9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

Größe: px
Ab Seite anzeigen:

Download "9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen"

Transkript

1 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel schon vorhanden ist) Erweiterung: Der eingefügte Schlüssel kann durch sog. Rotationen sukzessiv in Richtung Wurzel verschoben werden (Verbesserung der Baumstruktur) Allgemeines Schema: rekursive Formulierung 43

2 9.4 Binäre Suchbäume Beispiel: Einfügen des Schlüssels G (iterativ; die rekursive Version tut genau dasselbe) 44

3 9.4 Binäre Suchbäume Rotationen: Damit kann man Knoten im Baum verschieben, ohne die Suchbaumeigenschaft des Baumes zu verletzen. Eine lokale Umstrukturierung in einem Binärbaum, an der zwei Schlüssel und drei Teilbäume beteiligt sind. Links- und Rechtsrotation Rotation lässt die Struktur der Teilbäume A, B und C unverändert, ändert aber die Tiefe der Knoten in Teilbäumen A und C 45

4 9.4 Binäre Suchbäume Beispiel: Konstruktion eines binären Suchbaums mit A, S, E, R, C, H, I, N, G, X, M, P, L durch Einfügen an der Wurzel 46

5 9.4 Binäre Suchbäume Vorteil: Zuletzt eingefügte Schlüssel sind in der Nähe der Spitze. Für diese Schlüssel ist der Suchaufwand kleiner als mit dem Standardverfahren. Selbstorganisierender Suchalgorithmus: ordnet Elemente neu an, damit sich häufig angesprochene Elemente mit höherer Wahrscheinlichkeit bereits früh in einer Suchoperation finden lassen Realisierung durch Erweiterung der Suchmethode, um den gefundenen Knoten mithilfe von Rotationen zur Wurzel zu bringen 47

6 9.4 Binäre Suchbäume Weitere Suchbaum-Operationen: Auswahl: des k-kleinsten Elementes (Minimum: k=1). In jedem Knoten einen Zähler size für die Anzahl der Schlüssel vorzusehen, die in dem von diesem Knoten ausgehenden Teilbaum gespeichert sind. Alle Methoden, die den Zustand des Baumes ändern, müssen diesen Zähler aktualisieren. BSTNode<E> select(bstnode<e> t, int k) { if (t == null) return null; int i = (t.left == null)? 0 : node.left.size; if (i >= k) return select(t.left, k); else if (i < k) return select(t.right, k-i); return t.element; } Aufruf: select(root, k); 48

7 9.4 Binäre Suchbäume Zerlegen: Eng verwandt mit Auswählen ist das Zerlegen bezüglich einer Position k. Für k = size/2 kann man damit eine geordnete Menge in linke und rechte Hälfte aufteilen. Man bringt durch mehrfaches Rotieren das Element mit Index k an die Wurzel. Dann enthält der linke Teilbaum die Elemente mit den Indizes 0,..., k 1, der rechte die mit den Indizes k + 1,..., size 1. Die Laufzeit für Auswählen und Zerlegen ist im schlechtesten Fall von der Ordnung O(h) (h = Höhe das Suchbaums), weil immer ein Suchpfad durchlaufen wird. Im Mittel ist h O(log n), eine Garantie für logarithmische Laufzeit haben wir noch nicht. 49

8 9.4 Binäre Suchbäume Beispiel: Baum der Größe size = 9. Element M wird an die Wurzel gebracht. Anschließend enthält der linke Teilbaum Elemente, die kleiner als M sind. 50

9 9.4 Binäre Suchbäume Vereinigung von Suchbäumen: Seien a und b die beiden Bäume a.max < b.min Besonders effizient: Der Schlüssel a.max wird an die Wurzel von a rotiert, mit der Folge, dass a.right leer ist. Dann setzt man a.right = b. Wenn a logarithmische Höhe hat, braucht das O(log n) Zeit. Schlüssel in a und b sind beliebig Dann muss man einen der beiden Bäume traversieren und seine Elemente in den anderen Baum einfügen. Keine lineare Zeit, da jedes Einfügen lineare Zeit beanspruchen kann. 51

10 9.4 Binäre Suchbäume Rekursive Implementierung der Vereingung: Zuerst fügen wir die Wurzel w von a in den Baum b ein (durch Einfügen an der Wurzel) Zwei Teilbäume (a.left und b.left) mit Schlüssseln < w und zwei Teilbäume (a.right und b.right) mit Schlüsseln > w. Eine rekursive Anwendung am ersten (zweiten) Paar liefert den linken (rechten) Teilbaum der Wurzel w. BSTNode<E> joinr(bstnode<e> a, BSTNode<E> b) { if (a == null) return b; if (b == null) return a; insert(a.element, b); // Einfügen an der Wurzel b.left = joinr(a.left, b.left); r.right = joinr(a.right, b.right) return b; } 52

11 9.4 Binäre Suchbäume Beispiel: Zwei Bäume zur Vereinigung (oben); nach Einfügung der Wurzel w = G in den anderen Baum (Mitte); Vereinigung (unten) 53

12 9.5 Balancierte Bäume Mit binären Suchbäumen kann man eine Vielzahl von Anwendungen mit einer Laufzeit realisieren, die von der Höhe der beteiligten Bäume abhängt. Man möchte, dass diese Höhe garantiert logarithmisch ist. Daten sind meistens nicht zufällig verteilt, sondern teilweise geordnet mit langen Läufen monoton aufsteigender (absteigender) Elemente Degenerierung binärer Suchbäume in lineare Listen Idee: Überwache Struktur eines binären Suchbaums und restrukturiere ihn, falls er zu sehr degeneriert Idealfall eines ausgeglichenen Binärbaums hat man, wenn alle Ebenen bis auf die untersten ein bis drei Ebenen voll besetzt sind 54

13 9.5 Balancierte Bäume Es gibt zahlreiche Verfahren, mit denen man einen binären Suchbaum ausgleichen kann. Eine einfache Methode: Bringe den Median an die Wurzel und wiederhole dasselbe rekursiv für die Teilbäume. Laufzeit T(n) = n + 2T(n/2) O(n log n) (vgl. Mergesort) Diese Art des vollständigen Balancierens eines Suchbaums ist nur sinnvoll in Situationen, in denen der Baum wenig geändert wird. Durch weitere Einfüge und Entferne Operationen geht die Balance meistens schnell wieder verloren. 55

14 9.5 Balancierte Bäume Klasse B von Suchbäumen muss die folgenden beiden Bedingungen erfüllen, um praktisch nützlich zu sein Ausgewogenheitsbedingung: c > 0 T B : h T c log 2 n T h T : Höhe, n T : Anzahl Knoten eines Baumes T Restrukturierungsbedingung: Fällt ein Baum T B nach einer Einfüge- oder Löschoperation aus der Klasse B heraus, so muss es möglich sein, T mit Aufwand O(log n T ) so zu restrukturieren, dass er wieder zu B gehört Erfüllt eine Klasse B von Bäumen die Ausgewogenheitsbedingung und die Restrukturierungsbedingung, so lassen sich die Such-, Einfüge- und Löschoperation mit Aufwand O(log n) durchführen 56

15 9.5 Balancierte Bäume Klasse der fast vollständigen binären Bäume erfüllt die Ausgewogenheitsbedingung, aber nicht die Restrukturierungsbedingung, da im schlimmsten Fall O(n) Zeit benötigt wird, um solch einen binären Suchbaum zu restrukturieren C E G O(n) B D F B D F A C E G A 57

16 Die historisch erste Klasse dynamischer balancierbarer Bäume waren die AVL Bäume (1962 von G. M. Adelson Velskii und J. M. Landis eingeführt) AVL Eigenschaft eines Binärbaums: Für jeden Knoten darf sich die Höhe seiner beiden Teilbäume höchstens um 1 unterscheiden höhenbalancierter binärer Suchbaum Durch Rotationen wird unmittelbar nach jedem Einfügen und Entfernen diese Bedingung in logarithmischer Zeit wiederhergestellt Es gilt: Die Klasse der AVL Bäume erfüllt die Balanciertheitsbedingung mit h n log 2 n. Zugriffe auf AVL Bäume sind also höchstens um 44% langsamer als Zugriffe auf optimal ausbalancierte Bäume. Diese Abschätzung ist meistens viel zu pessimistisch. In der Praxis stellt man fest, dass zufällig erzeugte AVL Bäume Höhen h n log 2 n haben. 58

17 Beispiel: höhenbalancierte binäre Bäume Nicht höhenbalancierter Baum; der markierte Knoten verletzt die Höhenbedingung 59

18 Knoten t eines AVL-Baumes erfüllt genau eine der folgenden Ausgewogenheitseigenschaften: / linkslastig, wenn die Höhe des linken Teilbaums von t um 1 größer ist als die Höhe des rechten Teilbaums; - ausgeglichen, wenn beide Teilbäume von t gleiche Höhe haben; \ rechtslastig, wenn die Höhe des rechten Teilbaums von t um 1 größer ist als die Höhe des linken Teilbaums. 60

19 Einfügen: Beim Einfügen von x in einen AVL Baum wird der neue Knoten wie beim natürlichen Suchbaum eingefügt, dann wird rebalanciert. Das unbalancierte Einfügen kann also nur bei Knoten auf dem Suchpfad für x die AVL Bedingung verletzen Beim Rebalancieren wird der Suchpfad rückwärts durchlaufen. Bei jeder AVL-Verletzung wird eine lokale Restrukturierungsoperation durchgeführt, um in diesem Teilbaum die AVL-Bedingung wieder herzustellen. Lokale Restrukturierungsoperationen Rotation und Doppelrotation ermöglichen die Restrukturierung eines durch eine Einfügeoperation gestörten zuvor höhenbalancierten Baumes, indem sie ihn in Teilbäume zerlegen und auf neue Art wieder zusammenfügen 61

20 Die Höhenbedingung ist im roten Knoten verletzt a Rotation b 2 1 X Y b X a Y Z Z a Doppelrotation b c a c 2 1 W X b Z W Y Z X Y Analog spiegelbildliche Transformationen 62

21 Einfügen eines neuen Elementes erfolgt wie beim binären Suchbaum, der neue Knoten erhält die Ausgewogenheitseigenschaft. Dann beginne ausgehend vom neuen Knoten in Richtung Wurzel aufzusteigen und verbreite die Nachricht, dass der zum gegenwärtigen Knoten gehörende Teilbaum in der Höhe um 1 gewachsen ist. In jedem Knoten entlang dieses Weges wird entsprechend einer der folgenden Regeln I1, I2 und I3 eine Operation durchgeführt. 63

22 Regel I1: Knoten hat Ausgewogenheitseigenschaft und wird von seinem linken (bzw. rechten) Kind aus betreten ändere Ausgewogenheitseigenschaft zu / (bzw. \) Knoten = Wurzel breche Aufstieg ab Knoten Wurzel setzeaufstiegfort Regel I2: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor kürzeren Teilbaum aus betreten ändere Ausgewogenheitseigenschaft zu und breche Aufstieg ab, da Höhe des Teilbaums sich nicht geändert hat 64

23 Regel I3: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor schon längeren Teilbaum aus betreten Höhenbedingung im gegenwärtigen Knoten ist verletzt und wird folgendermaßen wiederhergestellt: (a) Erfolgten die letzten zwei Schritte aus der gleichen Richtung (beide von linken Kindern oder beide von rechten Kindern) Rotation (b) Erfolgten die letzten zwei Schritte aus unterschiedlichen Richtungen (einer vom linken Kind, einer vom rechten Kind) Doppelrotation In beiden Fällen ändert sich Höhe des Teilbaums nicht breche Aufstieg ab 65

24 Beispiel: Einfügen von 1, 2, 5, 3, 4, 6, 7 in einen initial leeren AVL-Baum 1 insert 2 1 insert 5 1 Rotation insert

25 insert 4 2 Doppelrotation insert Rotation

26 insert Rotation Insgesamt wird nach dem Einfügen höchstens eine Rotation oder Doppelrotation durchgeführt Aufwand für Einfügen wird bestimmt durch den Abstieg zur Einfügeposition und den Aufstieg, im schlimmsten Fall bis zur Wurzel Aufwand für Einfügen ist im schlimmsten Fall O(h), d.h. O(log n) 68

27 Entfernen: Ein Schlüssel x wird wie bei natürlichen Suchbäumen entfernt (entweder direkt entfernt oder durch seinen Inorder Nachfolger y ersetzt; siehe die Illustration auf der nächsten Folie) Dann beginne ausgehend vom Elternknoten von x oder y zur Wurzel aufzusteigen und verbreite die Nachricht, dass der zum gegenwärtigen Knoten gehörende Teilbaum in der Höhe um 1 geschrumpft ist. In jedem Knoten entlang dieses Wegs wird entsprechend einer der folgenden Regeln eine Operation durchgeführt. 69

28 9.4 Binäre Suchbäume Spezialfälle beim Entfernen in binären Suchbäumen: x ist in einem Knoten k enthalten, der keine Kinder hat: k wird gelöscht von Elternknoten von x=13, 12, zur Wurzel aufsteigen x ist in einem Knoten k enthalten, der ein Kind hat: k wird durch das Kind ersetzt von Elternknoten von x=16, 15, zur Wurzel aufsteigen 70

29 9.4 Binäre Suchbäume x ist in einem Knoten k enthalten, der zwei Kinder hat: Dann bleibt Knoten k erhalten. Das Element x in k wird ersetzt durch das größte Element im linken Teilbaum oder das kleinste Element im rechten Teilbaum von k. Jedes dieser beiden Elemente ist in einem Knoten gespeichert, der höchstens ein Kind besitzt und daher wie in Fall 1 oder 2 entfernt werden kann. von Elternknoten von y=6, 10, zur Wurzel aufsteigen 71

30 Regel D1: Knoten hat Ausgewogenheitseigenschaft und wird von seinem linken (bzw. rechten) Kind aus betreten ändere Ausgewogenheitseigenschaft zu \ (bzw. /) und breche Aufstieg ab, da die Höhe des Teilbaums sich nicht geändert hat Regel D2: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor längeren Teilbaum aus betreten ändere Ausgewogenheitseigenschaft zu und setze Aufstieg fort 72

31 Regel D3: Knoten hat Ausgewogenheitseigenschaft / oder \ und wird vom zuvor schon kürzeren Teilbaum aus betreten Höhenbedingung des gegenwärtigen Knotens b ist verletzt und wird abhängig von der Ausgewogenheitseigenschaft des anderen Kindes a von b folgendermaßen wiederhergestellt: (a) Rotation b a a b Z Z X X Y Y Eine Rotation sorgt für die Einhaltung der Höhenbedingung am gegenwärtigen Knoten, ohne die Höhe des Teilbaums zu verändern breche Aufstieg ab 73

32 (b) X a Y b Z Rotation X a Y b Z Eine geeignete Rotation sorgt für die Einhaltung der Höhenbedingung am gegenwärtigen Knoten setzeaufstiegfort 74

33 (c) W a X c b Y Z Doppelrotation W a X c Y b Z Eine Doppelrotation sorgt für die Einhaltung der Höhenbedingung am gegenwärtigen Knoten setze Aufstieg fort Ähnliche Transformationen, falls X oder Y, aber nicht beide zugleich, um eine Stufe kürzer sind als in obiger Figur gezeigt Modifikation der Ausgewogenheitseigenschaft einiger Knote kein Einfluß auf die Höhe des Teilbaums Betrachte ebenso Spiegelbilder in (a), (b), (c)! 75

34 Im Gegensatz zum Einfügen kann beim Löschen mehr als eine Rotation oder Doppelrotation notwendig sein! Aufwand für eine Rotation oder Doppelrotation ist konstant, d.h. O(1) Kosten für Rebalancierung nur abhängig von der Höhe des Baumes Aufwand für Löschoperation ist im schlimmsten Fall O(log n) 76

35 delete Regel D

36 Regel D3 (c): Doppelrotation Regel D3 (b): Rotation

37 Beispiel: Ein natürlicher Suchbaum mit 200 zufälligen Schlüsseln 79

38 AVL-Baum mit denselben Schlüsseln: 80

39 Beispiel: Ein natürlicher Suchbaum mit Bias, 400 zufällige Schlüssel 81

40 AVL-Baum mit denselben Schlüsseln: 82

41 Ein schiefster höhenbalancierter binärer Baum T h ist ein höhenbalancierter binärer Baum der Höhe h mit einer minimalen Anzahl Knoten. Ausgehend von T 0 und T 1 erhält man T h, indem man T h 1 und T h 2 als Teilbäume an einen neuen Wurzelknoten anfügt: h = 0 h = 1 h = 2 h = 3 h = 4 Anzahl n h der Knoten in einem schiefsten höhenbalancierten binären Baum der Höhe h: n 0 = 1, n 1 = 2 n h = n h 2 + n h

42 Es gilt: Im schlimmsten Fall beträgt die Höhe eines AVL-Baums mit n Knoten etwa 1.44 log 2 n 84

43 Aufwand für die Einfüge- und Löschoperation ist im schlimmsten Fall O(log n) Klasse der AVL-Bäume erfüllt die Restrukturierungsbedingung AVL-Bäume mit ihren kleinen Knoten, die gewöhnlich ein einziges Datenelement enthalten, werden primär für die Verwaltung von Daten im Hauptspeicher eingesetzt G. M. Adelson-Velskii und Y. M. Landis: An algorithm for the organization of information, Soviet Mathematics Doklady 3, (1962) Ein schönes Java-Applet mit Animation: 85

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 2 Einführung Binäre Suchbäume Höhe h O(h) für Operationen

Mehr

8.2 Implementierung der FIFO-Queue durch eine lineare Liste

8.2 Implementierung der FIFO-Queue durch eine lineare Liste Übersicht 8 Listenstrukturen 8.1 Listen, Speicherverwaltung, Zeiger 8.2 Implementierung der FIFO-Queue durch eine lineare Liste 8.3 Baumtraversierung 8.4 Binäre Suchbäume 8.5 Balancierte Bäume: Allgemeine

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Werner Struckmann Wintersemester 2005/06 6. Bäume 6.1 Bäume 6.2 Binäre Suchbäume 6.3 Ausgeglichene Bäume 6.4 Heapsort Listen und Bäume Listen und Bäume: Listen: Jedes Listenelement

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen

2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen 2.5 Bäume 2.5.1 Binäre Suchbäume 2.5.2 Optimale Suchbäume 2.5.3 Balancierte Bäume 2.5.4 Skip-Listen 2.5.5 Union-Find-Strukturen 1 Balancierte Bäume Nachteil bei normalen Suchbäumen: Worst-case Aufwand

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013

Seminarausarbeitung Entwurf und Analyse von Datenstrukturen. Splay Trees. Mirco Lukas und Alexander Werthmann. Datum: 26.06.2013 Julius-Maximilians-Universität Würzburg Institut für Informatik Lehrstuhl für Informatik I Effiziente Algorithmen und wissensbasierte Systeme Seminarausarbeitung Entwurf und Analyse von Datenstrukturen

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

8 Baum in perfekter Komposition

8 Baum in perfekter Komposition 8 Baum in perfekter Komposition Die Implementierung des Binärbaums im letzten Kapitel wird mithilfe des Entwurfsmusters Kompositum optimiert. Knoten und Abschluss Bei der einfach verketteten Liste wurde

Mehr

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen -

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - 5) Suchverfahren Prof. Dr. Anja Schanzenberger FH Augsburg, Fakultät für Informatik Kontakt: anja.schanzenberger@hs-augsburg.de http://www.hs-augsburg.de/schanzenberger

Mehr

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6

3 Implementieren von Bäumen 5 3.1 Feldbäume... 5 3.2 Sequentielle Verfahren... 5 3.3 Dynamische Struktur... 6 Kompaktübersicht Bäume Diese Übersicht entstand im Wintersemester 2003/04 parallel zur Vorlesung Grundzüge der Informatik III an der Technischen Universität Darmstadt (TUD) und soll die behandelten Aspekte

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Übungsblatt (Abgabe.0.0) F. Corzilius, S. Schupp, T. Ströder Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je bis Studierenden aus

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte]

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte] UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Bernoullistrasse 16 CH 4056 Basel Assistenten Bernhard Egger Andreas Forster Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

EndTermTest PROGALGO WS1516 A

EndTermTest PROGALGO WS1516 A EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von

Mehr

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik) Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

BTree.dll - Balancierte und verkettete Bäume. Ecofor. BTree.dll. Realisiert mit Microsoft Visual Studio 16.04.2015 1/9

BTree.dll - Balancierte und verkettete Bäume. Ecofor. BTree.dll. Realisiert mit Microsoft Visual Studio 16.04.2015 1/9 BTree.dll Realisiert mit Microsoft Visual Studio 16.04.2015 1/9 INHALT 1. Allgemein... 3 2. Class BTree1 (balanciert)... 3 3. Class BTree2 (balanciert und verkettet)... 4 4. Beschreibung BTree1 und BTree2...

Mehr

DAP2-Klausur 07.08.2004

DAP2-Klausur 07.08.2004 DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 16.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Suchen Binärsuche Binäre Suchbäume 16.10.2015 Dr. Werner

Mehr