4. Relationen. Beschreibung einer binären Relation

Größe: px
Ab Seite anzeigen:

Download "4. Relationen. Beschreibung einer binären Relation"

Transkript

1 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B ist eine Teilmenge des kartesischen Produkts AxB (d.h. eine Teilmenge der Menge aller möglichen Paare (a,b) mit a A und b B). Die Relation heisst binär, weil es um eine Beziehung zwischen zwei Elementen a,b aus den Mengen A und B geht. Eine Relation kann mit Hilfe eines Prädikats bezüglich der geordneten Paare beschrieben werden. Z.B. R = {(x,y): x ist Grossvater von y} Diese Relation beschränkt das kartesische Produkt aller möglichen geordneten Paaren (x,y) zweier Menschen auf die Teilmenge derjenigen Paare, welche in der Beziehung Grossvater-Enkelkind stehen. Eine binäre Relation zwischen 2 gleichen Mengen A heisst Relation auf A Lesen Sie die Beispiele p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-1- Beschreibung einer binären Relation Eine binäre Relation kann auf verschiedene Arten beschrieben werden: mit Hilfe eines Prädikats, z.b. R = {(x,y): x ist Grossvater von y} Als Menge von geordneten Paaren: R = {(Fred, Jane), (Fred, Fiona), (Fred, Alan), (John, Jane)} Als gerichteter Graph (vergl. Abb. 4.2 p. 71) Als Matrix Der gerichtete Graph oder Digraph besteht aus zwei Mengen von Knoten für die Mengen A bzw. B, wobei die Paare, welche die Relation erfüllen, durch eine Kante verbunden sind. Da die Elemente einer Relation geordnete Paare sind, wird die Reihenfolge mit Hilfe eines Pfeils in der Kante von a nach b dargestellt. Bei Relationen auf A, d.h. Teilmengen von AxA müssen die Knoten nur einmal gezeichnet werden (vergl. Abb. 4.3 p. 72) Lesen Sie das Beispiel 4.4 p. 72 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

2 Matrixdarstellung Bei der Matrixdarstellung werden die Elemente der Mengen A und B je in eine Reihenfolge A = {a 1, a 2, } und B = {b 1, b 2, } gebracht und alle Kombinationen in eine Tabelle aufgeführt mit den a i in den Zeilen und den b j in den Spalten (vergl. p. 72 unten). Ist (a i,b j ) R so steht an dieser Stelle W (wahr) und sonst F (falsch) Lesen Sie das Beispiel p. 72 unten Lesen Sie die Beispiele 4.5 und 4.6 p. 73 Ist R eine binäre Relation so können wir statt (x,y) R schreiben: x R y gelesen: x steht in Relation zu y Z.B. ist Schwester von definiert eine Relation R auf der Menge aller Menschen mit xry falls x ist eine Schwester von y. Lesen Sie das Beispiel 4.7 p. 74 Lösen Sie die Aufgaben p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Eigenschaften von Relationen Bei Relationen auf einer einzigen Menge A definieren wir eine Reihe von Eigenschaften: 1. R ist reflexiv, wenn x R x für alle x A 2. R ist symmetrisch, wenn aus x R y folgt: y R x, für alle x,y A 3. R ist antisymmetrisch, wenn x R y und y R x nicht gleichzeitig gelten kann, ausser wenn x=y 4. R ist transitiv, wenn aus x R y und y R z folgt: x R z, für alle x,y,z A Oder ausgedrückt in geordneten Paaren (x.y): 1. reflexiv: (x,x) R (x steht in Relation zu sich selbst) 2. symmetrisch: (x,y) R (y,x) R (wenn x in Relation steht zu y dann auch umgekehrt y zu x) 3. antisymmetrisch: (x,y) R und (y,x) R x=y 4. transitiv: (x,y) R und (y,z) R (x,z) R Oder in der Digraphdarstellung: 1. reflexiv: von jedem Knoten geht ein Pfeil zu sich selbst 2. symmetrisch: gibt es einen Pfeil vom Knoten x nach y so auch einen in der Gegenrichtung 3. antisymmetrisch: gibt es einen Pfeil vom Knoten x nach y so gibt es keinen in der Gegenrichtung 4. Transitiv: gibt es einen Pfeil von x nach y und einen von y nach z so gibt es auch einen direkten Pfeil von x nach z Und in der Matrixdarstellung: 1. reflexiv: jeder Eintrag in der Hauptdiagonalen (von links oben nach rechts unten) ist W 2. symmetrisch: die Einträge sind symmetrisch bezüglich der Hauptdiagonalen (weil a ij symmetrisch a ji ) 3. antisymmetrisch: alle Einträge symmetrisch zur Hauptdiagonalen sind nicht beide W Lesen Sie das Beispiel 4.8 p. 75 und lösen Sie die Aufgaben 4.4 und 4.5 p. 82 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

3 Erweiterung einer Relation bezüglich einer Eigenschaft (Abschluss) Erfüllt eine Relation eine Eigenschaft nicht, ist also z.b. nicht reflexiv, so kann sie durch Hinzufügen von weiteren Elementen z.b. allen (x,x) zu einer Relation mit dieser Eigenschaft erweitert werden. Man nennt die erweiterte Relation R* den Abschluss von R bezüglich der Eigenschaft P (reflexiv, symmetrisch, transitiv, usw.) Lesen Sie das Beispiel 4.9 p. 76 Beim transitiven Abschluss sind unter Umständen mehrere Umläufe nötig, solange ein Umlauf zu neuen Elementen führt, welche wiederum zu neuen Transitionen führen könnten. Der transitive Abschluss hat viele praktische Eigenschaften. So kann z.b. in einem Kommunikationsnetz in Form eines Digraphen abgelesen werden, ob eine Verbindung von x nach y möglich ist, indem man den transitiven Abschluss bildet und prüft, ob x und y verbunden sind. Lösen Sie die Aufgaben p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Äquivalenzrelationen und Halbordnungen Relationen lassen sich aufgrund ihrer Eigenschaften (reflexiv, symmetrisch, antisymmetrisch, transitiv) typisieren. Die zwei wichtigsten Typen von Relationen sind: Äquivalenzrelationen Halbordnungen Eine Relation auf einer Menge A, die reflexiv, symmetrisch und transitiv ist heisst Äquivalenzrelation Beispiele von Äquivalenzrelationen: hat dieselben Winkel bei Dreiecken, also Paare von ähnlichen Dreiecken hat dasselbe Vorzeichen bei Zahlen, also Paare (x,y) mit xy>0 ist gleich alt wie bei Menschen, also Paare von gleichaltrigen Menschen Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

4 Äquivalenzklassen Äquivalenzrelationen heissen so, weil sich die die Menge A in Teilmengen so genannte Äquivalenzklassen - aufteilen lässt. Die Äquivalenzklasse E x eines Elements x aus A ist definiert als die Menge aller Elemente aus A die zu x in Relation sind: E x = {z A: z R x} Z.B. besteht die Äquivalenzklasse einer 12-jährigen Person bei der Relation ist gleich alt wie auf der Menge aller Menschen aus der Gruppen der gleichaltrigen Menschen, also der 12- hährigen: E x = {Personen z: z ist gleich alt wie x} Diese Teilmengen A 1,A 2, bilden eine Partition (Aufteilung) von A, d.h. sie vereinigen sich zu A: A 1 A 2 A n = A Sie überlappen sich nicht: A i A j = für i j Satz: Sei R eine Äquivalenzrelation auf der Menge A. Dann bilden die Äquivalenzklassen von R eine Partition von A. Der Beweis auf Seite 79 zeigt zuerst, dass aus xry folgt: E x = E y, d.h. die Äquivalenzklassen zu zwei in Relation stehenden Elementen sind identisch. Lesen Sie zuhause den Beweis p. 79 fertig, das die Äquivalenzklassen einer Relation auf A eine Partition von A bilden. Lesen Sie das Beispiel 4.10 p. 79 Lösen Sie die Aufgaben p. 83 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-7- Halbordnung Eine Relation auf einer Menge A, die reflexiv, antisymmetrisch und transitiv ist heisst Halbordnung. Beispiele von Halbordnungen: auf der Menge der reellen Zahlen auf den Teilmengen einer Menge ist Teiler von auf der Menge der natürlichen Zahlen Mengen auf denen eine Halbordnung definiert ist heissen halbgeordnete Mengen. Die reellen Zahlen sind bezüglich eine halbgeordnete Menge Ist R eine Halbordnung auf A und gilt x R y für x y, so heisst x ein Vorgänger von y z.b. ist 3 ein Vorgänger von 10 bezüglich der Halbordnung auf den natürlichen Zahlen Existiert kein Element dazwischen, so heisst x unmittelbarer Vorgänger von y Z.B. ist 9 ein unmittelbarer Vorgänger von 10 bezüglich der Halbordnung auf den natürlichen Zahlen Ein Hasse-Diagramm stellt die unmittelbaren Vorgänger als verbundene Knoten eines Graphen dar, wobei ein Vorgänger unterhalb seines Nachfolgers gezeichnet wird Lesen Sie das Beispiel 4.11 p. 80 und lösen Sie die Aufgaben p. 83 Eine Totalordnung auf einer Menge A ist eine Halbordnung, unter der jedes Paar von Elementen aus A in Relation steht. D.h. für alle a,b A gilt: arb oder bra. Beispiele von Totalordnungen sind: auf der Menge der reellen Zahlen Das alphabetische Ordnen von Wörtern in einem Wörterbuch Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

5 4.5 Anwendung: Datenbank-Managementsysteme In einem Computer gespeicherte Daten werden als Datenbank bezeichnet. Programme für die Verwaltung von Datenbanken heissen Datenbank- Managementsysteme (DBMS). Beispiele von DBMS sind MS Access und Oracle Daten werden häufig in verschiedene Tabellen mit zusammengehörenden Merkmalen aufgeteilt. Beispiel: Tab. 4.1 p. 86 speichert die persönlichen Daten von Studenten, Tab. 4.2 die Kursnoten Die Merkmale bilden die Spalten einer Tabelle, die einzelnen Einträge z.b. die Studenten die Zeilen. Mathematisch sind die Zeilen einer Tabelle die Elemente eines kartesischen Produkts, z.b. für die Kursnoten von SxKxKxKxK wobei S die Menge der Studentennamen ist und K die Menge der Kursnoten. In den USA und GB werden statt Noten 1-6 Buchstaben A-E verwendet, wobei A das beste Resultat ist. Eine Tabelle stellt somit eine n-fache Relation dar und die Zeilen sind die geordneten n-tupel Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-9- Operationen auf Tabellen Wir betrachten die folgenden wichtigen Tabellen-Funktionen: project, join, select. project nimmt nur einen Teil der Spalten einer Tabelle und erstellt daraus eine neue Tabelle project(tabelle, {Spalte 1, Spalte 2, }) Lesen Sie den Abschnitt vor und die Tabelle 4.3 p. 86 Lösen Sie die Aufgabe 1 p. 87 join vereinigt zwei Tabellen zu einer neuen, indem nur diejenigen Zeilen übernommen werden, die in den Werten der gemeinsamen Spalten übereinstimmen. join(tabelle 1, Tabelle 2 ) Lesen Sie den Abschnitt vor und die Tabelle 4.5 p. 87 select trifft eine Auswahl aus den Zeilen einer Tabelle anhand eines zu erfüllenden Prädikats select(tabelle, P(Spalte 1, Spalte 2, ) Lesen Sie den Abschnitt vor und die Tabelle 4.6 p Lösen Sie die Aufgaben 2-4 p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

6 Aufgaben bis zur nächsten Präsenz Lesen Sie das Skript nochmals durch. Lösen Sie die darin angegebenen Übungen aus dem Buch fertig. Markieren Sie im Taschenbuch der Mathematik die behandelten Formeln mit Leuchtstift: p Lesen Sie Haggarty Kap. 4 Bei Problemen Mail an oder Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Ziele Die Studierenden kennen die Begriffe Binäre Relation zwischen zwei Mengen und Relation auf einer Menge Sie kennen die verschiedenen Darstellungsmethoden für (Binäre) Relationen: Beschreibung in Worten, Beschreibung mittels Prädikat, durch Mengen von geordneten Paaren, als gerichteter Graph (Digraph) und als Matrix Sie kennen die folgenden Eigenschaften von Relationen: reflexiv, symmetrisch, antisymmetrisch, transitiv. Sie kennen die Definitionen Äquivalenzrelation, Partition und Äquivalenzklasse Sie können beweisen, dass eine Relation eine Äquivalenzrelation ist. Sie sind in der Lage, die Äquivalenzklassen einer Äquivalenzrelation zu bestimmen. Sie kennen die Begriffe Halbordnung, Vorgänger, unmittelbarer Vorgänger und Totalordnung. Sie können das Hasse-Diagramm einer Halbordnung zeichnen. Sie kennen die folgenden Operationen auf Datenbank-Tabellen als Beispiel einer n-fachen Relation: project, join, select Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

3. Spezielle ER-Modelle und Tabellenableitung. Transformation von ER-Diagrammen in Relationen

3. Spezielle ER-Modelle und Tabellenableitung. Transformation von ER-Diagrammen in Relationen 3. Spezielle ER-Modelle und Tabellenableitung Spezialfälle von ER-Modellen Grundlage, was sind Relationen Transformation von ER-Diagrammen in Relationen 56 Lesebeispiel Access (Realisierungmodell!) 57

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen Lennart Leist Inhaltsverzeichnis 1 Einführung 2 1.1 Aufgaben einer Datenbank...................... 2 1.2 Geschichtliche Entwicklung

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector 7.4 Analyse anhand der SQL-Trace 337 7.3.5 Vorabanalyse mit dem Code Inspector Der Code Inspector (SCI) wurde in den vorangegangenen Kapiteln immer wieder erwähnt. Er stellt ein paar nützliche Prüfungen

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Einführung Datenbank

Einführung Datenbank Einführung Datenbank Einführung Datenbank Seite 2 Einführung in die Arbeit mit einer Datenbank Grundbegriffe: Datenbank - Datenbankmanagementsystem Eine Datenbank ist eine systematische strukturierte Sammlung

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Abstrakt zum Vortrag im Oberseminar. Graphdatenbanken. Gero Kraus HTWK Leipzig 14. Juli 2015

Abstrakt zum Vortrag im Oberseminar. Graphdatenbanken. Gero Kraus HTWK Leipzig 14. Juli 2015 Abstrakt zum Vortrag im Oberseminar Graphdatenbanken Gero Kraus HTWK Leipzig 14. Juli 2015 1 Motivation Zur Darstellung komplexer Beziehungen bzw. Graphen sind sowohl relationale als auch NoSQL-Datenbanken

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen:

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen: 1 Einführung in Datenbanksysteme Fast jeder kennt Excel und hat damit in seinem Leben schon einmal gearbeitet. In Excel gibt es Arbeitsblätter, die aus vielen Zellen bestehen, in die man verschiedene Werte

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

3 Berechnungen und Variablen

3 Berechnungen und Variablen 3 Berechnungen und Variablen Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen an und wenden uns

Mehr

Semantic Web: Resource Description Framework (RDF)

Semantic Web: Resource Description Framework (RDF) Big Data Semantic Web: RDF Information Retrieval Map Reduce: Massiv parallele Verarbeitung Datenströme Peer to Peer Informationssysteme No SQL Systeme Multi-Tenancy/Cloud-Datenbanken Semantic Web: Resource

Mehr

RAID-Konfigurations-Tool

RAID-Konfigurations-Tool RAID-Konfigurations-Tool Benutzerhandbuch Version: 1.1 SecureGUARD GmbH, 2011 Inhalt: 1. Der Begriff RAID... 3 1.1. RAID-Level... 3 2. RAID erstellen... 5 3. RAID löschen... 8 4. Fehlerbehebung... 10 4.1.

Mehr

Aufbau des SELECT-Befehls. Im Folgenden werden zunächst Abfragen aus einer Tabelle vorgenommen.

Aufbau des SELECT-Befehls. Im Folgenden werden zunächst Abfragen aus einer Tabelle vorgenommen. Datenbankabfragen (Query) mit SQL (Structured Query Language) 1 Aufbau des SELECT-Befehls Im Folgenden werden zunächst Abfragen aus einer Tabelle vorgenommen. SQL-Syntax: SELECT spaltenliste FROM tabellenname

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Online Bedienungsanleitung elektronisches Postfach

Online Bedienungsanleitung elektronisches Postfach Online Bedienungsanleitung elektronisches Postfach 1. elektronisches Postfach 1.1. Prüfung ob das Postfach bereits für Sie bereit steht. 1.2. Postfach aktivieren 1.3. Neue Mitteilungen/Nachrichten von

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Fragen und Antworten zu M-net Webmail (FAQ)

Fragen und Antworten zu M-net Webmail (FAQ) Wie kann ich mich im M-net Webmail anmelden?... 2 Wie erstelle ich eine neue Nachricht (E-Mail)?... 2 Wie lösche ich eine Nachricht (E-Mail)?... 2 Wie lösche ich eine Nachricht (E-Mail) wenn die Speicherkapazität

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Word 2007 Serienbriefe erstellen

Word 2007 Serienbriefe erstellen Word 2007 Serienbriefe erstellen Einladung zu... Hannover, d. 01.12.08 Hannover, d. 01.12.08 Emil Müller An der Leine 4 30159 Hannover, d. 01.12.08

Mehr

Punkte importieren aus Datenbank-Tabelle

Punkte importieren aus Datenbank-Tabelle TopoL xt Workflow Punkte importieren aus Datenbank-Tabelle TopoL xt Workflow 1 2007 by Dirk Schönewolf, TopoL Support-Center Alle Rechte vorbehalten. Ohne ausdrückliche, schriftliche Genehmigung ist es

Mehr

PostgreSQL im praktischen Einsatz. Stefan Schumacher

PostgreSQL im praktischen Einsatz. Stefan Schumacher PostgreSQL im praktischen Einsatz 2. Brandenburger Linux Infotag 2005 Stefan Schumacher , PGP Key http:/// $Header: /home/daten/cvs/postgresql/folien.tex,v 1.11 2005/04/25

Mehr

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken

Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Handbuch ECDL 2003 Basic Modul 5: Datenbank Grundlagen von relationalen Datenbanken Dateiname: ecdl5_01_00_documentation_standard.doc Speicherdatum: 14.02.2005 ECDL 2003 Basic Modul 5 Datenbank - Grundlagen

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Arbeiten mit dem Outlook Add-In

Arbeiten mit dem Outlook Add-In Arbeiten mit dem Outlook Add-In Das Outlook Add-In ermöglicht Ihnen das Speichern von Emails im Aktenlebenslauf einer Akte. Außerdem können Sie Namen direkt aus BS in Ihre Outlook-Kontakte übernehmen sowie

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

A-Plan 12.0. Zeiterfassung 2.0. Ausgabe 1.1. Copyright. Warenzeichenhinweise

A-Plan 12.0. Zeiterfassung 2.0. Ausgabe 1.1. Copyright. Warenzeichenhinweise A-Plan 12.0 Zeiterfassung 2.0 Ausgabe 1.1 Copyright Copyright 1996-2014 braintool software gmbh Kein Teil dieses Handbuches darf ohne ausdrückliche Genehmigung von braintool software gmbh auf mechanischem

Mehr

Klausur zur Vorlesung Datenbanken I im Wintersemester 2011/12

Klausur zur Vorlesung Datenbanken I im Wintersemester 2011/12 Prof. Dr. Lutz Wegner, Dipl.-Math. Kai Schweinsberg 21.03.2012 Klausur zur Vorlesung Datenbanken I im Wintersemester 2011/12 Name:... Vorname:... Matr.Nr.:... Studiengang:... Hinweis: Bearbeiten Sie alle

Mehr

MediaWizard: Reportlayout und Reports

MediaWizard: Reportlayout und Reports MediaWizard: Reportlayout und Reports Reportlayout Jedem Mitarbeiter kann über Einstellungen ein Reportlayout zugewiesen werden. Das Reportlayout umfasst neben der Angabe der auszugebenden Ergebnisteile

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

2.4.3 Zustandsgraphen

2.4.3 Zustandsgraphen 2.4.3 Zustandsgraphen Folie 2-1+45 Paradigma der Zustandsmodellierung Zustandsmodellierung betrachtet ein System als Zustandsautomaten beschreibt die Zerlegung in Zustände und Zustandsübergänge orientiert

Mehr

2.4.3 Zustandsgraphen

2.4.3 Zustandsgraphen 2.4.3 Zustandsgraphen Folie 2-1+45 Paradigma der Zustandsmodellierung Zustandsmodellierung betrachtet ein System als Zustandsautomaten beschreibt die Zerlegung in Zustände und Zustandsübergänge orientiert

Mehr

Schulungsscript für TYPO3-Redaktoren

Schulungsscript für TYPO3-Redaktoren Inhaltsverzeichnis Schulungsscript für TYPO3-Redaktoren EINFÜHRUNG... 2 ERSTE ÜBUNGEN... 2 EINLOGGEN... 2 BENUTZEROBERFLÄCHE... 2 PASSWORT ÄNDERN... 2 SEITEN UND INHALTE... 3 DEAKTIVIERTE SEITEN, IM MENU

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Lösung zur Übung 3. Aufgabe 9)

Lösung zur Übung 3. Aufgabe 9) Lösung zur Übung 3 Aufgabe 9) Lissajous-Figuren sind Graphen in einem kartesischen Koordinatensystem, bei denen auf der Abszisse und auf der Ordinate jeweils Funktionswerte von z.b. Sinusfunktionen aufgetragen

Mehr

Dokumentation. Gnuplot

Dokumentation. Gnuplot Dokumentation Gnuplot Inhaltsverzeichnis 1 Einführung 1.1 Allgemeine Beschreibung des Programms 1.2 Installation des Programms 1.3 Deinstallation des Programms 2 Hauptteil (Befehle, Einstellungen und Anwendungsbeispiele)

Mehr

3 Nachrichten bearbeiten und automatisieren

3 Nachrichten bearbeiten und automatisieren Outlook 2007 Einführung Nachrichten bearbeiten 3 Nachrichten bearbeiten und automatisieren Ziele diese Kapitels! Sie lernen, wie Sie Nachrichten gruppieren und sortieren, um Mails schneller wieder zu finden!

Mehr

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract:

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract: Spezifikation der zulässigen Parameter Bemerkungen: Bei jeder (partiellen) Funktion muss man sich überlegen und dokumentieren, welche aktuellen Parameter bei einer Anwendung zulässig sein sollen. Der Anwender

Mehr

Datenbanksysteme 1. Organisation. Prof. Stefan F. Keller. Ausgabe 2005. Copyright 2005 HSR SS 2005

Datenbanksysteme 1. Organisation. Prof. Stefan F. Keller. Ausgabe 2005. Copyright 2005 HSR SS 2005 Datenbanksysteme 1 Organisation Ausgabe 2005 Prof. Stefan F. Keller SS 2005 Copyright 2005 HSR Inhalt Einführung Relationales Datenmodell, Datenmodellierung DB-Entwurf, Normalisierung SQL-Data Definition

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Datenbanksysteme 2015

Datenbanksysteme 2015 Datenbanksysteme 2015 Kapitel 09: Datenbankapplikationen Oliver Vornberger Institut für Informatik Universität Osnabrück Datenbankapplikationen ODBC MS Visio MS Access Embedded SQL JDBC Application SQLJ

Mehr

OKB-000091 Die MS SQL-Volltextsuche für organice SQL einrichten

OKB-000091 Die MS SQL-Volltextsuche für organice SQL einrichten OKB-000091 Die MS SQL-Volltextsuche für organice SQL einrichten Dienstag, 16. August 2005 16:55 FAQ-Nr: OKB-000091 Betrifft: organice SQL Frage: Wie richte ich die Volltextindizierung des MS SQL-Servers

Mehr

Diese Anleitung bezieht sich auf FixFoto, V 3.40. In älteren oder neueren Versionen könnte die Arbeitsweise anders sein.

Diese Anleitung bezieht sich auf FixFoto, V 3.40. In älteren oder neueren Versionen könnte die Arbeitsweise anders sein. Pfade einstellen Stand: Dezember 2012 Diese Anleitung bezieht sich auf FixFoto, V 3.40. In älteren oder neueren Versionen könnte die Arbeitsweise anders sein. Diese Anleitung soll zeigen, wie man Pfad-Favoriten

Mehr

Druckanpassung von Mahnungen

Druckanpassung von Mahnungen Druckanpassung von Mahnungen Nur wenn Sie die faktura in der Einzelversion nutzen, steht Ihnen für die Druckanpassung der Mahnungen auch der Formularassistent zur Verfügung. Dort können Sie die gewünschten

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Skript zum Kurs Literaturverwaltung mit EndNote - Aufbaukurs Literatur in EndNote organisieren und finden

Skript zum Kurs Literaturverwaltung mit EndNote - Aufbaukurs Literatur in EndNote organisieren und finden Skript zum Kurs Literaturverwaltung mit EndNote - Aufbaukurs Literatur in EndNote organisieren und finden Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

Übung Datenbanksysteme I Relationale Algebra. Thorsten Papenbrock

Übung Datenbanksysteme I Relationale Algebra. Thorsten Papenbrock Übung Datenbanksysteme I Relationale Algebra Thorsten Papenbrock Übersicht: Relationale Algebra 2 Unäre Operatoren Binäre Operatoren Operator Beschreibung Operator Beschreibung (pi) (erweiterte)projektion

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Tel.: 040-528 65 802 Fax: 040-528 65 888 Email: support_center@casio.de. Ein Text oder Programm in einem Editor schreiben und zu ClassPad übertragen.

Tel.: 040-528 65 802 Fax: 040-528 65 888 Email: support_center@casio.de. Ein Text oder Programm in einem Editor schreiben und zu ClassPad übertragen. Ein Text oder Programm in einem Editor schreiben und zu ClassPad übertragen. Die auf dem PC geschriebene Texte oder Programme können über dem ClassPad Manager zu ClassPad 300 übertragen werden. Dabei kann

Mehr

Probabilistische Datenbanken

Probabilistische Datenbanken Probabilistische Datenbanken Seminar Intelligente Datenbanken AG Intelligente Datenbanken Prof. Dr. Rainer Manthey 26.04.05 Maarten van Hoek - 1 - Inhaltsverzeichnis 1.0 Einleitung...3 2.0 Modell probabilistischer

Mehr

Filterregeln... 1. Einführung... 1. Migration der bestehenden Filterregeln...1. Alle eingehenden Nachrichten weiterleiten...2

Filterregeln... 1. Einführung... 1. Migration der bestehenden Filterregeln...1. Alle eingehenden Nachrichten weiterleiten...2 Jörg Kapelle 15:19:08 Filterregeln Inhaltsverzeichnis Filterregeln... 1 Einführung... 1 Migration der bestehenden Filterregeln...1 Alle eingehenden Nachrichten weiterleiten...2 Abwesenheitsbenachrichtigung...2

Mehr

Dokumentation RabattManagerLX Pro. Version 1.0.901.1

Dokumentation RabattManagerLX Pro. Version 1.0.901.1 Dokumentation RabattManagerLX Pro Version 1.0.901.1 Dokumentation RabattManagerLX Pro Version 1.0.901.1 Was ist RabattManagerLX Pro? RabattManagerLX Pro ist ein Programm um individuelle Warengruppen-Rabatte

Mehr

2 7 Erweiterungen. 7.1 Prozess-Kommunikation mit Datenbanken

2 7 Erweiterungen. 7.1 Prozess-Kommunikation mit Datenbanken 2 7 Erweiterungen 7 Erweiterungen 7.1 Prozess-Kommunikation mit Datenbanken Im Buch Einstieg in das Programmieren mit MATLAB wird im Abschnitt 4.8 das Thema Prozess-Kommunikation am Beispiel von MS-Excel

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

Erweiterung der CRM-Datenbank für den Umgang mit Excel-Mappen. Automatisches Ausfüllen von MS-Excel-Vorlagen mit Daten aus organice

Erweiterung der CRM-Datenbank für den Umgang mit Excel-Mappen. Automatisches Ausfüllen von MS-Excel-Vorlagen mit Daten aus organice organice-excel-add-in 1 Erweiterung der CRM-Datenbank für den Umgang mit Excel-Mappen. Automatisches Ausfüllen von MS-Excel-Vorlagen mit Daten aus organice (Ein stichwortartiger Entwurf ) Systemvoraussetzungen:

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr