Stichprobenauslegung. für stetige und binäre Datentypen

Größe: px
Ab Seite anzeigen:

Download "Stichprobenauslegung. für stetige und binäre Datentypen"

Transkript

1 Stichprobenauslegung für stetige und binäre Datentypen

2 Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung auf die unbekannte Grund- Gesamtheit / Referenz (Schließende Statistik) Daten der erfassten Stichprobe aufbereiten (Beschreibende Statistik) Folie 2

3 Stichprobengröße und strategie Definition Grundgesamtheit oder Population Menge aller potentiellen Untersuchungsobjekte für eine bestimmte Fragestellung, Umfang: N. Stichprobe oder Sample Eine Teilmenge einer Grundgesamtheit N, Stichprobenumfang: n. Repräsentative Stichprobe Eine Teilmenge der Grundgesamtheit, die alle Eigenheiten der Grundgesamtheit korrekt wiedergibt. Verzerrte Stichprobe gibt die Grundgesamtheit nicht korrekt wieder. Mögliche Gründe sind: Bequemlichkeit Umwelteinflüsse Verzerrte Beurteilung Ziel: Möglichst genaue Aussage über die Grundgesamtheit Repräsentative Stichprobe! Folie 3

4 Stichprobengröße und strategie Das Ziel einer Stichprobe, ist das Schließen von wenigen Kennwerten ( wirtschaftlich ) auf die Grundgesamtheit: x = Mittelwert der Stichprobe s = Standardabweichung der Stichprobe = Mittelwert der Grundgesamtheit = Standardabweichung der Grundgesamtheit Stichprobe Grundgesamtheit s x Durch Vertrauensbereiche (i.d.r. 95%) können die Parameter der Grundgesamtheit aus den Stichprobenwerten geschätzt / berehnet werden. Folie 4

5 Stichprobengröße und strategie Datensammlung mittels Stichproben Ablauf als Basis für eine schließende Statistik 4. Schlussfolgerung Grundgesamtheit N 1. Ziehung Statistik Stichproben 3. Berechnung Daten 2. Messung Folie 5

6 Stichprobengröße und strategie Bestandsorientierte Stichprobenerhebung / Population Sampling Grundgesamtheit Stichprobe Prozessorientierte Stichprobenerhebung / Process Sampling z. B. jeder nte Woche oder alle 5 Stunden etc. Grundgesamtheit Stichprobe z.b. jedes 3. Element Aufgrund von bekannten Strukturen in der Grundgesamtheit, kann bei beiden Varianten vorher in rationale Untergruppen/Schichten geteilt werden Folie 6

7 Stichprobengröße Bestimmung der Stichprobengröße Wenn möglich, sollen alle vorliegenden Daten zur Messung herangezogen werden (z.b. wenn sie in digitaler Form vorliegen). Ist dies nicht möglich, soll eine sinnvolle Stichprobe nach inhaltlichen Kriterien, z. B. nach bestimmten Produktgruppen oder bestimmten Kundengruppen, gebildet werden. Für eine erste Vormessung können/sollten mindestens 10 % der Daten ausgewählt werden. Generell gilt, so viele Daten wie möglich zu messen - damit steigt die Aussagefähigkeit der Daten! Folie 7

8 Stichproben & Vertrauensbereiche Die Grenzen des Vertrauensbereichs sind abhängig von: Mittelwert, Standardabweichung Stichprobenanzahl und Freiheitsgrade der Stichprobe. UVG 1 - OVG Es besteht ein (1- ) x 100%-Vertrauen, dass sich der Mittelwert der Grundgesamtheit innerhalb des Bereichs befindet. /2 x /2 Folie 8

9 Bestimmung der Stichprobengröße Diese Formeln dienen für eine überschlägige Ermittlung des erforderlichen Stichprobenumfanges mit einer Trennschärfe von 50%: Stetige Daten σ = Standardabweichung Δ = Genauigkeit n 2 1 / 2 1, 96 z 2 Diskrete Daten p = Fehlerrate Δ = Genauigkeit n 2 z1 / 2 p (1 p) Folie 9

10 Bestimmung der Stichprobengröße Stetige Daten Trennschärfe und Stichprobenumfang t-test bei einer Stichprobe; Test auf Mittelwert = null (vs. null) Berechnen der Trennschärfe für Mittelwert = null + Differenz α = 0,05, angenommene Standardabweichung = 0,3 Differenz Stichprobenumfang Soll-Trennschärfe Ist-Trennschärfe 0,2 20 0,8 0, Trennschärfekurve für t-test bei einer Stichprobe Folie 10

11 Bestimmung der Stichprobengröße Diskrete Daten Trennschärfe und Stichprobenumfang Test von Anteilen bei einer Stichprobe; Test auf p = 0,1 (vs. 0,1) α = 0,05 Vergleichsanteil Stichprobenumfang Soll-Trennschärfe Ist-Trennschärfe 0, ,8 0, Trennschärfekurve für Test auf Anteile bei einer Stichprobe Folie 11

12 Überlegungen zur Ziehung von Stichproben Fazit aus der Übung zur Stichprobenberechnung: Vor dem Hintergrund der schließenden Statistik werden mit allen Stichprobenergebnissen Schlussfolgerungen vorgenommen. N Lässt man den Stichprobenumfang gegen unendlich laufen, so nähern sich der Mittelwert und die Standardabweichung von Stichprobe und Grundgesamtheit immer mehr einander an. n x s Folie 12

13 Praxiswerte zur Stichprobengröße Startwerte zur Stichprobenberechnung: Gesuchte Information Minimale Stichprobengröße Mittelwert 5-10 Standardabweichung Defektrate (P) 100 und P 5 Histogramm oder Pareto 50 Streudiagramm 25 Regelkarte 20 Diese Werte dienen als grobe Orientierung, wenn noch keinerlei Erfahrung im Umgang mit Stichproben besteht! Folie 13

14 Zusammenfassung Definition der Begriffe zum Thema Stichproben Grundgesamtheit N und Stichprobe n Repräsentative Stichproben Verzerrte Stichproben aufgrund von: - Bequemlichkeit - verzerrter Beurteilung - äußere Umstände Ablauf als Basis für eine schließende Statistik Arten und Strategien für Stichproben Stichprobengröße, Berechnung für stetige und diskrete Daten "Wurzel-n-Gesetz": Stichprobengröße und Aufenthaltswahrscheinlichkeit der wahren Mittelwertes Start- & Praxiswerte für Stichprobengrößen Folie 14

15 Kontakt mts Consulting & Engineering GmbH Wernher-von-Braun-Str. 8 D Fürstenfeldbruck Mail: Homepage: Folie 15

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Lean Six Sigma Green Belt - Deutsch

Lean Six Sigma Green Belt - Deutsch Lean Six Sigma Green Belt - Deutsch Inhalt des aktuellen Kurses Voraussichtliche Gesamtdauer in Stunden: 80.00 Sitzung 1: Einführung in Lean Six Sigma (4 Stunden) Einführung Anatomie einer erfolgreichen

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Konfidenzintervalle so einfach wie möglich erklärt

Konfidenzintervalle so einfach wie möglich erklärt Konfidenzintervalle so einfach wie möglich erklärt Wolfgang Ludwig-Mayerhofer, Universität Siegen, Philosophische Fakultät, Seminar für Sozialwissenschaften Vorbemerkung: Es handelt sich um die Anfang

Mehr

Messsystemanalyse (MSA)

Messsystemanalyse (MSA) Messsystemanalyse (MSA) Inhaltsverzeichnis Ursachen & Auswirkungen von Messabweichungen Qualifikations- und Fähigkeitsnachweise Vorteile einer Fähigkeitsuntersuchung Anforderungen an das Messsystem Genauigkeit

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

Tutorium 3 zu Einführung in das Marketing

Tutorium 3 zu Einführung in das Marketing Tutorium 3 zu Einführung in das Marketing 1 Likert-Skala Aufgabe 1a) Vorgehensweise: Befragung von Personen zu mehreren positiven oder negativen Aussagen (Items) Befragte müssen angeben, inwieweit sie

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Wissenswertes zum Lean Six Sigma Green Belt-Kurs

Wissenswertes zum Lean Six Sigma Green Belt-Kurs KMU-Praxis Dr. Roland Kemmerer Unternehmensberatung Lebuinstr. 31, D-31608 Marklohe Wissenswertes zum Lean Six Sigma Green Belt-Kurs Der Greenbelt-Kurs von KMU-Praxis beinhaltet sowohl Lean-, als auch

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

T-TEST BEI EINER STICHPROBE:

T-TEST BEI EINER STICHPROBE: Kapitel 19 T-Test Mit Hilfe der T-TEST-Prozeduren werden Aussagen über Mittelwerte getroffen. Dabei wird versucht, aus den Beobachtungen einer Stichprobe Rückschlüsse auf die Grundgesamtheit zu ziehen.

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 4 ALPHA / BETA-FEHLER 12.12.2014 1 12.12.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 STATISTISCHE HYPOTHESEN 02 POPULATION / STICHPROBE 03 ALPHA/ BETA-FEHLER

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Hygienische Reiniger Wissenschaftliche Studie: 10 000 Reinigungsversuche, 6 Fälle mit mehr als 1 Bakterien Stimmt s jetzt oder was? Binomialtest:

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen

Softwaretechnik. Prof. Dr. Rainer Koschke. Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Softwaretechnik Prof. Dr. Rainer Koschke Fachbereich Mathematik und Informatik Arbeitsgruppe Softwaretechnik Universität Bremen Wintersemester 2013/14 Überblick I Statistik bei kontrollierten Experimenten

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Design, Durchführung und Präsentation von Experimenten in der Softwaretechnik

Design, Durchführung und Präsentation von Experimenten in der Softwaretechnik Design, Durchführung und Präsentation von Experimenten in der Softwaretechnik Inhalt 1. Zusammenfassung der Papers 2. Fehler in Design, Durchführung und Präsentation 3. Richtlinien für saubere Experimente

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Histogramme in der Datenbankoptimierung. Marian Marx 26.06.2008

Histogramme in der Datenbankoptimierung. Marian Marx 26.06.2008 Histogramme in der Datenbankoptimierung Marian Marx 26.06.2008 Inhaltsverzeichnis 1. Histogramme im Allgemeinen 1.1 Definition Histogramm 1.2 Beispiel Histogramm 2. Histogramme in der Datenbankoptimierung

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Vergleich zweier Stichproben, nichtparametrische Tests Prof. Dr. Achim Klenke http://www.aklenke.de 11. Vorlesung: 27.01.2012 1/86 Inhalt 1 Tests t-test 2 Vergleich zweier

Mehr

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale Grundlegende Begriffe Untersuchungseinheiten und ihre Merkmale Untersuchungseinheiten Merkmale Merkmalsausprägungen Beispiel (Schule) Untersuchungseinheiten: Schulkinder Merkmale: Körpergröße, Körpergewicht

Mehr

Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma Herausgegeben von Franz J. Brunner

Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma Herausgegeben von Franz J. Brunner Johann Wappis, Berndt Jung Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma Herausgegeben von Franz J. Brunner ISBN-10: 3-446-41373-1 ISBN-13: 978-3-446-41373-3 Inhaltsverzeichnis Weitere Informationen

Mehr

Dr. Heidemarie Keller

Dr. Heidemarie Keller Reliabilität und Validität der deutschen Version der OPTION Scale Dr. Heidemarie Keller Abteilung für Allgemeinmedizin, Präventive und Rehabilitative Medizin Philipps-Universität Marburg EbM & Individualisierte

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Welch-Test. Welch-Test

Welch-Test. Welch-Test Welch-Test Welch-Test Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten Varianzen durch Vergleich der Mittelwerte zweier unabhängiger Zufallsstichproben. Beispiel Im Labor

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

SPC - STATISTICAL PROCESS CONTROL

SPC - STATISTICAL PROCESS CONTROL SPC - STATISTICAL PROCESS CONTROL Historie von Statistical Process Control (SPC Entwickelt wurden die ersten Regelkarten von W. A. Shewart Anfang der 30er Jahre Ziel war es Herstellungsprozesse zu optimieren

Mehr

Neuerungen in Minitab 16

Neuerungen in Minitab 16 Neuerungen in Minitab 16 minitab@additive-net.de - Telefon: 06172 / 5905-30 Willkommen zu Minitab 16! Die neueste Version der Minitab Statistical Software umfasst mehr als siebzig neue Funktionen und Verbesserungen,

Mehr

Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler

Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler Zusatzmaterialien zum UTB-Band Claus Ebster, Lieselotte Stalzer, Wissenschaftliches Arbeiten für Wirtschafts- und Sozialwissenschaftler bereitgestellt über www.utb-shop.de/9783825238612 Das Buch vermittelt

Mehr

Wir haben ermittelt, dass Tests 1, 2 und 7 am nützlichsten zum Auswerten der Stabilität der X-quer-Karte und der I-Karte sind:

Wir haben ermittelt, dass Tests 1, 2 und 7 am nützlichsten zum Auswerten der Stabilität der X-quer-Karte und der I-Karte sind: Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

1.1 Was ist Statistik und warum ist Statistik wichtig?

1.1 Was ist Statistik und warum ist Statistik wichtig? 1.1 Was ist Statistik und warum ist Statistik wichtig? Typischer Lexikon-Eintrag für den Begriff Statistik : Methode zur Untersuchung von Massenerscheinungen Versuch, den Umfang, die Gliederung oder Struktur

Mehr

Tipps und Tricks bei Gästebefragungen. Tourismus Trend Forum Graubünden 2009

Tipps und Tricks bei Gästebefragungen. Tourismus Trend Forum Graubünden 2009 Tipps und Tricks bei Gästebefragungen Dr. Tobias Luthe Projektleiter ITF und Dozent für Nachhaltigkeit und Tourismus Tourismus Trend Forum Graubünden 2009 Seite 1 Struktur der Präsentation Bedeutung der

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

FINANZWISSEN UND VORSORGEPRAXIS

FINANZWISSEN UND VORSORGEPRAXIS FINANZWISSEN UND VORSORGEPRAXIS Steiermark Eine Studie von GfK-Austria im Auftrag von s Versicherung, Erste Bank & Sparkasse 28. September 2011 Daten zur Untersuchung Thema Befragungszeitraum Grundgesamtheit

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Digital Media Institute. Standards für Marktforschung

Digital Media Institute. Standards für Marktforschung Digital Media Institute Standards für Marktforschung München, 08. Juli 2013 Inhalt 1. Fragestellungen & Anforderungen 2. Studiendesign & Vorgehensweise 3. Face-to-Face Befragung vor Ort 4. Reichweitenmodell

Mehr

Roland Bässler. Research & Consultinq

Roland Bässler. Research & Consultinq J 3 z = Roland Bässler Research & Consultinq Roland Bässler QUANTITATIVE FORSCHUNGSMETHODEN Ein Leitfaden zur Planung und Durchführung quantitativer empirischer Forschungsarbeiten (2. überarb. Auflage)

Mehr

Art. 8 der Lebensversicherungsrichtlinie: Regelwerk zur Erstellung von Beispiel- rechnungen

Art. 8 der Lebensversicherungsrichtlinie: Regelwerk zur Erstellung von Beispiel- rechnungen Art. 8 der Lebensversicherungsrichtlinie: Regelwerk zur Erstellung von Beispiel- rechnungen zur Wertentwicklung Prüfungsbericht 2013 zu den Performance- Annahmen der Assetklassen Zürich/St. Gallen, im

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

EINSTELLUNG DER VORARLBERGER BEVÖLKERUNG

EINSTELLUNG DER VORARLBERGER BEVÖLKERUNG EINSTELLUNG DER VORARLBERGER BEVÖLKERUNG ZU AKTUELLEN THEMEN DER LANDESPOLITIK Ergebnisse repräsentativer Meinungsumfragen, durchgeführt im Auftrage der VN bei der Vorarlberger Bevölkerung (Wahlberechtigte)

Mehr

Ziel: Ziel der Aufgabe Ziel ist es, die Funktionalitäten von qs-stat millennium, sowie die Beurteilung von Datensätzen kennen zu lernen.

Ziel: Ziel der Aufgabe Ziel ist es, die Funktionalitäten von qs-stat millennium, sowie die Beurteilung von Datensätzen kennen zu lernen. Datenqualität 1/19 Ziel: Ziel der Aufgabe Ziel ist es, die Funktionalitäten von qs-stat millennium, sowie die Beurteilung von Datensätzen kennen zu lernen. Ausgangssituation: Sie wollen anhand des Werteverlaufs

Mehr

Die Zielpunkt-Marketing -Methodik

Die Zielpunkt-Marketing -Methodik Die Zielpunkt-Marketing -Methodik Wissenschaftlich abgesicherte Methodik erzeugt valide, repräsentative Messergebnisse [ Grundlage Ihrer unternehmerischen Entscheidungen! ] Zielpunkt-Marketing GmbH 2002-2015

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

HTS-Berichte des ZTD - 01/2002 Vergleichsuntersuchung WILDE-Intelligenz-Test - Daten BFW Leipzig Bearbeiterin: A. Bettinville

HTS-Berichte des ZTD - 01/2002 Vergleichsuntersuchung WILDE-Intelligenz-Test - Daten BFW Leipzig Bearbeiterin: A. Bettinville UNIVERSITÉ DE FRIBOURG SUISSE UNIVERSITÄT FREIBURG SCHWEIZ ZENTRUM FÜR TESTENTWICKLUNG UND DIAGNOSTIK AM DEPARTEMENT FÜR PSYCHOLOGIE CENTRE POUR LE DEVELOPPEMENT DE TESTS ET LE DIAGNOSTIC AU DEPARTEMENT

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Eine Arbeitsgemeinschaft der Verlage

Eine Arbeitsgemeinschaft der Verlage Eine Arbeitsgemeinschaft der Verlage Böhlau Verlag Wien Köln Weimar Verlag Barbara Budrich Opladen Farmington Hills facultas.wuv Wien Wilhelm Fink München A. Francke Verlag Tübingen und Basel Haupt Verlag

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang,

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang, Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Im folgendem werden für verschiedene Verteilungsformen die Beziehungen dargestellt:

Im folgendem werden für verschiedene Verteilungsformen die Beziehungen dargestellt: Grundlagen Fähigkeitskennzahlen dienen zur Beschreibung der aktuellen sowie der zukünftig zu erwartenden Leistung eines Prozesses. Allgemein versteht man unter einer Fähigkeitskennzahl das Verhältnis aus

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Norm- vs. Kriteriumsorientiertes Testen

Norm- vs. Kriteriumsorientiertes Testen Norm- vs. Kriteriumsorientiertes Testen Aus psychologischen Test ergibt sich in der Regel ein numerisches Testergebnis, das Auskunft über die Merkmalsausprägung der Testperson geben soll. Die aus der Testauswertung

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Universität Ulm Seminararbeit zum Thema Data Mining und Statistik: Gemeinsamkeiten und Unterschiede vorgelegt von: Daniel Meschenmoser betreut von: Dr. Tomas Hrycej Dr. Matthias Grabert Ulm, im Februar

Mehr

6. Sitzung. Methoden der Politikwissenschaft: Metatheorien, Werturteilsproblematik und politikwissenschaftliche Methoden

6. Sitzung. Methoden der Politikwissenschaft: Metatheorien, Werturteilsproblematik und politikwissenschaftliche Methoden 6. Sitzung Methoden der Politikwissenschaft: Metatheorien, Werturteilsproblematik und politikwissenschaftliche Methoden Inhalt der heutigen Veranstaltung 1. Metatheorien/Paradigmen 2. Die so genannte Drei-Schulen

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

Jugendkonsum im 21. Jahrhundert

Jugendkonsum im 21. Jahrhundert Elmar Lange unter Mitarbeit von Sunjong Choi Jugendkonsum im 21. Jahrhundert Eine Untersuchung der Einkommens-, Konsum- und Verschuldungsmuster der Jugendlichen in Deutschland VS VERLAG FÜR SOZIALWISSENSCHAFTEN

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit

Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Messgeräte: Mess-System-Analyse und Messmittelfähigkeit Andreas Berlin 14. Juli 2009 Bachelor-Seminar: Messen und Statistik Inhalt: 1 Aspekte einer Messung 2 Mess-System-Analyse 2.1 ANOVA-Methode 2.2 Maße

Mehr

Präferenz bei GeldanlageOptionen GeldanlagenBesitz

Präferenz bei GeldanlageOptionen GeldanlagenBesitz Der vorliegende Bericht wurde im Auftrag der pro aurum OHG erstellt. Er ist alleiniges Eigentum des Auftraggebers. Veröffentlichungen, auch auszugsweise, bedür fen der Genehmigung des Verfassers. Wien,

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Statistische Methoden der empirischen Sozialforschung

Statistische Methoden der empirischen Sozialforschung der empirischen Sozialforschung Norbert Nothbaum 2008 Nothbaum GmbH N. Nothbaum 2007 Dr. Norbert Nothbaum 2 Nothbaum GmbH Autor: Norbert Nothbaum, Jahrgang 1962, Diplom-Psychologe, Dr. rer. nat. Seit 1989

Mehr

Die (Un )Möglichkeit der Ziehung von Inhaltsanalyse Stichproben in der digitalen Welt

Die (Un )Möglichkeit der Ziehung von Inhaltsanalyse Stichproben in der digitalen Welt CvK Wien, 8. November 2013 1 Prof. Dr. Martin Emmer Institut für Publizistik- und Kommunikationswissenschaft Arbeitsstelle Mediennutzung Martin Emmer/Christian Strippel Die (Un )Möglichkeit der Ziehung

Mehr

Dynamik von Optionen

Dynamik von Optionen Dynamik von Optionen Plan Der Optionspreis und seine Einflussfaktoren Wert des Calls / Puts bei unterschiedlichen Marktbedingungen Änderung des Optionspreises bei Änderung eines oder mehrerer Einflussfaktoren

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Project Community Retrospectives. Agile Organisationen lernen Lernen

Project Community Retrospectives. Agile Organisationen lernen Lernen Project Community Retrospectives Agile Organisationen lernen Lernen Andreas Schliep Scrum Coach & Trainer DasScrumTeam! as@dasscrumteam.com! @andreasschliep Ein paar Retrospektiven Referenzen Q&A auf Scrum

Mehr