ABZÄHLPROBLEME BEI BÄUMEN B =

Größe: px
Ab Seite anzeigen:

Download "ABZÄHLPROBLEME BEI BÄUMEN B ="

Transkript

1 ABZÄHLPROBLEME BEI BÄUMEN HELMUT PRODINGER (WIEN) Es sei B die Familie der binären Bäme B kann drch eine formale Gleichng beschrieben werden: B = + B B Dies besagt, daß ein binärer Bam entweder ein Blatt (externer Knoten) ist, oder eine Wrzel zsammen mit einem linken nd einem rechten Teilbam, welche selbst binäre Bäme sind Diese formale Gleichng kann übersetzt werden in eine Gleichng für die erzegende Fnktion B(z): B(z) = + zb 2 (z); B(z) = 4z = 2n z n 2z n + n n 0 Binäre Bäme können verwendet werden, m arithmetische Asdrücke darzstellen: ( ) 7 4 Die Aswertng kann mit Hilfe von Registern erfolgen; diese werden verwendet, m Zwischenergebnisse z speichern Die Registerfnktion Reg(t) ist definiert als die minimale Anzahl von Registern zr Aswertng des Bames t nter Verwendng der optimalen Strategie

2 2 ABZÄHLPROBLEME BEI BÄUMEN Es gilt: Reg( ) = 0 ( ) Reg t t 2 = { + Reg(t ) falls Reg(t ) = Reg(t 2 ) max{reg(t ), Reg(t 2 )} sonst Es sei R p (S p ) die Familie der Bäme mit Registerfnktion = p ( p); R p (z) nd S p (z) seien die entsprechenden erzegenden Fnktionen Man sieht nmittelbar: R p = + + R p R p R j R p j<p R p R j j<p S p = + + S p S p B \ S p S p S p B \ S p Daher gilt: R p = zrp 2 + 2zR p R j, R 0 =, j<p S p = zs 2 p + 2zS p (B S p ), S 0 = B ; S p = Wir setzen ε := 4z = 2zB : S p = ε z zs 2 p 2zB + 2zS p S 2 p + 2 S p Wir mltiplizieren mit ε/z nd sbstitieren U p := ε/zs p : U p = U 2 p + 2U p U p + = (U p + ) 2 U p = + (U 0 + ) 2p ; U 0 = ε zb S p = ε z + +ε 2 p ε

3 Es ist günstig, z = /( + ) 2 z setzen: ABZÄHLPROBLEME BEI BÄUMEN 3 S p = 2 2p 2p R p = S p S p+ = 2 2p 2p+ Sei nn M n die mittlere Registerfnktion eines binären Bames mit n Knoten Es gilt: p 0 M n = p [zn ]R p (z) [z n = [zn ] p S p(z) ]B(z) [z n ]B(z) Wir stdieren den Zähler: mit v 2 (k) = k=2 p λ, p,λ E(z) = S p (z) = 2 2p p p 2p = 2 = 2 2p λ p λ v 2 (k) k k (Beachte v 2 (2n) = + v 2 (n), v 2 (2n + ) = 0) Um den Koeffizienten von z n in E(z) z finden, bedienen wir ns einer analytischen Methode Das Verhalten der Koeffizienten wird nämlich weitgehend beschrieben drch das Verhalten der erzegenden Fnktion in der Nähe der Singlaritäten am Konvergenzkreis Es liegt eine Singlarität bei = vor Mit Hilfe der Mellin Transformation findet man für t 0: nd insgesamt (z /4) k v 2 (k)e tk s Γ(s)ζ(s) Res 2 s t s ( 3 E(z) 2ε log 2 ε log 2 2π + γ ) + 4 ε χ k log 2 k 0 Beachtet man noch, daß [z n ]B(z) 4n π n 3/2 mit χ k = 2kπi log 2 ist, folgt nn M n log 4 n 2 γ 2 log 2 log 2 + log 2 2π + log 2 k 0 Es gilt n χ k/2 = e 2kπi log 4 n, nd somit M n log 4 n + D(log 4 n) Hier ist D(x) eine periodische Fnktion mit Periode ζ(χ k )Γ (χ k ) (χk ) nχ k /2 2

4 4 ABZÄHLPROBLEME BEI BÄUMEN Die Forierreihenentwicklng D(x) = k d k e 2kπix ist: d 0 = 2 γ 2 log 2 log 2 + log 2 2π, d k = log 2 ζ(χ k)γ (χ k ) (χk ), k 0, χ k = 2kπi 2 log 2 Man kann ach Motzkinbäme betrachten: M = + + M M M M kann as B drch Sbstittion gewonnen werden: Daher: M(z) = z B z ( z) 2 Die Registerfnktion von Bämen as M wird drch die folgende Erweiterng gewonnen: Reg t = Reg(t) Es gilt ach R p (M) (z) = z R z p ( z) 2 sw Deshalb ist die mittlere Registerfnktion jetzt gegeben drch Ähnlich wie vorher erhält man [z n ] [z n ] z E( ) z ( z) 2 z B( ) z ( z) 2 log 4 n + D(log 4 n)

5 ABZÄHLPROBLEME BEI BÄUMEN 5 F = c 0 + c + c 2 F F F Die Sitation kann noch verallgemeinert werden drch Gewichte: In einem binären Bam bezeichnen wir einen Knoten t als kritisch, falls die Registerfnktion des linken nd rechten Unterbames gleich sind Nach längerer Rechnng erhält man: die mittlere Anzahl der kritischen Knoten eines binären Bames mit n Knoten ist wo V (z) = ( + ) 2 2 [z n ]V (z) [z n ]B(z), ω(k) k ; ω(k) = i falls k = 2 m ( + 2i) k Drch ähnliche Methoden wie vorher erhält man: ngefähr n 3 Knoten sind kritisch Man kann ach explizit errechnen, daß 2n [z n ]V (z) = 2 [ ] 2n 2n 2n ω(k) 2 + n n + k n k n k k Drch partielle Smmation (zweimal drchzführen) nd Information über ω(k) n<n k n kann man das asymptotische Verhalten ach relativ elementar (dafür mühsam) errechnen Af eine ngelöste Frage im Zsammenhang mit der Registerfnktion binärer Bäme soll noch eingegangen werden: Die erzegende Fnktion der binären Bäme mit Registerfnktion < p ist B(z) S p (z) = F 2 p (z), F 2 p(z) mit F n (z) = n j ( z) j (Fibonaccipolynom) j j Die linksseitige Höhe h eines binären Bames ist definiert drch h( ) = 0 ( ) h = max{ + h(t ), h(t 2 )} t t 2

6 6 ABZÄHLPROBLEME BEI BÄUMEN Die erzegende Fnktion der Bäme mit h(t) < h ist F h (z) F h+ (z) Somit ist die Anzahl der binären Bäme mit n Knoten nd Registerfnktion < p gleich der Anzahl der binären Bäme mit n Knoten nd linksseitiger Höhe < 2 p Gescht ist eine geeignete Bijektion dieser Objekte Literatr NGde Brijn, DEKnth, SORice: The average height of planted plane trees, in: Graph Theory and Compting (RCRead, Ed), 5-22, Academic Press, PFlajolet: Analyse d algorithmes de maniplation d arbres et de fichiers, Thèse Paris- Sd-Orsay, PFlajolet, AOdlyzko: The average height of binary trees and other simple trees, JCSS 25(982), PFlajolet, HProdinger: The nmber of registers to evalate nary-binary trees, SIAM J Compting 5(986), PFlajolet, JCRaolt, JVillemin: The nmber of registers reqired for evalating arithmetical expressions, TCS 9(979), RKemp: The average nmber of registers to evalate a binary tree optimally, Acta Inf (979), HProdinger: Some recent reslts on the register fnction of a binary tree, Annals of Discrete Math 33(987), HProdinger, RFTichy: Über ein zahlentheoretisches Problem as der Informatik, Sitzngsberichte der Österreichischen Akademie der Wissenschaften, Abt II, 92(983),

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol.

Einführung in FEM Motivationsbeispiel. Berechnungsbeispiel COMSOL Multiphysics: Elastizitätsberechnung eines F1 Frontflügels. www.comsol. Einführng in FEM Motivationsbeispiel Berechnngsbeispiel COMSO Mltiphysics: Elastizitätsberechnng eines F Frontflügels. www.comsol.de Originalgeometrie CAD-Modell mit Berechnngsgitter FEM Ergebnis der Aslenkng

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Der Approximationsalgorithmus von Christofides

Der Approximationsalgorithmus von Christofides Der Approximationsalgorithms on Christofides Problem: Traeling Salesman Inpt: Ein Graph G = (V, E) mit einer Distanzfnktion d : E Q 0. Afgabe: Finde eine Tor, die alle Knoten des Graphen G gena einmal

Mehr

Checkliste 36 Formulierung exportbezogener Zahlungsbedingungen

Checkliste 36 Formulierung exportbezogener Zahlungsbedingungen Checkliste 36 Formlierng exportbezogener Zahlngsbedingngen Definition Mit der im Kafvertrag vereinbarten Zahlngsbedingng sollen.a. folgende Pnkte geregelt werden: wer zahlt an wen wann wo welchen Betrag

Mehr

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen

Übungsaufgaben Mathematik 3 MST Lösung zu Blatt 4 Differentialgleichungen Übngsafgaben Mathematik MST Lösng z Blatt 4 Differentialgleichngen Prof. Dr. B.Grabowski Z Afgabe ) Lösen Sie folgende Differentialgleichngen nd Anfangswertprobleme drch mehrfaches Integrieren nach y(x)

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

UNSER KONZEPT FÜR ERFOLGREICHE IMMOBILIENWERBUNG mit allen Umsetzungsschritten und konkreter Preiskalkulation

UNSER KONZEPT FÜR ERFOLGREICHE IMMOBILIENWERBUNG mit allen Umsetzungsschritten und konkreter Preiskalkulation Kreative Werbng MACHT IHR OBJEKT ZUM HIGHLIGHT! UNSER KONZEPT FÜR ERFOLGREICHE IMMOBILIENWERBUNG mit allen Umsetzngsschritten nd konkreter Preiskalklation INHALT S.2 10 Schritte z mehr Vermietng, Verkaf

Mehr

Labor Messtechnik Versuch 4 Dehnungsmesstechnik

Labor Messtechnik Versuch 4 Dehnungsmesstechnik F Ingenierwesen FR Maschinenba Versch 4 Dehnngsmesstechnik Seite 1 von 8 Versch 4: Dehnngsmesstechnik 1. Verschsafba 1.1. Umfang des Versches Im Versch werden folgende Themenkreise behandelt: - Verschsstand

Mehr

7 Drehstromgleichrichter

7 Drehstromgleichrichter Drehsromgleichricher 7 Drehsromgleichricher 7.1 Mielpnk-Schalng (Halbbrücke) (3-plsiger Gleichricher) In bbildng 7-1 sind die drei Sekndärwicklngen eines Drehsrom-Transformaors in Sernschalng dargesell.

Mehr

Maximale Sicherheit auch unter Tage: funkwerk TETRA FT4 S Ex

Maximale Sicherheit auch unter Tage: funkwerk TETRA FT4 S Ex Maximale Sicherheit ach nter Tage: fnkwerk TETRA FT4 S Ex Das zertifizierte TETRA-Fnkgerät für Personensicherng, Kommnikation nd präzise Lokalisierng: Für Gefahrenbereiche im Tnnel- nd Bergba. Fnkwerk

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grndlagen Ein Oszilloskop ist ein elektronisches Messmittel zr grafischen Darstellng von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellng

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Facharbeit Mathematik Die Zahl π. Sascha Lambeck Jahrgangsstufe 12 Leistungskurs Mathematik M1 Fachlehrer: Herr Tobias Schuljahr 2000 / 01

Facharbeit Mathematik Die Zahl π. Sascha Lambeck Jahrgangsstufe 12 Leistungskurs Mathematik M1 Fachlehrer: Herr Tobias Schuljahr 2000 / 01 Facharbeit Mathematik Die Zahl π Sascha Lambeck Jahrgangsstfe Leistngskrs Mathematik M Fachlehrer: Herr Tobias Schljahr / Inhaltsverzeichnis Einleitng 3. Vorwort.............................. 3. Geschichtliches..........................

Mehr

Access Professional Edition 3.0

Access Professional Edition 3.0 Engineered Soltions Access Professional Edition 3.0 Access Professional Edition 3.0 www.boschsecrity.de Software für Ztrittskontrolle nd Sicherheitsmanagement nter Ntzng der innovativen Prodktfamilie der

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Schwellwertdecodierung von Turbo Codes

Schwellwertdecodierung von Turbo Codes Schwellwertdecodierng von Trbo Codes Sven Riedel nd Yri V. Svirid Technische Universität München, Lehrsthl für Nachrichtentechnik, 829 München Tel.: (89)215 3471 (Fax: 349), e mail: sven@lnt.e-technik.t-menchen.de

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Optima CG / Optivent CG. Innovative TAV-Decken Lösungen für Operationssäle

Optima CG / Optivent CG. Innovative TAV-Decken Lösungen für Operationssäle Optima CG / Optivent CG Innovative TAV-Decken Lösngen für Operationssäle Optima CG / Optivent CG Innovative TAV-Decken Lösngen für Operationssäle Anwendngen Reinlft Energiegewinnng Reinram Indstriell Schlüsselfaktoren

Mehr

1. Theoretische Grundlagen

1. Theoretische Grundlagen Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- nd Prüftechnik Laborpraktikm Abgabe der Aswertng dieses Verschs ist Vorassetzng für die Zlassng zm folgenden ermin Grndlagen der Leistngsmessng

Mehr

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Werkrealschule Realschule

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Werkrealschule Realschule paker. 25 Ja hr e pa k er Abschlss2014 Haptschle Werkrealschle Realschle W B ür ad tt e em nbe rg Prüfngsvorbereitng Übngsmaterial 1 BW_2013_kompl.indd 1 25 Jahre paker Seit nnmehr einem Vierteljahrhndert

Mehr

Schaltungen mit nichtlinearen Widerständen

Schaltungen mit nichtlinearen Widerständen HOCHSCHLE FÜ TECHNIK ND WITSCHAFT DESDEN (FH) niversity of Applied Sciences Fachbereich Elektrotechnik Praktikm Grndlagen der Elektrotechnik Versch: Schaltngen mit nichtlinearen Widerständen Verschsanleitng

Mehr

Dentaurum Online-Shop www.dentaurum.de

Dentaurum Online-Shop www.dentaurum.de online-shop de Dentarm Online-Shop www.dentarm.de schneller komfortabler einfacher www.dentarm.de Die Adresse für Orthodontie, Implantologie nd Zahntechnik im Internet Entdecken Sie den Online-Shop von

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Netzgeführte Stromrichterschaltungen

Netzgeführte Stromrichterschaltungen 4 Netzgeführte Stromrichterschaltngen In netzgeführten Stromrichtern wird die Wechselspannng des speisenden Netzes nicht nr zr Spannngsbildng af der Asgangsseite bentzt, sondern sie dient ach als treibende

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Curriculum des Mataré-Gymnasiums Meerbusch für den Fachbereich SPORT

Curriculum des Mataré-Gymnasiums Meerbusch für den Fachbereich SPORT Crriclm des Mataré-Gymnasims Meerbsch für den Fachbereich SPORT Die Gestaltng des Schlcrriclms Sport des Mataré-Gymnasims orientiert sich neben den Vorgaben der Richtlinien detlich an stfenübergreifenden

Mehr

Checkliste 35 Risiko einzelner Zahlungsbedingungen

Checkliste 35 Risiko einzelner Zahlungsbedingungen Checkliste 35 Risiko einzelner Zahlngsbedingngen Definition Mit der Wahl der Zahlngsbedingng wird über die Sicherheit des Zahlngseinganges entschieden. Aßerdem stellen die Zahlngsbedingngen neben den Lieferbedingngen

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

Wenn der Pharma-Markt für Sie unruhiges Gewässer ist, bringen wir Sie auf. Erfolgskurs.

Wenn der Pharma-Markt für Sie unruhiges Gewässer ist, bringen wir Sie auf. Erfolgskurs. Wenn der Pharma-Markt für Sie nrhiges Gewässer ist, bringen wir Sie af Erfolgskrs. Profil & Philosophie Wir sind DS Pharma. Sie wissen es selbst am besten: Der Wettbewerb in der Pharmabranche wird immer

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine einfachen Kreise enthält. Bäume und Wälder 2 / 37 Bäume

Mehr

Ermittlung der Unsicherheiten in der Werkstoffprüfung

Ermittlung der Unsicherheiten in der Werkstoffprüfung Bndesanstalt für Materialforschng nd -prüfng Unterschngen z Schäden an Radsatzlenkern nd lagern der BR 481, Fahrzege 5 nd 193 Erittlng der Unsicherheiten in der Werkstoffprüfng Ralf Häcker BAM Bndesanstalt

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Gesellschaft für Informatik, Arbeitskreis IV Beratung

Gesellschaft für Informatik, Arbeitskreis IV Beratung Gesellschaft für Informatik, Arbeitskreis IV Beratng Welche Kenntnisse nd Fähigkeiten it sich Beratngsnternehmen bei Hochschlabsolventen wünschen Statement Version 0.9 Bad Hombrg, im Febrar 2010 Agenda

Mehr

Konsumtheorie. Budgetbedingung des Konsumenten. Präferenzen und Nutzenfunktion. 2.3 Konsumoptimum und individuelle Nachfrage

Konsumtheorie. Budgetbedingung des Konsumenten. Präferenzen und Nutzenfunktion. 2.3 Konsumoptimum und individuelle Nachfrage . Einführng/Motivation. Konsmtheorie 3. Prodktionstheorie 4. Marktanalyse Konsmtheorie Bdgetbedingng des Konsmenten Präferenzen nd Ntzenfnktion Konsmoptimm nd individelle Nachfrage Literatr t z.: Pindyck/Rbinfeld,

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Der Bewertungskalkül der Faustmann schen Formel

Der Bewertungskalkül der Faustmann schen Formel Der Bewertngskalkül der Fastmann schen Formel Der sich hinter der Fastmann-Formel verbergende Bewertngskalkül wrde bereits vor Fastmann von G. König verwendet (KÖNIG, G., 835: Die Forstmathematik mit Anweisng

Mehr

Mathe mit Mieze Mia Mia hat Würfel eingenetzt. Mathe mit Mieze Mia

Mathe mit Mieze Mia Mia hat Würfel eingenetzt. Mathe mit Mieze Mia Mathe mit Mieze Mia Mathe mit Mieze Mia Mia hat Würfel eingenetzt Dieses Lernheft habe ich für meinen eigenen Unterricht erstellt nd stelle es af meiner privaten Homepage www.grndschlnews.de zm absolt

Mehr

Bestimmung der molaren Masse nach Dumas (MOL)

Bestimmung der molaren Masse nach Dumas (MOL) Physikalisches Praktikm Versch: MOL 1.1.000 Bestimmng der molaren Masse nach Dmas (MOL) Manel Staebel 3663 / Michael Wack 34088 1 Verschsbeschreibng Im folgenden Versch werden wir nach der Methode von

Mehr

eses Unternehmen ist zertifiziert nach: IN EN 15838

eses Unternehmen ist zertifiziert nach: IN EN 15838 eses Unternehmen ist zertifiziert nach: IN EN 15838 Call Center Verband Detschland e.v. Callcenter erfolgreich zertifizieren Herasgeber: Call Center Verband Detschland e.v. Axel-Springer-Straße 54A 10117

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Allgemein Teilgebiete der Informatik ohne Theoretische Grundlagen 2 Fragen an

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Musterlösung Nachklausur Gundlagen der Regelungstechnik WS0506 vom

Musterlösung Nachklausur Gundlagen der Regelungstechnik WS0506 vom Msterlösng Nachklasr Gndlagen der Regelngstechnik WS0506 vom 4.0.006 Afgabe : Das folgende Blockschaltbild ist z vereinfachen nd zsammenzfassen: G G G Schritt : G nd G zsammenfassen soie die Smmationsstelle

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

Die Begriffe der absoluten, relativen und kumulierten Häufigkeit - diskrete Beobachtungen - (empirische Dichte und empirische Verteilung)

Die Begriffe der absoluten, relativen und kumulierten Häufigkeit - diskrete Beobachtungen - (empirische Dichte und empirische Verteilung) Häfigkeit (relative nd kmlierte Häfigkeit) Akademische Disziplin der Statistik/academic field of statistics/ la discipline statistiqe/estadística/disciplina academica della statistica deskriptive Statistik/descriptive

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Windspiel. Material 8 1/2014 PRAKTIPP KOMPASS

Windspiel. Material 8 1/2014 PRAKTIPP KOMPASS Holz, Draht nd Perlen - viel mehr bracht es nicht, m in krzer Zeit ein besonderes Windspiel z gestalten. Am besten macht ihr gleich mehrere davon nd hängt sie alle in eren Lieblingsbam. Es sieht bezabernd

Mehr

Messunsicherheit und Fähigkeit

Messunsicherheit und Fähigkeit Dr.-Ing. Michael Hernla Sonnenplatz 13, 44137 Dortmnd Telefon 0231 136010 michael.hernla@t-online.de www.dr-hernla.de Messnsicherheit nd Fähigkeit Eine Übersicht für die betriebliche Praxis Michael Hernla

Mehr

Besuchen Sie uns auf unserer Webseite www.newsrodeo.at

Besuchen Sie uns auf unserer Webseite www.newsrodeo.at Beschen Sie ns af nserer Webseite www.newsrodeo.at Einsatzbereiche Digital Signage ist nglablich vielfältig einsetzbar nd in modernen, innovativen Betrieben nicht mehr weg z denken. NewsRodeo kann als

Mehr

Algorithmische Methoden der Netzwerkanalyse

Algorithmische Methoden der Netzwerkanalyse Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )

Mehr

DECT Secury System funkwerk DSS: Professionelle Sicherheit und Kommunikation.

DECT Secury System funkwerk DSS: Professionelle Sicherheit und Kommunikation. DECT Secry System fnkwerk DSS: Professionelle Sicherheit nd Kommnikation. Das DECT-basierte Fnknotrfsystem mit Telefonie-Integration nd exakter Lokalisierng Fnkwerk Secrity Commnications Die Fnkwerk Secrity

Mehr

Leitfaden. Abdrucknahme

Leitfaden. Abdrucknahme Abdrcknahme Leitfaden Abdrcknahme Abdrcknahme Akteller Stand Im Zsammenhang mit der präzisen Abformng präparierter Pfeilerzähne ist es sinnvoll mögliche Interaktionen festsitzender Versorgngen mit oralen

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Realschule

pauker. Abschluss2014 Prüfungsvorbereitung Übungsmaterial Hauptschule Realschule paker. 25 Ja hr e pa k er Abschlss2014 Prüfngsvorbereitng Übngsmaterial Ni ed er sa ch se n Haptschle Realschle 1 NDS_2013_kompl.indd 1 19.07.13 11:46 25 Jahre paker Seit nnmehr einem Vierteljahrhndert

Mehr

Phasenseparation (Entmischung) in binären, homogenen Mischungen

Phasenseparation (Entmischung) in binären, homogenen Mischungen Phasenseparation (Entmischng) in binären homogenen Mischngen Exkrs: Tangenten an molare Zstandsfnktionen In einer binären Mischng (enthält 2 Komponenten) seien Teilchen der orte nd Teilchen der orte vorhanden.

Mehr

Die k kürzesten Wege in gerichteten Graphen

Die k kürzesten Wege in gerichteten Graphen Die k kürzesten Wege in gerichteten Graphen Marc Benkert Wintersemester 001/00 1 Einführung 1.1 Problemstellung In einem gerichteten, gewichteten Graphen G = (V, E) sollen die k kürzesten Wege zu zwei

Mehr

Standard 8029HEPTA/GPS. Weil jeder Bruchteil einer Sekunde zählt. Netzwerksynchronisation auf kleinstem Raum. hopf Elektronik GmbH

Standard 8029HEPTA/GPS. Weil jeder Bruchteil einer Sekunde zählt. Netzwerksynchronisation auf kleinstem Raum. hopf Elektronik GmbH 8029HEPTA/GPS Standard Weil jeder Brchteil einer Seknde zählt Netzwerksynchronisation af kleinstem Ram hopf Elektronik GmbH Nottebohmstraße 41 58511 Lüdenscheid Detschland Telefon: +49 (0)2351 93 86-86

Mehr

Klausurplan Mathematik WS 15/16 Stand: 4. Februar 2016 Klausurübersicht: Studierende

Klausurplan Mathematik WS 15/16 Stand: 4. Februar 2016 Klausurübersicht: Studierende Klausurplan Mathematik WS 15/16 Stand: 4. Februar 2016 Klausurübersicht: Studierende ACHTUNG: Beachten Sie, dass einige Klausuren wegen niedriger Zahl von Anmeldungen durch mündliche Prüfungen ersetzt

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

AUSBILDUNGSPROGRAMM des Fonds Gesundes Österreich für Betriebliche Gesundheitsförderung. BGF-ProjektleiterInnen GesundheitszirkelmoderatorInnen

AUSBILDUNGSPROGRAMM des Fonds Gesundes Österreich für Betriebliche Gesundheitsförderung. BGF-ProjektleiterInnen GesundheitszirkelmoderatorInnen AUSBILDUNGSPROGRAMM des Fonds Gesndes Österreich für Betriebliche Gesndheitsförderng BGF-ProjektleiterInnen GesndheitszirkelmoderatorInnen Betriebliche Gesndheitsförderng (BGF) hat Eingang in die österreichische

Mehr

IT-Nachrichten für die Berliner Verwaltng Nr 1/2002-12 Jahrgang Extensible Markp Langage IN DIESER AUSGABE: Schwerpnkt XML Online = Infos = CD-ROM = Projekte & Verfahren = Tipps & Tricks = Literatr 2 1/02

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

VerantwortungsträgerInnen und Beschäftigte, die im eigenen Unternehmen ein BGF-Projekt leiten oder ein geplantes Projekt leiten werden

VerantwortungsträgerInnen und Beschäftigte, die im eigenen Unternehmen ein BGF-Projekt leiten oder ein geplantes Projekt leiten werden BGF-PROJEKTLEITER/IN Zielgrppe: Grppengröße: Seminardaer: VerantwortngsträgerInnen nd Beschäftigte, die im eigenen Unternehmen ein BGF-Projekt leiten oder ein geplantes Projekt leiten werden 6-12 Personen

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

DATENSTRUKTUREN UND ALGORITHMEN

DATENSTRUKTUREN UND ALGORITHMEN DATENSTRUKTUREN UND ALGORITHMEN 2 Ist die Datenstruktur so wichtig??? Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen Dünn besetzte Graphen und Matrizen bilden

Mehr

Herausforderungen und Regelungsbedarf durch neue Technologien

Herausforderungen und Regelungsbedarf durch neue Technologien Proseminar Ethische Aspekte der Informationsverarbeitng WS 2007/2008 Prof. Dr. W. Krth - Thema 22 - Herasforderngen nd Regelngsbedarf drch nee Technologien The Promise and Challenge of Emerging Technologies

Mehr

NORDICSPORTS FRANCHISING

NORDICSPORTS FRANCHISING rdicsportsacademy.com www.nordicsportsacademy.com www.nordicsportsacademy.com www.nordicsportsacademy.com www.nordicsportsacademy.com www.nordicsportsacademy.com www.nordicspor com NORDICSPORTS FRANCHISING

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

N4387A Linear Heat Series

N4387A Linear Heat Series Brandmeldesysteme N4387A Linear Heat Series N4387A Linear Heat Series www.boschsecrity.de Schnelle nd genae Erkennng des Orts, der Größe nd der Asbreitng von Bränden Reichweite von bis z 2 x 8 km bzw.

Mehr

Dipl.-Ing. Walter Abel Management Consulting

Dipl.-Ing. Walter Abel Management Consulting Mit ns af dem Weg zr Spitze. Dipl.-Ing. Walter Abel Management Conslting Karl Czerny - Gasse 2/2/32 A - 1200 Wien +43 1 92912 65 7 +43 1 92912 66 office@walter-abel.at www.walter-abel.at www.itsmprocesses.com

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme

Binärer Entscheidungsbaum. für Boole sche Funktionen. (binary decision tree: BDT) Kapitel 4: Binäre Entscheidungsdiagramme Kapitel 4: Binäre Entscheidungsdiagramme (BDDs) BDDs (binary decision diagrams) wurden aus binären Entscheidungsbäumen für boole sche Funktionen entwickelt. Binärer Entscheidungsbaum (binary decision tree:

Mehr

Lösungen zur Prüfung in diskreter Mathematik vom 15. Januar 2008

Lösungen zur Prüfung in diskreter Mathematik vom 15. Januar 2008 Lösungen zur Prüfung in diskreter Mathematik vom. Januar 008 Aufgabe (a) Wir bezeichnen mit A i die Menge der natürlichen Zahlen zwischen und 00, welche durch i teilbar sind (i {,,, }). Wir müssen die

Mehr

Achsen eines Parallelogramms. Eckart Schmidt

Achsen eines Parallelogramms. Eckart Schmidt Achsen eines Parallelogramms Eckart Schmidt Eine Achsenkonstrktion für Ellipsen dürfte hete kam Thema der Schlgeometrie sein Betrachtet man statt der Ellipse ein einbeschriebenes Parallelogramm z konjgierten

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

ENGINEERING F HV. Department of Engineering. www.fhv.at/doe

ENGINEERING F HV. Department of Engineering. www.fhv.at/doe Department of Engineering www.fhv.at/doe F HV ENGINEERING DEPARTMENT OF ENGINEERING Lehre nd angewandte Forschng & Entwicklng in den Bereichen Atomatisierng, Fertigng, Konstrktion nd Mechatronik. Schwerpnkte

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen Epfehlngs-Systee Recoender-Systee Kollaboratves Fltern & nhaltsbaserte Epfehlngen Systee, Ntzern Dnge z epfehlen (z.b. Bücher, Fle, Ds, Webseten, Nesgrop Nachrchten, de af hren vorgen Präferenzen baseren.

Mehr

27. August 2013 Einleitung. Algorithmen und Datenstrukturen

27. August 2013 Einleitung. Algorithmen und Datenstrukturen Algorithms and Data Structures Introduction Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 27. August 201 ODE/FHTBM Algorithms and Data Structures Introduction

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Flachstellenortung ATLAS. VAE GmbH FOA.05. Weichenanlagen und Komponenten. Diagnosesysteme. Antriebe.

Flachstellenortung ATLAS. VAE GmbH  FOA.05. Weichenanlagen und Komponenten. Diagnosesysteme. Antriebe. VAE BASICS Sicherngssysteme FOA.05 nd Komponenten Flachstellenortng ATLAS VAE GmbH www.voestalpine.com/vae nd Komponenten Sicherngssysteme 2 ATLAS Flachstellenortng Afgabenstellng Räder von Schienenfahrzegen

Mehr

Checkliste Wärmebrücken

Checkliste Wärmebrücken Enrg Chcklst Wärmbrückn Gmnd / Bavorhabn (Bzchnng nd Adrss) Projktvrfassng (Nam nd Adrss) Ort, Datm, Untrschrft > all bm Bavorhabn vorhandnn Wärmbrückn snd n dr Übrscht angkrzt ja nn > bm Enzlbatlnachws

Mehr

Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01

Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Online-Algorithmen Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Vortrag Bin Packing von Thilo Geertzen 25. Oktober 2000 Online Algorithmen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Die$VS$4$Mozartschule$beteiligt$sich$aktiv$an$der$Spendenaktion$

Die$VS$4$Mozartschule$beteiligt$sich$aktiv$an$der$Spendenaktion$ ! Die$VS$4$Mozartschle$beteiligt$sich$aktiv$an$der$Spendenaktion$ Die!4.!Klassen!der!VS!4!Mozartschle!basteln!seit!Ende!Oktober!Schmck!für!die!Aktion! Helle!Köpfe! der!hilfsorganisation! Licht!für!die!Welt.!Am!11.!Oktober!sollen!erste!Stücke!bei!einem!Presseevent!

Mehr

Unternehmensbewertung anhand des Roll-back-Verfahrens

Unternehmensbewertung anhand des Roll-back-Verfahrens Unternehmensbewertng anhand des Roll-back-Verfahrens Management Unternehmensbewertng anhand des Roll-back-Verfahrens Detliche Komplexitätsredktion drch einfache Rechentechnik Alexander Enzinger / Peter

Mehr