Induktive Definitionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Induktive Definitionen"

Transkript

1 Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen Unter Induktive Definitionen subsumiert man in der egel drei Aspekte einer für die Informatik grundlegenden, konstruktiven Methode zur Definition von Mengen, Operationen darauf und eine Methode zum Nachweis von Eigenschaften der induktiv definierten Objekte oder Operationen darauf. Dementsprechend gliedert sich dieses Dokument in die folgenden drei Abschnitte: Induktive Definitionen: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) egeln Induktion über den Aufbau: Methode für den Beweis einer Aussage x M : E(x) für eine Eigenschaft E(x) von Objekten x aus einer induktiv definierten Menge M ekursion über den Aufbau: Konstruktive Methode zur Definition einer Funktion (Operation) auf einer induktiv definierten Menge M Betrachten wir zunächst als Beispiel die Menge BB der Binärbäume. Diese definiert man ( naiv ) induktiv wie folgt: (B) ist ein Binärbaum. () Sind T 1, T 2 (schon erzeugte) Binärbäume, so auch T 1 ; ; T 2 mit Wurzel. (A) Nur die mittels (B) und () erzeugbaren Objekte sind Binärbäume. Diese Definition folgt dem Prinzip eines Baukastens: Ein Baukasten besteht aus einer Basismenge B von Bauklötzchen und einem Satz von egeln, aus denen Baukastenobjekte b gebaut werden können, d.h. b ist (Basis) entweder ein gegebenes Bauklötzchen (aus B) (Baukastenschritt) oder das Ergebnis der Anwendung einer Baukastenregel (aus ) auf bereits erzeugte Baukastenobjekte a 1,..., a n. Man sagt nun, die Menge der Baukastenobjekte sei induktiv definiert. Im folgenden wollen wir die Prinzipien induktive Definition, Induktion über den Aufbau und ekursion über den Aufbau allgemein einführen und studieren. Dabei werden wir i.w. das soeben skizzierte Baukastenprinzip mathematisch modellieren.

2 Induktive Definitionen 2 1 Induktive Definitionen Intuitiv ist die Menge der Baukastenobjekte vollständig durch die zugrundeliegende Basismenge B von Bauklötzchen und eine Menge von egeln, durch deren Anwendung wir aus bereits gebauten Objekten neue Objekte bauen können, bestimmt. Für die Menge der Baukastenobjekte bietet sich daher die Schreibweise I (B) an. Aber wie ist I (B) als Menge mathematisch präzise definiert? Mathematisch modellieren wir die Menge der egeln als eine elation Seq(A) A wobei A eine geeignet gewählte Grundmenge ist, die alle zu bauenden Objekte enthält, i.a. jedoch viel mehr. Insbesondere gilt also B A. Die Elemente ((a 1,..., a n ), b) lesen wir als b ist aus a 1,..., a n gebaut. Damit definieren wir I (B) durch I (B) := {C B C A, C ist -abgeschlossen} wobei C A -abgeschlossen ist, falls für alle ((a 1,..., a l ), b) gilt: a 1,..., a l C = b C Die Menge I (B) wird auch als der induktive Abschluß von B unter bezeichnet. Eine Menge M heißt nun induktiv definiert, falls M = I (B) für eine geeignete elation und Basismenge B gilt sowie für eine implizit gegebene Grundmenge A. Beispiel. Die Menge BB hat die Darstellung I (B) mit A := {,,, ; }, B := { } und := {((a 1, a 2 ), a 1 ; ; a 2 ) a 1, a 2 A}. In der Tat wird unsere Intuition durch die obige mengentheoretische Formalisierung des Baukastenmodells korrekt wiedergegeben, denn es gilt der folgende Satz. Satz 1.1 (Intuition). Die Menge I (B) ist die kleinste Teilmenge von A, die B enthält und -abgeschlossen ist, d.h. (a) B I (B), (b) I (B) C für alle -abgeschlossenen Mengen C mit B C A, (c) I (B) ist -abgeschlossen. Beweis. (a), (b) folgen direkt aus der Definition von I (B). Für den Beweis von (c) sei ((a 1,..., a l ), b) beliebig mit a 1,..., a l I (B). Wir müssen b I (B) zeigen. Nach Definition von I (B) genügt es zu zeigen: Es gilt b C für alle -abgeschlossenen Mengen C mit B C A. Sei also C eine beliebige -abgeschlossene Menge mit B C A. Wegen a 1,..., a l I (B) und (b) gilt dann auch a 1,..., a l C. Also folgt b C aus der -Abgeschlossenheit von C.

3 Induktive Definitionen 3 Warum ist diese Methode nun konstruktiv? Dies liegt daran, dass man sich eine Menge I (B) in Schichten I i (B) schrittweise von unter erzeugt vorstellen kann, wobei die i-te Schicht I i (B) wie folgt definiert ist: I 0 I i+1 (B) := B (B) := Ii (B) {b A ((a 1,..., a l ), b) für gewisse a 1,..., a l I i (B)} = Menge der Objekte, die aus B nach maximal i+1 Anwendungen von egeln aus gebaut werden können. Satz 1.2 (Schichtendarstellung). Sei M := I (B) eine induktiv definierte Menge mit Grundmenge A. Dann gilt: (a) B I 0 (B) und Ii (b) M = i N Ii (B) (B) Ii+1 (B) für alle i N Beweis. Teil (a) folgt direkt aus der Definition der Schichten I i (B). Für den Beweis von (b) folgt zunächst die Inklusion aus folgender Aussage: ( ) i N: I i (B) M Wir beweisen ( ) durch vollständige Induktion nach i, wobei der Induktionsanfang i = 0 trivialerweise gilt. Für den Induktionsschritt i i + 1 sei b I i+1 (B) beliebig. Wir müssen b M zeigen und betrachten dazu eine beliebige -abgeschlossene Menge C mit B C A. Nach I.V. können wir o.e. b / I i (B) annehmen und somit gilt: ((a 1,..., a l ), b) für gewisse a 1,..., a l I i (B) Nach I.V. gilt nun a 1,..., a l M C. Also folgt b C aus der -Abgeschlossenheit von C. Damit ist ( ) bewiesen. Für die umgekehrte Inklusion genügt es nach Satz?? zu zeigen, dass die Menge C := i N I i (B) B enthält und -abgeschlossen ist. Es gilt B = I 0 (B) C. Sei daher ((a 1,..., a l ), b) beliebig mit a 1,..., a l C. Wir müssen b C zeigen. Wegen a 1,..., a l C gibt es i 1,..., i l mit a i I i j (B) für j = 1,..., l. Nach Teil (a) gilt dann a 1,..., a l I m (B) für m := max{i 1,..., i l }. Also folgt b I m+1 (B) C nach Definition der Schichten. 2 Induktion über den Aufbau Sei nun M = I (B) eine induktiv definierte Menge und sei E(a) eine Eigenschaft, die für Elemente a A entweder wahr oder falsch ist. Will man nun die Aussage Für alle b M gilt E(b)

4 Induktive Definitionen 4 zeigen, so bietet sich eine Induktion über den Aufbau von M an, d.h. man zeigt die folgenden zwei Aussagen: Induktionsanfang (I.A.) Es gilt E(a) für alle a B. Induktionsschritt (I.S.) Für alle ((a 1,..., a l ), b) mit a 1,..., a l M gilt: E(a 1 )... E(a l ) = E(b) Die Annahme E(a 1 )... E(a l ) wird als Induktionsvoraussetzung (I.V.) (bzgl. b) bezeichnet. Die natürlichen Zahlen kann man sich induktiv aus 0 und Successor S erzeugt denken, d.h. N = I ({0}) mit A := {0, S} und := {((a), Sa) a A}. Vollständige Induktion ist also nichts anderes als Induktion über den Aufbau von N. Tatsächlich folgt die gewünschte Aussage Für alle b M gilt E(b) aus (I.A.) und (I.S.). Satz 2.1 (Korrektheit). Sei M = I (B) eine induktiv definierte Menge mit Grundmenge A und E eine Eigenschaft, die für Elemente a A stets wahr oder falsch ist. Ferner gelte (I.A.) und (I.S.) für E. Dann gilt auch E(b) für alle b M. Beweis. Nach Satz?? genügt es zu zeigen, dass die folgende Menge Φ := {b M E(b)} B enthält und -abgeschlossen ist. Denn dann gilt M Φ und das bedeutet gerade E(b) für alle b M. Offenbar gilt B Φ nach (I.A.). Für aus a 1,..., a l Φ zusammengebaute Objekte b folgt b Φ aus (I.S). Als einfaches Beispiel für das Ineinandergreifen von induktiv definierten Mengen und Induktion über den Aufbau kann man mittels Induktion über den Aufbau von BB die folgende offenkundige Eigenschaft von Binärbäumen zeigen: Für alle T BB gilt: T = T. 3 ekursion über den Aufbau Auf induktiv definierten Mengen M := I (B) möchte man i.a. wieder Operationen ausführen, die Elemente aus M in Elemente aus einer Menge N überführen, wobei M =N nicht ausgeschlossen ist. Beispiel. Man möchte jedem Binärbaum T seine Tiefe d(t ) zuordnen, d.h. die maximale Anzahl der Kanten längs eines Weges von der Wurzel zu einem Blatt von T. Da BB induktiv definiert ist, bleibt einem nichts anderes übrig, als d(t ) über den induktiven Aufbau von T BB zu definieren, d.h. man definiert d(t ) für die Basiselemente T, und für zusammengebaute Binärbaume T := T 1 ; ; T 2 bestimmt man d(t ) unter Verwendung

5 Induktive Definitionen 5 der bereits bestimmten Tiefen d(t 1 ), d(t 2 ) der Binärbäume T 1, T 2, aus denen T gebaut wurde. Man sagt dann, d ist rekursiv definiert durch: d( ) := 0 d( T 1 ; ; T 2 ) := 1 + max{d(t 1 ), d(t 2 )} Wir haben also eine Abbildung d: BB N definiert. Dies führt uns auf das folgende Prinzip der ekursion über den Aufbau von induktiv definierten Mengen M. Definition 3.1 (ekursion über den Aufbau). Sei M := I (B) eine induktiv definierte Menge mit Grundmenge A, so dass M durch B, frei erzeugt wird, d.h. ( ) b M : entweder gilt b B oder es gibt genau ein a Seq(M) mit ( a, b). Ferner seien G: A Y Z und H : Seq(A) A Y Seq(Z) Z schon definierte Funktionen, wobei Y, Z irgendwelche Mengen sind und Y Parametermenge heißt. Eine Funktion F : M Y Z (bzw. F : M Z ohne Parametermenge Y ) ist durch ekursion über den Aufbau von M aus G und H definiert, falls F die folgenden ekursionsgleichungen erfüllt (für beliebige y Y ): F (b, y) = G(b, y) für alle b B F (b, y) = H((a 1,..., a l ), b, y, (F (a 1, y),..., F (a l, y))) für alle a 1,..., a l, b M mit ((a 1,..., a l ), b) Bemerkung. Die Bedingung ( ) stellt sicher, dass jedes Element aus M\B auf genau eine Weise gebaut werden kann. Dies impliziert, dass jede Funktion, die obige ekursionsgleichungen erfüllt, wohldefiniert ist, d.h. ein Funktionswert F (b, y) für aus a 1,..., a l M gebaute Objekte b hängt nicht von der Wahl der a 1,..., a l ab. Ferner kann man beweisen, dass es genau eine Funktion gibt, die obige ekursionsgleichungen erfüllt. An dieser Stelle bricht auch das anschauliche Baukastenmodell zusammen, denn Baukastenobjekte (wie bei Märklin, Lego, usw.) sind i.a. nicht frei erzeugt. Bemerkung. Intuitiv kann man die obigen ekursionsgleichungen wie folgt lesen: Um eine Funktion F : M Y Z zu definieren, genügt es wie folgt vorzugehen: (B) Bestimme F (b, y) für beliebige b B, y Y. Dies leistet die Basisfunktion G. () Für beliebige aus a 1,..., a l M gebaute Objekte b und beliebige Parameter y Y, bestimme F (b, y) aus a 1,..., a l, b, y, F (a 1, y),..., F (a l, y) } {{ } Vorgängerwerte mittels bereits bekannter Operationen. Dies leistet die Schrittfunktion H. Bemerkung. Das Beispiel d: BB N verwendet keine Parametermenge Y. Ein Beispiel für eine ekursion über den Aufbau mit Parametermenge stellt die Definition des Wahrheitswertes einer aussagenlogischen Formel unter einer Belegung dar. Hier fungiert die Menge der Belegungen als Parametermenge Y.

6 Induktive Definitionen 6 Beispiel: Die Abbildung d: BB N wird durch ekursion über den Aufbau von BB aus G: A N und H : Seq(A) A Seq(N) N definiert, wobei A := {,,, ; } und G(b) := { 0 1+max{n1, n H((a 1,... a l ), b, (n 1,... n l )) := 2 } falls l =2 und b= a 1 ; ; a 2 0 sonst. Bemerkung. Der Ausweichwert 0 im sonst-fall deutet an, dass man sich in den Anwendungen des Schemas ekursion über den Aufbau bei der Definition von G und H darauf beschränken kann, dass man G nur auf B Y erklärt, und H nur auf Argumenten ((a 1,..., a l ), b, y, (z 1,..., z l )) mit a 1,..., a l, b M und ((a 1,..., a l ), b). Im Alltag der Informatik greifen die drei Prinzipien induktive Definition, Induktion über den Aufbau und ekursion über den Aufbau häufig ineinander. Operationen auf induktiv definierten Datentypen sollen ja bestimmte Spezifikationen erfüllen, und diese weist man mittels Induktion über den Aufbau nach. Als abschließendes Beispiel beweise man durch Induktion über den Aufbau von BB die folgende Aussage: Satz 3.2 (Knotenabschätzung). Für alle binären Bäume T gilt: #Knoten(T ) 2 d(t )+1 1

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik Strukturelle Induktion Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 0 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 1:30-14:00 Uhr, o.n.v.

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Das Beweisverfahren der vollständigen Induktion

Das Beweisverfahren der vollständigen Induktion c 2004 by Rainer Müller - http://www.emath.de 1 Das Beweisverfahren der vollständigen Induktion Einleitung In der Mathematik gibt es im Prinzip drei grundlegende Beweismethoden, mit denen man versucht,

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

1 Mengen und Aussagen

1 Mengen und Aussagen Mathematik für Physiker I, WS 010/011 Montag 01.11 $Id: mengen.tex,v 1.4 010/11/01 14:19:48 hk Exp $ $Id: beweise.tex,v 1.3 010/11/05 06:40:11 hk Exp $ 1 Mengen und Aussagen Wir haben jetzt Allaussagen

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik Wolter/Dahn: Analysis Individuell 3 Kapitel 1 Grundbegriffe der Mengenlehre und der Logik In diesem Abschnitt werden einige Grundbegriffe der Mengenlehre und grundlegende 1/0/0 Prinzipien der mathematischen

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Tutorium 23 Grundbegriffe der Informatik

Tutorium 23 Grundbegriffe der Informatik Tutorium 23 Grundbegriffe der Informatik Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 32 Philipp Oppermann 13. November 2013 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Beweistechniken 1.1 Prädikatenlogik..................................... 1. Direkter Beweis.................................... 3 1.3 Indirekter Beweis....................................

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 16 Philipp Oppermann 9. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre Kevin Kaatz, Lern-Online.net im Mai 2009 Lern-Online.net Mathematik-Portal 1 Inhaltsverzeichnis 1 Vorwort und 3 1.1 Vorwort und Literaturempfehlungen............................

Mehr

Folgen und Grenzwerte

Folgen und Grenzwerte Wintersemester 2015/201 Folgen und Grenzwerte von Sven Grützmacher Dieser Vortrag wurde für den (von der Fachschaft organisierten) Vorkurs für die Studienanfänger an der Fakultät für Mathematik und Informatik

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Kombinatorische Geometrien

Kombinatorische Geometrien KAPITEL 5 Kombinatorische Geometrien Beispiele von Geometrien wurden schon als Inzidenzstrukturen (z.b. projektive Ebenen) gegeben. Wir nehmen hier einen anderen Standpunkt ein und verstehen unter einer

Mehr

Wissenschaftliches Arbeiten Quantitative Methoden

Wissenschaftliches Arbeiten Quantitative Methoden Wissenschaftliches Arbeiten Quantitative Methoden Prof. Dr. Stefan Nickel WS 2008 / 2009 Gliederung I. Motivation II. III. IV. Lesen mathematischer Symbole Wissenschaftliche Argumentation Matrizenrechnung

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 2. Jeder Frosch ist glücklich, wenn alle seiner Kinder quaken können.

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 2. Jeder Frosch ist glücklich, wenn alle seiner Kinder quaken können. Aufgabe 2.1 (3 Punkte) Gegeben sind folgende Aussagen: Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 2 Jeder Frosch ist glücklich, wenn alle seiner Kinder quaken können. Alle grünen Frösche

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Kapitel 1: Motivation / Grundlagen Gliederung

Kapitel 1: Motivation / Grundlagen Gliederung Gliederung 1. Motivation / Grundlagen 2. Sortier- und Selektionsverfahren 3. Paradigmen des Algorithmenentwurfs 4. Ausgewählte Datenstrukturen 5. Algorithmische Geometrie 6. Umgang mit algorithmisch schwierigen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

bestehenden sind, weiterhin benutzt werden. Oft beleuchten unterschiedliche Formalismen Dinge nämlich von unterschiedlichen Blickwinkeln.

bestehenden sind, weiterhin benutzt werden. Oft beleuchten unterschiedliche Formalismen Dinge nämlich von unterschiedlichen Blickwinkeln. 2 Endliche Automaten bestehenden sind, weiterhin benutzt werden. Oft beleuchten unterschiedliche Formalismen Dinge nämlich von unterschiedlichen Blickwinkeln. Fragen 1. Sei R = 0 1 + (0 + 1). In welchen

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Effizienz von Algorithmen

Effizienz von Algorithmen Effizienz von Algorithmen Letzte Bearbeitung: Jan 211 Ein wichtiger Aspekt bei Algorithmen sind seine "Kosten". Wir wollen uns hier ausschließlich mit der Laufzeit des gewählten Algorithmus beschäftigen.

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Donnerstag, den 10.04.03 Kapitel 7 Korrektheit 7.1 Abstrakte Prozeduren Abstrakte Prozedur

Mehr

5 Intervalle, Metrik und Topologie für R

5 Intervalle, Metrik und Topologie für R 5 Intervalle, Metrik und Topologie für R 5.1 Intervalle in R 5.2 Charakterisierung der Intervalle 5.3 Die kanonische Metrik auf R 5.4 ε-umgebung 5.5 Offene und abgeschlossene Teilmengen von R 5.6 Die kanonische

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Peano-Axiome und Peano-Strukturen

Peano-Axiome und Peano-Strukturen Peano-Axiome und Peano-Strukturen Filippo Leonardi 27. März 2012 1 Peano-Arithmetik Der Folgende Abschnitt beruht auf Abschnitt 3.3 in [Rau08] und benützt dieselbe Notation. In diesem Abschnitt arbeiten

Mehr

8 Konvergenzkriterien und Häufungswerte von Folgen in R

8 Konvergenzkriterien und Häufungswerte von Folgen in R 8 Konvergenzkriterien und Häufungswerte von Folgen in R 8.1 Konvergenz monotoner Folgen 8.2 Die Zahl e 8.3 Existenz monotoner Teilfolgen 8.4 Auswahlprinzip von Bolzano-Weierstraß 8.5 Konvergenzkriterium

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Mathematik für Informatiker/Informatikerinnen 2

Mathematik für Informatiker/Informatikerinnen 2 Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: peter.buchholz@udo.edu OH 16, R 216 Sprechstunde

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Die primitiv rekursiven Funktionen

Die primitiv rekursiven Funktionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Die primitiv rekursiven

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Aussagenlogik

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Lösungsvorschläge

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Lösungsvorschläge Klausur zur Vorlesung Grundegriffe der Informatik 14. Septemer 2015 svorschläge Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI Email-Adr.: nur falls 2.

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.1

Algorithmen und Datenstrukturen 1 Kapitel 4.1 Algorithmen und Datenstrukturen 1 Kapitel 4.1 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 4: Maschinenmodelle [Dieses Kapitel hält sich eng an

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 12. November 2014 Darstellung natürlicher Zahlen durch Mengen 1. Wie können wir natürliche Zahlen durch Mengen darstellen? Idee 0 = und

Mehr