4. Relationen. Beschreibung einer binären Relation

Größe: px
Ab Seite anzeigen:

Download "4. Relationen. Beschreibung einer binären Relation"

Transkript

1 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B ist eine Teilmenge des kartesischen Produkts AxB (d.h. eine Teilmenge der Menge aller möglichen Paare (a,b) mit a A und b B). Die Relation heisst binär, weil es um eine Beziehung zwischen zwei Elementen a,b aus den Mengen A und B geht. Eine Relation kann mit Hilfe eines Prädikats bezüglich der geordneten Paare beschrieben werden. Z.B. R = {(x,y): x ist Grossvater von y} Diese Relation beschränkt das kartesische Produkt aller möglichen geordneten Paaren (x,y) zweier Menschen auf die Teilmenge derjenigen Paare, welche in der Beziehung Grossvater-Enkelkind stehen. Eine binäre Relation zwischen 2 gleichen Mengen A heisst Relation auf A Lesen Sie die Beispiele p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-1- Beschreibung einer binären Relation Eine binäre Relation kann auf verschiedene Arten beschrieben werden: mit Hilfe eines Prädikats, z.b. R = {(x,y): x ist Grossvater von y} Als Menge von geordneten Paaren: R = {(Fred, Jane), (Fred, Fiona), (Fred, Alan), (John, Jane)} Als gerichteter Graph (vergl. Abb. 4.2 p. 71) Als Matrix Der gerichtete Graph oder Digraph besteht aus zwei Mengen von Knoten für die Mengen A bzw. B, wobei die Paare, welche die Relation erfüllen, durch eine Kante verbunden sind. Da die Elemente einer Relation geordnete Paare sind, wird die Reihenfolge mit Hilfe eines Pfeils in der Kante von a nach b dargestellt. Bei Relationen auf A, d.h. Teilmengen von AxA müssen die Knoten nur einmal gezeichnet werden (vergl. Abb. 4.3 p. 72) Lesen Sie das Beispiel 4.4 p. 72 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

2 Matrixdarstellung Bei der Matrixdarstellung werden die Elemente der Mengen A und B je in eine Reihenfolge A = {a 1, a 2, } und B = {b 1, b 2, } gebracht und alle Kombinationen in eine Tabelle aufgeführt mit den a i in den Zeilen und den b j in den Spalten (vergl. p. 72 unten). Ist (a i,b j ) R so steht an dieser Stelle W (wahr) und sonst F (falsch) Lesen Sie das Beispiel p. 72 unten Lesen Sie die Beispiele 4.5 und 4.6 p. 73 Ist R eine binäre Relation so können wir statt (x,y) R schreiben: x R y gelesen: x steht in Relation zu y Z.B. ist Schwester von definiert eine Relation R auf der Menge aller Menschen mit xry falls x ist eine Schwester von y. Lesen Sie das Beispiel 4.7 p. 74 Lösen Sie die Aufgaben p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Eigenschaften von Relationen Bei Relationen auf einer einzigen Menge A definieren wir eine Reihe von Eigenschaften: 1. R ist reflexiv, wenn x R x für alle x A 2. R ist symmetrisch, wenn aus x R y folgt: y R x, für alle x,y A 3. R ist antisymmetrisch, wenn x R y und y R x nicht gleichzeitig gelten kann, ausser wenn x=y 4. R ist transitiv, wenn aus x R y und y R z folgt: x R z, für alle x,y,z A Oder ausgedrückt in geordneten Paaren (x.y): 1. reflexiv: (x,x) R (x steht in Relation zu sich selbst) 2. symmetrisch: (x,y) R (y,x) R (wenn x in Relation steht zu y dann auch umgekehrt y zu x) 3. antisymmetrisch: (x,y) R und (y,x) R x=y 4. transitiv: (x,y) R und (y,z) R (x,z) R Oder in der Digraphdarstellung: 1. reflexiv: von jedem Knoten geht ein Pfeil zu sich selbst 2. symmetrisch: gibt es einen Pfeil vom Knoten x nach y so auch einen in der Gegenrichtung 3. antisymmetrisch: gibt es einen Pfeil vom Knoten x nach y so gibt es keinen in der Gegenrichtung 4. Transitiv: gibt es einen Pfeil von x nach y und einen von y nach z so gibt es auch einen direkten Pfeil von x nach z Und in der Matrixdarstellung: 1. reflexiv: jeder Eintrag in der Hauptdiagonalen (von links oben nach rechts unten) ist W 2. symmetrisch: die Einträge sind symmetrisch bezüglich der Hauptdiagonalen (weil a ij symmetrisch a ji ) 3. antisymmetrisch: alle Einträge symmetrisch zur Hauptdiagonalen sind nicht beide W Lesen Sie das Beispiel 4.8 p. 75 und lösen Sie die Aufgaben 4.4 und 4.5 p. 82 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

3 Erweiterung einer Relation bezüglich einer Eigenschaft (Abschluss) Erfüllt eine Relation eine Eigenschaft nicht, ist also z.b. nicht reflexiv, so kann sie durch Hinzufügen von weiteren Elementen z.b. allen (x,x) zu einer Relation mit dieser Eigenschaft erweitert werden. Man nennt die erweiterte Relation R* den Abschluss von R bezüglich der Eigenschaft P (reflexiv, symmetrisch, transitiv, usw.) Lesen Sie das Beispiel 4.9 p. 76 Beim transitiven Abschluss sind unter Umständen mehrere Umläufe nötig, solange ein Umlauf zu neuen Elementen führt, welche wiederum zu neuen Transitionen führen könnten. Der transitive Abschluss hat viele praktische Eigenschaften. So kann z.b. in einem Kommunikationsnetz in Form eines Digraphen abgelesen werden, ob eine Verbindung von x nach y möglich ist, indem man den transitiven Abschluss bildet und prüft, ob x und y verbunden sind. Lösen Sie die Aufgaben p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Äquivalenzrelationen und Halbordnungen Relationen lassen sich aufgrund ihrer Eigenschaften (reflexiv, symmetrisch, antisymmetrisch, transitiv) typisieren. Die zwei wichtigsten Typen von Relationen sind: Äquivalenzrelationen Halbordnungen Eine Relation auf einer Menge A, die reflexiv, symmetrisch und transitiv ist heisst Äquivalenzrelation Beispiele von Äquivalenzrelationen: hat dieselben Winkel bei Dreiecken, also Paare von ähnlichen Dreiecken hat dasselbe Vorzeichen bei Zahlen, also Paare (x,y) mit xy>0 ist gleich alt wie bei Menschen, also Paare von gleichaltrigen Menschen Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

4 Äquivalenzklassen Äquivalenzrelationen heissen so, weil sich die die Menge A in Teilmengen so genannte Äquivalenzklassen - aufteilen lässt. Die Äquivalenzklasse E x eines Elements x aus A ist definiert als die Menge aller Elemente aus A die zu x in Relation sind: E x = {z A: z R x} Z.B. besteht die Äquivalenzklasse einer 12-jährigen Person bei der Relation ist gleich alt wie auf der Menge aller Menschen aus der Gruppen der gleichaltrigen Menschen, also der 12- hährigen: E x = {Personen z: z ist gleich alt wie x} Diese Teilmengen A 1,A 2, bilden eine Partition (Aufteilung) von A, d.h. sie vereinigen sich zu A: A 1 A 2 A n = A Sie überlappen sich nicht: A i A j = für i j Satz: Sei R eine Äquivalenzrelation auf der Menge A. Dann bilden die Äquivalenzklassen von R eine Partition von A. Der Beweis auf Seite 79 zeigt zuerst, dass aus xry folgt: E x = E y, d.h. die Äquivalenzklassen zu zwei in Relation stehenden Elementen sind identisch. Lesen Sie zuhause den Beweis p. 79 fertig, das die Äquivalenzklassen einer Relation auf A eine Partition von A bilden. Lesen Sie das Beispiel 4.10 p. 79 Lösen Sie die Aufgaben p. 83 Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-7- Halbordnung Eine Relation auf einer Menge A, die reflexiv, antisymmetrisch und transitiv ist heisst Halbordnung. Beispiele von Halbordnungen: auf der Menge der reellen Zahlen auf den Teilmengen einer Menge ist Teiler von auf der Menge der natürlichen Zahlen Mengen auf denen eine Halbordnung definiert ist heissen halbgeordnete Mengen. Die reellen Zahlen sind bezüglich eine halbgeordnete Menge Ist R eine Halbordnung auf A und gilt x R y für x y, so heisst x ein Vorgänger von y z.b. ist 3 ein Vorgänger von 10 bezüglich der Halbordnung auf den natürlichen Zahlen Existiert kein Element dazwischen, so heisst x unmittelbarer Vorgänger von y Z.B. ist 9 ein unmittelbarer Vorgänger von 10 bezüglich der Halbordnung auf den natürlichen Zahlen Ein Hasse-Diagramm stellt die unmittelbaren Vorgänger als verbundene Knoten eines Graphen dar, wobei ein Vorgänger unterhalb seines Nachfolgers gezeichnet wird Lesen Sie das Beispiel 4.11 p. 80 und lösen Sie die Aufgaben p. 83 Eine Totalordnung auf einer Menge A ist eine Halbordnung, unter der jedes Paar von Elementen aus A in Relation steht. D.h. für alle a,b A gilt: arb oder bra. Beispiele von Totalordnungen sind: auf der Menge der reellen Zahlen Das alphabetische Ordnen von Wörtern in einem Wörterbuch Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

5 4.5 Anwendung: Datenbank-Managementsysteme In einem Computer gespeicherte Daten werden als Datenbank bezeichnet. Programme für die Verwaltung von Datenbanken heissen Datenbank- Managementsysteme (DBMS). Beispiele von DBMS sind MS Access und Oracle Daten werden häufig in verschiedene Tabellen mit zusammengehörenden Merkmalen aufgeteilt. Beispiel: Tab. 4.1 p. 86 speichert die persönlichen Daten von Studenten, Tab. 4.2 die Kursnoten Die Merkmale bilden die Spalten einer Tabelle, die einzelnen Einträge z.b. die Studenten die Zeilen. Mathematisch sind die Zeilen einer Tabelle die Elemente eines kartesischen Produkts, z.b. für die Kursnoten von SxKxKxKxK wobei S die Menge der Studentennamen ist und K die Menge der Kursnoten. In den USA und GB werden statt Noten 1-6 Buchstaben A-E verwendet, wobei A das beste Resultat ist. Eine Tabelle stellt somit eine n-fache Relation dar und die Zeilen sind die geordneten n-tupel Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block 8-9- Operationen auf Tabellen Wir betrachten die folgenden wichtigen Tabellen-Funktionen: project, join, select. project nimmt nur einen Teil der Spalten einer Tabelle und erstellt daraus eine neue Tabelle project(tabelle, {Spalte 1, Spalte 2, }) Lesen Sie den Abschnitt vor und die Tabelle 4.3 p. 86 Lösen Sie die Aufgabe 1 p. 87 join vereinigt zwei Tabellen zu einer neuen, indem nur diejenigen Zeilen übernommen werden, die in den Werten der gemeinsamen Spalten übereinstimmen. join(tabelle 1, Tabelle 2 ) Lesen Sie den Abschnitt vor und die Tabelle 4.5 p. 87 select trifft eine Auswahl aus den Zeilen einer Tabelle anhand eines zu erfüllenden Prädikats select(tabelle, P(Spalte 1, Spalte 2, ) Lesen Sie den Abschnitt vor und die Tabelle 4.6 p Lösen Sie die Aufgaben 2-4 p Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

6 Aufgaben bis zur nächsten Präsenz Lesen Sie das Skript nochmals durch. Lösen Sie die darin angegebenen Übungen aus dem Buch fertig. Markieren Sie im Taschenbuch der Mathematik die behandelten Formeln mit Leuchtstift: p Lesen Sie Haggarty Kap. 4 Bei Problemen Mail an oder Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Ziele Die Studierenden kennen die Begriffe Binäre Relation zwischen zwei Mengen und Relation auf einer Menge Sie kennen die verschiedenen Darstellungsmethoden für (Binäre) Relationen: Beschreibung in Worten, Beschreibung mittels Prädikat, durch Mengen von geordneten Paaren, als gerichteter Graph (Digraph) und als Matrix Sie kennen die folgenden Eigenschaften von Relationen: reflexiv, symmetrisch, antisymmetrisch, transitiv. Sie kennen die Definitionen Äquivalenzrelation, Partition und Äquivalenzklasse Sie können beweisen, dass eine Relation eine Äquivalenzrelation ist. Sie sind in der Lage, die Äquivalenzklassen einer Äquivalenzrelation zu bestimmen. Sie kennen die Begriffe Halbordnung, Vorgänger, unmittelbarer Vorgänger und Totalordnung. Sie können das Hasse-Diagramm einer Halbordnung zeichnen. Sie kennen die folgenden Operationen auf Datenbank-Tabellen als Beispiel einer n-fachen Relation: project, join, select Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

5 Relationen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Allgemeine Definition einer Relation Eine n-stellige Relation

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Relationale Datenbanken Datenbankgrundlagen

Relationale Datenbanken Datenbankgrundlagen Datenbanksystem Ein Datenbanksystem (DBS) 1 ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule

Didaktik der Zahlbereiche 4. Die Menge der ganzen Zahlen. Mathematikunterricht in der Jahrgangsstufe 7. Zahlbereichserweiterungen in der Hauptschule Zahlbereichserweiterungen in der Hauptschule Didaktik der Zahlbereiche 4 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Wintersemester 2006/07 Natürliche Zahlen, : Klasse 5 positive

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX

Graphentheorie 1. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Graph-Äquivalenz SetlX Graphentheorie 1 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Graphentheorie 1 Slide 1/19 Agenda Hausaufgaben Graph-Äquivalenz SetlX Diskrete Strukturen Graphentheorie

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

THEORETISCHE INFORMATIK

THEORETISCHE INFORMATIK THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek Institut für Theoretische Informatik Technische Universität Braunschweig Januar 2014 Inhaltsverzeichnis 1 Endliche Automaten 1 1.1 Mathematische Grundbegriffe.......................

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Übungen zu Logik und Künstliche Intelligenz Blatt 8

Übungen zu Logik und Künstliche Intelligenz Blatt 8 Heilbronn, den 14.5.2010 Prof. Dr. V. Stahl WS 10/11 Übungen zu Logik und Künstliche Intelligenz Blatt 8 Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/37 Überblick Kontextfreie Grammatiken

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Typisierung von semistrukturierten Daten. Steffen Staab ISWeb Informationssysteme & Semantic Web

Typisierung von semistrukturierten Daten. Steffen Staab ISWeb Informationssysteme & Semantic Web Typisierung von semistrukturierten Daten Typisierung von semistrukturierten Daten Idee: Strukturieren und Typisieren von semistrukturierte Daten. Zwei einfache Formalismen basierend auf: Logik Graphensimulation

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012)

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012) Analysis 1 Delio Mugnolo delio.mugnolo@uni-ulm.de (Version von 18. Dezember 2012) 2 Dies ist das Skript zur Vorlesung Analysis 1, welche ich im Sommersemester 2012 an der Universität Ulm gehalten habe.

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0.

1 Ordnung muß sein. 1.1 Angeordnete Körper. 1.2 Folgerungen aus den Anordnungsaxiomen. ( c) (b a) > 0. Somit a c b c > 0. 1 Ordnung uß sein 1.1 Angeordnete Körper Wir nehen einal an, daß es in eine Körper Eleente gibt, die wir positiv nennen. Welche Eigenschaften sollen diese haben? O1) Wenn x und y positiv sind, dann auch

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (20 Graphen) T. Lauer Vorlesung Informatik 2 Algorithmen und Datenstrukturen (20 Graphen) T. Lauer 1 Motivation Wie komme ich am besten von Freiburg nach Ulm? Was ist die kürzeste Rundreise durch eine gegebene Menge von Städten?

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederung 1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. äume / Graphen 5. Hashing 6. Algorithmische Geometrie 4/5, olie 1 2014 Prof. Steffen Lange - HDa/bI

Mehr

Datenverwaltung mit MS Excel INHALTSVERZEICHNIS

Datenverwaltung mit MS Excel INHALTSVERZEICHNIS INHALTSVERZEICHNIS Datenmatrix... 4 Datenmatrix (DB-Bereich) Aufbau:... 4 Erfassung / Bearbeitung / Löschung:... 4 Neu... 4 Löschen:... 4 Wiederherstellen:... 4 Vorherigen suchen / Weitersuchen:... 4 Kriterien:...

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3.

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3. Gliederung Lokalitätsprinzip Nebenläufigkeit und Fairness Seminar Model lchecking WS 08/09 Interleaving Halbordnung. Fairness Jan Engelsberg engelsbe@informatik.hu berlin.de Was ist Nebenläufigkeit? In

Mehr

Einführung in Datenbanksysteme. H. Wünsch 01.2001

Einführung in Datenbanksysteme. H. Wünsch 01.2001 Einführung in Datenbanksysteme H. Wünsch 01.2001 H. Wünsch 01/2001 Einführung Datenbanken 2 Was sind Datenbanken? Datenbanken sind Systeme zur Beschreibung, Speicherung und Wiedergewinnung von Datenmengen.

Mehr

2.3 dreimal Handeln: Vergleichen, Messen, Rechnen

2.3 dreimal Handeln: Vergleichen, Messen, Rechnen 2.3 dreimal Handeln: Vergleichen, Messen, Rechnen Maximilian Geier Institut für Mathematik, Landau Universität Koblenz-Landau Didaktische Stufenfolge Tätigkeit 1. direkter Vergleich von zwei Repräsentanten

Mehr

3. Spezielle ER-Modelle und Tabellenableitung. Transformation von ER-Diagrammen in Relationen

3. Spezielle ER-Modelle und Tabellenableitung. Transformation von ER-Diagrammen in Relationen 3. Spezielle ER-Modelle und Tabellenableitung Spezialfälle von ER-Modellen Grundlage, was sind Relationen Transformation von ER-Diagrammen in Relationen 56 Lesebeispiel Access (Realisierungmodell!) 57

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 9.1.2014 M. Isberner MafI1-Tutorium 9.1.2014 1 / 12 Thema heute Thema heute: Verbände M. Isberner MafI1-Tutorium 9.1.2014 2 / 12 Verbände Was ist ein

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Datenbanken: Relationales Datenbankmodell RDM

Datenbanken: Relationales Datenbankmodell RDM Das RDM wurde in den 70'er Jahren von Codd entwickelt und ist seit Mitte der 80'er Jahre definierter Standard für Datenbanksysteme! Der Name kommt vom mathematischen Konzept einer Relation: (Sind A, B

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 4 Kongruenz und Modulorechnung 39 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss

Mehr

1. Ziel des Datenbankentwurfs

1. Ziel des Datenbankentwurfs 1. Ziel des Datenbankentwurfs Ziel ist der Aufbau eines Modells eines Teilbereiches der wahrnehmbaren Realität und Abbildung dieses Bereichs in Form von Daten, so dass diese nach verschiedensten Kriterien

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Einführung Datenbank

Einführung Datenbank Einführung Datenbank Einführung Datenbank Seite 2 Einführung in die Arbeit mit einer Datenbank Grundbegriffe: Datenbank - Datenbankmanagementsystem Eine Datenbank ist eine systematische strukturierte Sammlung

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Probeklausur Grundlagen der Datenbanksysteme II

Probeklausur Grundlagen der Datenbanksysteme II Prof. Dott.-Ing. Roberto V. Zicari Datenbanken und Informationssysteme Institut für Informatik Fachbereich Informatik und Mathematik Probeklausur Grundlagen der Datenbanksysteme II Frau: Herr: Vorname:

Mehr

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector 7.4 Analyse anhand der SQL-Trace 337 7.3.5 Vorabanalyse mit dem Code Inspector Der Code Inspector (SCI) wurde in den vorangegangenen Kapiteln immer wieder erwähnt. Er stellt ein paar nützliche Prüfungen

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Grundbegriffe der Informatik Tutorium 7

Grundbegriffe der Informatik Tutorium 7 Grundbegriffe der Informatik Tutorium 7 Tutorium Nr. 16 Philipp Oppermann 16. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Ein Schlüssel ist eine Menge von Attributen (also eines oder mehrere), die eine Datenzeile (Tupel) einer Tabelle eindeutig identifiziert

Ein Schlüssel ist eine Menge von Attributen (also eines oder mehrere), die eine Datenzeile (Tupel) einer Tabelle eindeutig identifiziert Maika Büschenfeldt Datenbanken: Skript 1 1. Was ist eine relationale Datenbank? In Datenbanken können umfangreiche Datenbestände strukturiert abgelegt werden. Das Konzept relationaler Datenbanken soll

Mehr

Scheduling-Theorie. Mathematische Modelle und Methoden für deterministische Scheduling-Probleme. LiSA - A Library of Scheduling Algorithms

Scheduling-Theorie. Mathematische Modelle und Methoden für deterministische Scheduling-Probleme. LiSA - A Library of Scheduling Algorithms Scheduling-Theorie Mathematische Modelle und Methoden für deterministische Scheduling-Probleme LiSA - A Library of Scheduling Algorithms Otto-von-Guericke Universität Magdeburg/FMA/Heidemarie Bräsel &

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was isher geschah: Formale Sprachen Alphaet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen reguläre Ausdrücke: Syntax, Semantik, Äquivalenz Wortersetzungssysteme Wortersetzungsregeln

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr