelement enthalten, werden primär für die Verwaltung von Daten im Hauptspeicher eingesetzt G. M. Adelson-Velskii und Y. M. Landis: An algorithm for the organization of information, Soviet Mathematics Doklady 3, (1962) Ein schönes Java-Applet mit Animation: 85

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6 Kompaktübersicht Bäume Diese Übersicht entstand im Wintersemester 2003/04 parallel zur Vorlesung Grundzüge der Informatik III an der Technischen Universität Darmstadt (TUD) und soll die behandelten Aspekte

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen -

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - 5) Suchverfahren Prof. Dr. Anja Schanzenberger FH Augsburg, Fakultät für Informatik Kontakt: anja.schanzenberger@hs-augsburg.de http://www.hs-augsburg.de/schanzenberger

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Einführung in (Binäre) Bäume

Einführung in (Binäre) Bäume edeutung und Ziele inführung in (inäre) äume Marc Rennhard http://www.tik.ee.ethz.ch/~rennhard rennhard@tik.ee.ethz.ch äume gehören ganz allgemein zu den wichtigsten in der Informatik auftretenden atenstrukturen,

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Komplexe Softwaresysteme 2 - SS 2014. Dominik Korner

Komplexe Softwaresysteme 2 - SS 2014. Dominik Korner Komplexe Softwaresysteme 2 - SS 2014 Dominik Korner 24. März 2014 Inhaltsverzeichnis 1 Übung 1 2 1.1 Heap.............................................. 2 A Zeichnen Sie den (min)-heap, der durch Einfügen

Mehr

Unterrichtsvorhaben Q2- I:

Unterrichtsvorhaben Q2- I: Schulinterner Lehrplan Informatik Sekundarstufe II Q2 III. Qualifikationsphase Q2 Unterrichtsvorhaben Q2- I: Im ersten Halbjahr 1 Klausur, im 2. Halbjahr ein Projekt. Die Länge der Klausur beträgt 90 min.

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Binary Space Partitioning Trees: Konzepte und Anwendungen

Binary Space Partitioning Trees: Konzepte und Anwendungen Binary Space Partitioning Trees: Konzepte und Anwendungen Bastian Rieck Gliederung 1 Motivation 2 BSP Trees: Der klassische Ansatz Grundlagen Maleralgorithmus Probleme und Erweiterungen 3 BSP Trees: Anwendungen

Mehr

Teile und Herrsche Teil 2

Teile und Herrsche Teil 2 Teile und Herrsche Teil 2 binär Suchen und schnell Multiplizieren Markus Fleck Manuel Mauky Hochschule Zittau/Görlitz 19. April 2009 Suchen in langen Listen (0, 1, 2, 7, 8, 9, 9, 13, 13, 14, 14, 14, 16,

Mehr

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung

Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung Algorithmen für Peer-to-Peer-Netzwerke Sommersemester 2004 04.06.2004 7. Vorlesung 1 Kapitel III Skalierbare Peer to Peer-Netzwerke Tapestry von Zhao, Kubiatowicz und Joseph (2001) Netzw erke 2 Tapestry

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen 9.2.5 HUT 9.2.5 3 atenstrukturen im omputer atenstrukturen ie beiden fundamentalen atenstrukturen in der Praxis sind rray und Liste Rekursion Feedback valuation rray Zugriff: schnell Umordnung: langsam

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Übersichtlichkeit im Dokumentenmanagement

Übersichtlichkeit im Dokumentenmanagement Übersichtlichkeit im Dokumentenmanagement Workshop Software GmbH Siemensstr. 21 47533 Kleve 02821 / 731 20 02821 / 731 299 www.workshop-software.de Verfasser: SK info@workshop-software.de Datum: 02/2012

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 25. September 2013 Aufgabe 1 Gegeben sei ein binärer Suchbaum mit Werten im Bereich von 1 bis 1001. In diesem Baum wird nach der Zahl

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen

8: Zufallsorakel. Wir suchen: Einfache mathematische Abstraktion für Hashfunktionen Stefan Lucks 8: Zufallsorakel 139 Kryptogr. Hashfunkt. (WS 08/09) 8: Zufallsorakel Unser Problem: Exakte Eigenschaften von effizienten Hashfunktionen nur schwer erfassbar (z.b. MD5, Tiger, RipeMD, SHA-1,...)

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 5. Vorlesung Martin Middendorf / Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Quick-Sort

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr

KompetenzManager http://www.kompetenzmanager.ch/mah Manual für die Benutzung der Website

KompetenzManager http://www.kompetenzmanager.ch/mah Manual für die Benutzung der Website KompetenzManager http://www.kompetenzmanager.ch/mah Manual für die Benutzung der Website Inhalt Inhalt... 1 1. Anmelden beim Kompetenzmanager... 3 2. Erstellen eines neuen Kompetenzprofils... 4 2.1. Wizard

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr