4. Relationen. Beschreibung einer binären Relation

Größe: px
Ab Seite anzeigen:

Download "4. Relationen. Beschreibung einer binären Relation"

Transkript

1 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B ist eine Teilmenge des kartesischen Produkts AxB (d.h. eine Teilmenge der Menge aller möglichen Paare (a,b) mit a A und b B). Die Relation heisst binär, weil es um eine Beziehung zwischen zwei Elementen a,b aus den Mengen A und B geht. Eine Relation kann mit Hilfe eines Prädikats bezüglich der geordneten Paare beschrieben werden. Z.B. R = {(x,y): x ist Grossvater von y} Diese Relation beschränkt das kartesische Produkt aller möglichen geordneten Paaren (x,y) zweier Menschen auf die Teilmenge derjenigen Paare, welche in der Beziehung Grossvater-Enkelkind stehen. Eine binäre Relation zwischen 2 gleichen Mengen A heisst Relation auf A Lesen Sie die Beispiele p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-1- Beschreibung einer binären Relation Eine binäre Relation kann auf verschiedene Arten beschrieben werden: mit Hilfe eines Prädikats, z.b. R = {(x,y): x ist Grossvater von y} Als Menge von geordneten Paaren: R = {(Fred, Jane), (Fred, Fiona), (Fred, Alan), (John, Jane)} Als gerichteter Graph (vergl. Abb. 4.2 p. 71) Als Matrix Der gerichtete Graph oder Digraph besteht aus zwei Mengen von Knoten für die Mengen A bzw. B, wobei die Paare, welche die Relation erfüllen, durch eine Kante verbunden sind. Da die Elemente einer Relation geordnete Paare sind, wird die Reihenfolge mit Hilfe eines Pfeils in der Kante von a nach b dargestellt. Bei Relationen auf A, d.h. Teilmengen von AxA müssen die Knoten nur einmal gezeichnet werden (vergl. Abb. 4.3 p. 72) Lesen Sie das Beispiel 4.4 p. 72 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

2 Matrixdarstellung Bei der Matrixdarstellung werden die Elemente der Mengen A und B je in eine Reihenfolge A = {a 1, a 2, } und B = {b 1, b 2, } gebracht und alle Kombinationen in eine Tabelle aufgeführt mit den a i in den Zeilen und den b j in den Spalten (vergl. p. 72 unten). Ist (a i,b j ) R so steht an dieser Stelle W (wahr) und sonst F (falsch) Lesen Sie das Beispiel p. 72 unten Lesen Sie die Beispiele 4.5 und 4.6 p. 73 Ist R eine binäre Relation so können wir statt (x,y) R schreiben: x R y gelesen: x steht in Relation zu y Z.B. ist Schwester von definiert eine Relation R auf der Menge aller Menschen mit xry falls x ist eine Schwester von y. Lesen Sie das Beispiel 4.7 p. 74 Lösen Sie die Aufgaben p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Eigenschaften von Relationen Bei Relationen auf einer einzigen Menge A definieren wir eine Reihe von Eigenschaften: 1. R ist reflexiv, wenn x R x für alle x A 2. R ist symmetrisch, wenn aus x R y folgt: y R x, für alle x,y A 3. R ist antisymmetrisch, wenn x R y und y R x nicht gleichzeitig gelten kann, ausser wenn x=y 4. R ist transitiv, wenn aus x R y und y R z folgt: x R z, für alle x,y,z A Oder ausgedrückt in geordneten Paaren (x.y): 1. reflexiv: (x,x) R (x steht in Relation zu sich selbst) 2. symmetrisch: (x,y) R (y,x) R (wenn x in Relation steht zu y dann auch umgekehrt y zu x) 3. antisymmetrisch: (x,y) R und (y,x) R x=y 4. transitiv: (x,y) R und (y,z) R (x,z) R Oder in der Digraphdarstellung: 1. reflexiv: von jedem Knoten geht ein Pfeil zu sich selbst 2. symmetrisch: gibt es einen Pfeil vom Knoten x nach y so auch einen in der Gegenrichtung 3. antisymmetrisch: gibt es einen Pfeil vom Knoten x nach y so gibt es keinen in der Gegenrichtung 4. Transitiv: gibt es einen Pfeil von x nach y und einen von y nach z so gibt es auch einen direkten Pfeil von x nach z Und in der Matrixdarstellung: 1. reflexiv: jeder Eintrag in der Hauptdiagonalen (von links oben nach rechts unten) ist W 2. symmetrisch: die Einträge sind symmetrisch bezüglich der Hauptdiagonalen (weil a ij symmetrisch a ji ) 3. antisymmetrisch: alle Einträge symmetrisch zur Hauptdiagonalen sind nicht beide W Lesen Sie das Beispiel 4.8 p. 75 und lösen Sie die Aufgaben 4.4 und 4.5 p. 82 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

3 Erweiterung einer Relation bezüglich einer Eigenschaft (Abschluss) Erfüllt eine Relation eine Eigenschaft nicht, ist also z.b. nicht reflexiv, so kann sie durch Hinzufügen von weiteren Elementen z.b. allen (x,x) zu einer Relation mit dieser Eigenschaft erweitert werden. Man nennt die erweiterte Relation R* den Abschluss von R bezüglich der Eigenschaft P (reflexiv, symmetrisch, transitiv, usw.) Lesen Sie das Beispiel 4.9 p. 76 Beim transitiven Abschluss sind unter Umständen mehrere Umläufe nötig, solange ein Umlauf zu neuen Elementen führt, welche wiederum zu neuen Transitionen führen könnten. Der transitive Abschluss hat viele praktische Eigenschaften. So kann z.b. in einem Kommunikationsnetz in Form eines Digraphen abgelesen werden, ob eine Verbindung von x nach y möglich ist, indem man den transitiven Abschluss bildet und prüft, ob x und y verbunden sind. Lösen Sie die Aufgaben p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Äquivalenzrelationen und Halbordnungen Relationen lassen sich aufgrund ihrer Eigenschaften (reflexiv, symmetrisch, antisymmetrisch, transitiv) typisieren. Die zwei wichtigsten Typen von Relationen sind: Äquivalenzrelationen Halbordnungen Eine Relation auf einer Menge A, die reflexiv, symmetrisch und transitiv ist heisst Äquivalenzrelation Beispiele von Äquivalenzrelationen: hat dieselben Winkel bei Dreiecken, also Paare von ähnlichen Dreiecken hat dasselbe Vorzeichen bei Zahlen, also Paare (x,y) mit xy>0 ist gleich alt wie bei Menschen, also Paare von gleichaltrigen Menschen Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

4 Äquivalenzklassen Äquivalenzrelationen heissen so, weil sich die die Menge A in Teilmengen so genannte Äquivalenzklassen - aufteilen lässt. Die Äquivalenzklasse E x eines Elements x aus A ist definiert als die Menge aller Elemente aus A die zu x in Relation sind: E x = {z A: z R x} Z.B. besteht die Äquivalenzklasse einer 12-jährigen Person bei der Relation ist gleich alt wie auf der Menge aller Menschen aus der Gruppen der gleichaltrigen Menschen, also der 12- hährigen: E x = {Personen z: z ist gleich alt wie x} Diese Teilmengen A 1,A 2, bilden eine Partition (Aufteilung) von A, d.h. sie vereinigen sich zu A: A 1 A 2 A n = A Sie überlappen sich nicht: A i A j = für i j Satz: Sei R eine Äquivalenzrelation auf der Menge A. Dann bilden die Äquivalenzklassen von R eine Partition von A. Der Beweis auf Seite 79 zeigt zuerst, dass aus xry folgt: E x = E y, d.h. die Äquivalenzklassen zu zwei in Relation stehenden Elementen sind identisch. Lesen Sie zuhause den Beweis p. 79 fertig, das die Äquivalenzklassen einer Relation auf A eine Partition von A bilden. Lesen Sie das Beispiel 4.10 p. 79 Lösen Sie die Aufgaben p. 83 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-7- Halbordnung Eine Relation auf einer Menge A, die reflexiv, antisymmetrisch und transitiv ist heisst Halbordnung. Beispiele von Halbordnungen: auf der Menge der reellen Zahlen auf den Teilmengen einer Menge ist Teiler von auf der Menge der natürlichen Zahlen Mengen auf denen eine Halbordnung definiert ist heissen halbgeordnete Mengen. Die reellen Zahlen sind bezüglich eine halbgeordnete Menge Ist R eine Halbordnung auf A und gilt x R y für x y, so heisst x ein Vorgänger von y z.b. ist 3 ein Vorgänger von 10 bezüglich der Halbordnung auf den natürlichen Zahlen Existiert kein Element dazwischen, so heisst x unmittelbarer Vorgänger von y Z.B. ist 9 ein unmittelbarer Vorgänger von 10 bezüglich der Halbordnung auf den natürlichen Zahlen Ein Hasse-Diagramm stellt die unmittelbaren Vorgänger als verbundene Knoten eines Graphen dar, wobei ein Vorgänger unterhalb seines Nachfolgers gezeichnet wird Lesen Sie das Beispiel 4.11 p. 80 und lösen Sie die Aufgaben p. 83 Eine Totalordnung auf einer Menge A ist eine Halbordnung, unter der jedes Paar von Elementen aus A in Relation steht. D.h. für alle a,b A gilt: arb oder bra. Beispiele von Totalordnungen sind: auf der Menge der reellen Zahlen Das alphabetische Ordnen von Wörtern in einem Wörterbuch Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

5 4.5 Anwendung: Datenbank-Managementsysteme In einem Computer gespeicherte Daten werden als Datenbank bezeichnet. Programme für die Verwaltung von Datenbanken heissen Datenbank- Managementsysteme (DBMS). Beispiele von DBMS sind MS Access und Oracle Daten werden häufig in verschiedene Tabellen mit zusammengehörenden Merkmalen aufgeteilt. Beispiel: Tab. 4.1 p. 86 speichert die persönlichen Daten von Studenten, Tab. 4.2 die Kursnoten Die Merkmale bilden die Spalten einer Tabelle, die einzelnen Einträge z.b. die Studenten die Zeilen. Mathematisch sind die Zeilen einer Tabelle die Elemente eines kartesischen Produkts, z.b. für die Kursnoten von SxKxKxKxK wobei S die Menge der Studentennamen ist und K die Menge der Kursnoten. In den USA und GB werden statt Noten 1-6 Buchstaben A-E verwendet, wobei A das beste Resultat ist. Eine Tabelle stellt somit eine n-fache Relation dar und die Zeilen sind die geordneten n-tupel Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-9- Operationen auf Tabellen Wir betrachten die folgenden wichtigen Tabellen-Funktionen: project, join, select. project nimmt nur einen Teil der Spalten einer Tabelle und erstellt daraus eine neue Tabelle project(tabelle, {Spalte 1, Spalte 2, }) Lesen Sie den Abschnitt vor und die Tabelle 4.3 p. 86 Lösen Sie die Aufgabe 1 p. 87 join vereinigt zwei Tabellen zu einer neuen, indem nur diejenigen Zeilen übernommen werden, die in den Werten der gemeinsamen Spalten übereinstimmen. join(tabelle 1, Tabelle 2 ) Lesen Sie den Abschnitt vor und die Tabelle 4.5 p. 87 select trifft eine Auswahl aus den Zeilen einer Tabelle anhand eines zu erfüllenden Prädikats select(tabelle, P(Spalte 1, Spalte 2, ) Lesen Sie den Abschnitt vor und die Tabelle 4.6 p Lösen Sie die Aufgaben 2-4 p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

6 Aufgaben bis zur nächsten Präsenz Lesen Sie das Skript nochmals durch. Lösen Sie die darin angegebenen Übungen aus dem Buch fertig. Markieren Sie im Taschenbuch der Mathematik die behandelten Formeln mit Leuchtstift: p Lesen Sie Haggarty Kap. 4 Bei Problemen Mail an oder Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Ziele Die Studierenden kennen die Begriffe Binäre Relation zwischen zwei Mengen und Relation auf einer Menge Sie kennen die verschiedenen Darstellungsmethoden für (Binäre) Relationen: Beschreibung in Worten, Beschreibung mittels Prädikat, durch Mengen von geordneten Paaren, als gerichteter Graph (Digraph) und als Matrix Sie kennen die folgenden Eigenschaften von Relationen: reflexiv, symmetrisch, antisymmetrisch, transitiv. Sie kennen die Definitionen Äquivalenzrelation, Partition und Äquivalenzklasse Sie können beweisen, dass eine Relation eine Äquivalenzrelation ist. Sie sind in der Lage, die Äquivalenzklassen einer Äquivalenzrelation zu bestimmen. Sie kennen die Begriffe Halbordnung, Vorgänger, unmittelbarer Vorgänger und Totalordnung. Sie können das Hasse-Diagramm einer Halbordnung zeichnen. Sie kennen die folgenden Operationen auf Datenbank-Tabellen als Beispiel einer n-fachen Relation: project, join, select Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Allgemeine Definition einer Relation Eine n-stellige Relation

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Kombinatorik. Additions- und Multiplikationsgesetz

Kombinatorik. Additions- und Multiplikationsgesetz Kombinatorik Die Kombinatorik beschäftigt sich mit der Berechnung der Anzahl Möglichkeiten, eine Anzahl von Objekten aus einer Grundmenge auszuwählen. Z.B. beim Schweizer Zahlenlotto 6 aus 45. Dabei wird

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Übungen zu Logik und Künstliche Intelligenz Blatt 8

Übungen zu Logik und Künstliche Intelligenz Blatt 8 Heilbronn, den 14.5.2010 Prof. Dr. V. Stahl WS 10/11 Übungen zu Logik und Künstliche Intelligenz Blatt 8 Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich:

Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich: Lösungen zu den Aufgaben von Anfang August Aufgabe 24 Die Wahrheitswerte von A A B und B sind immer gleich: Der Wahrheitswert von A A ist immer wahr, da immer entweder A oder A den Wahrheitswert wahr hat.

Mehr

Anhang B. Relationenalgebraische Definitionen. B.1 Relationen

Anhang B. Relationenalgebraische Definitionen. B.1 Relationen Anhang B Relationenalgebraische Definitionen Die relationenalgebraischen Definitionen bilden die Grundlage der formalen Aspekte der Projekte WebReference und InterMediate [Her00]. Sie sind [SS89] entnommen.

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Typisierung von semistrukturierten Daten. Steffen Staab ISWeb Informationssysteme & Semantic Web

Typisierung von semistrukturierten Daten. Steffen Staab ISWeb Informationssysteme & Semantic Web Typisierung von semistrukturierten Daten Typisierung von semistrukturierten Daten Idee: Strukturieren und Typisieren von semistrukturierte Daten. Zwei einfache Formalismen basierend auf: Logik Graphensimulation

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

1. Ziel des Datenbankentwurfs

1. Ziel des Datenbankentwurfs 1. Ziel des Datenbankentwurfs Ziel ist der Aufbau eines Modells eines Teilbereiches der wahrnehmbaren Realität und Abbildung dieses Bereichs in Form von Daten, so dass diese nach verschiedensten Kriterien

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Kapitel 2 MENGENLEHRE

Kapitel 2 MENGENLEHRE Kapitel 2 MENGENLEHRE In diesem Kapitel geben wir eine kurze Einführung in die Mengenlehre, mit der man die ganze Mathematik begründen kann. Wir werden sehen, daßjedes mathematische Objekt eine Menge ist.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF.

PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. Zuname: Vorname: Matrikelnummer: PRÜFUNG AUS ALGEBRA UND DISKRETE MATHEMATIK F. INF. U. WINF. (GITTENBERGER) Wien, am 5. Februar 2013 (Ab hier freilassen!) Arbeitszeit: 100 Minuten 1) 2) 3) 4) 5) 1)(8

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Übungsaufgaben Aufgabe 0.1 Ermitteln Sie x R aus folgenden Gleichungen (a) log 2 (x + 14)

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Dokumentation. estat Version 2.0

Dokumentation. estat Version 2.0 Dokumentation estat Version 2.0 Installation Die Datei estat.xla in beliebiges Verzeichnis speichern. Im Menü Extras AddIns... Durchsuchen die Datei estat.xla auswählen. Danach das Auswahlhäkchen beim

Mehr

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012)

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012) Analysis 1 Delio Mugnolo delio.mugnolo@uni-ulm.de (Version von 18. Dezember 2012) 2 Dies ist das Skript zur Vorlesung Analysis 1, welche ich im Sommersemester 2012 an der Universität Ulm gehalten habe.

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

THEORETISCHE INFORMATIK

THEORETISCHE INFORMATIK THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek Institut für Theoretische Informatik Technische Universität Braunschweig Januar 2014 Inhaltsverzeichnis 1 Endliche Automaten 1 1.1 Mathematische Grundbegriffe.......................

Mehr

Kodieren Von Graphen

Kodieren Von Graphen Kodieren Von Graphen Allgemeine Anwendungen: Routenplaner Netzpläne Elektrische Schaltungen Gebäudeerkennung aus Luftaufnahmen Definitionen:? Graph Ein Graph G besteht aus einem geordneten Paar G = (V,E)

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken

Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken 30 Wozu dient ein Primärschlüssel? Mit dem Primärschlüssel wird ein Datenfeld

Mehr

Prüfungsaufgaben. Aufgabe 2 (TP1 Frühjahr 2006) ( ) logisch

Prüfungsaufgaben. Aufgabe 2 (TP1 Frühjahr 2006) ( ) logisch Aufgabe 1 (TP1 Februar 2007) Prüfungsaufgaben Bestimmen Sie zu den nachstehenden aussagenlogischen Aussageformen je eine möglichst einfache logisch äquivalente Aussageform. Weisen Sie die Äquivalenzen

Mehr

2.3 dreimal Handeln: Vergleichen, Messen, Rechnen

2.3 dreimal Handeln: Vergleichen, Messen, Rechnen 2.3 dreimal Handeln: Vergleichen, Messen, Rechnen Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Didaktische Stufenfolge Tätigkeit 1. direkter Vergleich von zwei Repräsentanten

Mehr

Einführung in Datenbanksysteme. H. Wünsch 01.2001

Einführung in Datenbanksysteme. H. Wünsch 01.2001 Einführung in Datenbanksysteme H. Wünsch 01.2001 H. Wünsch 01/2001 Einführung Datenbanken 2 Was sind Datenbanken? Datenbanken sind Systeme zur Beschreibung, Speicherung und Wiedergewinnung von Datenmengen.

Mehr

Probeklausur Grundlagen der Datenbanksysteme II

Probeklausur Grundlagen der Datenbanksysteme II Prof. Dott.-Ing. Roberto V. Zicari Datenbanken und Informationssysteme Institut für Informatik Fachbereich Informatik und Mathematik Probeklausur Grundlagen der Datenbanksysteme II Frau: Herr: Vorname:

Mehr

D1: Relationale Datenstrukturen (14)

D1: Relationale Datenstrukturen (14) D1: Relationale Datenstrukturen (14) Die Schüler entwickeln ein Verständnis dafür, dass zum Verwalten größerer Datenmengen die bisherigen Werkzeuge nicht ausreichen. Dabei erlernen sie die Grundbegriffe

Mehr

Ein Schlüssel ist eine Menge von Attributen (also eines oder mehrere), die eine Datenzeile (Tupel) einer Tabelle eindeutig identifiziert

Ein Schlüssel ist eine Menge von Attributen (also eines oder mehrere), die eine Datenzeile (Tupel) einer Tabelle eindeutig identifiziert Maika Büschenfeldt Datenbanken: Skript 1 1. Was ist eine relationale Datenbank? In Datenbanken können umfangreiche Datenbestände strukturiert abgelegt werden. Das Konzept relationaler Datenbanken soll

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

2 ZAHLEN UND VARIABLE

2 ZAHLEN UND VARIABLE Zahlen und Variable 2 ZAHLEN UND VARIABLE 2.1 Grundlagen der Mengenlehre Unter einer Menge versteht man die Zusammenfassung von unterscheidbaren Objekten zu einem Ganzen. Diese Objekte bezeichnet man als

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr