Bewertung von Barriere Optionen im CRR-Modell

Größe: px
Ab Seite anzeigen:

Download "Bewertung von Barriere Optionen im CRR-Modell"

Transkript

1 Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu, einen billigeren Call oder Put anzubieten. Man unterscheidet hier zwischen zwei Mechanismen beim Treffen einer Barriere: knock-in und knock-out. Eine knock-in Option wird erst dann aktiviert, wenn der Aktienpreis eine gewisse Barriere erreicht oder über- bzw. unterschreitet. Ansonsten bleibt sie wertlos. Eine knock-out Option hingegen wird beim ersten Erreichen der Barriere wertlos. Zusätzlich unterscheidet man, ob die Barriere von oben oder von unten erreicht wird. Man unterscheidet also insgesamt zwischen 4 Typen von Barriere Optionen: down-and-out up-and-out down-and-in up-and-in Bei der Bewertung solcher Optionen muss berücksichtigt werden, dass es sich um sogenannte pfadabhängige Derivate handelt, also deren Auszahlung eben nicht nur vom Schlusskurs abhängt, sondern den gesamten Kursverlauf berücksichtigt. Im folgenden wird eine Preisformel für den down-and-out Call im Cox-Ross-Rubinstein Modell (CRR-Modell) hergeleitet. Dazu wird als erstes an das N-Perioden CRR-Modell erinnert: Laufzeit N Perioden Bankkonto mit Zinsrate r B(t) = ( + r) t

2 t Aktie mit Anfangskurs S 0 und S t =S 0 Y i mit Y i {u, d} und P (Y i = u) = p = P (Y i = d) Für den Parameter q= +r d u d und liegt Risikoneutralität vor. Es gilt Betrachten den Fall d = u. Q(Y i = u) = q = Q(Y i = d) Q(S t = S 0 u i d t i ) = ( ) t q i ( q) t i i Down-and-out Call Anfangskurs S 0, Laufzeit T, Strike Preis K Barriere B mit B < S 0 und B < K Der down-and-out Call verhält sich wie ein Call, solange der Aktienkurs oberhalb der Barriere bleibt. Ansonsten verfällt der Call. Die Claimauszahlung eines down-and-out Calls mit Barriere B ist definiert durch: C = (S T K) + { min St>B} Wir wollen nun den Preis für diesen Call herleiten, d.h. E Q [ ( + r) T (S T K) + { min St>B} ] bestimmen. Dazu bestimmen wir zunächst die gemeinsame Verteilung eines Random Walks Z n = n X i mit X i {u, u} und P (X i = u) = q = P (X i = u) und des Minimums M n := min 0 t n Z t..fall: q = (symmetr. Random Walk) Satz Sei b=lu und m=ku mit k, l Z, k < l. Für Z n = n X i mit X i {u, u} u.i.v. und P (X i = u) = = P (X i = u) gilt Q(Z T = b, M T m) = Q(Z T = m b) = ( T l + k)!( T +l k)! ( )T

3 Beweis: ()z.z.: Q(Z T = b, M T m) = Q(Z T = m b) Spiegelungsprinzip: Definiere τ m = min{t : S t = m} Betrachten einen Pfad der Menge {M T m, Z T = b}. Für diesen Pfad gilt natürlich τ m < T Wir stoppen den Pfad zum Zeitpunkt τ m und spiegeln ihn anschliessend. Der gespiegelte Pfad ist also zum Zeitpunkt T in m (b m) = m b d.h. alle Pfade mit Z T = m b korrespondieren mit Pfaden, für die gilt τ m < T und Z T = b. Also gilt: Q(Z T = b, M T m) = Q(Z T = m b) ()z.z.: Q(Z T = m b) = Q(Z T = m b) = ( T l T +l +k)!( )!( )T ( T T +k l ) } {{ } Anzahl der Pfade mit T +k l up-moves = ( T +k l )!(T T +k l )! ( )T = ( T l T +l +k)!( )!( )T ( )T } {{ } W keit für jeden einzelnen Pfad 3

4 [ Anzahl der up-moves berechnen: n u =Anzahl up s n d =Anzahl down s Dann gilt: T = n u + n d n d = T n u Und es gilt m b = n u u (T n u )u ku lu = n u u (T n u )u k l = n u T n u = k l+t ].Fall: q (asymmetr. Random Walk) Satz Sei b=lu und m=ku mit k, l Z, k < l. Für Z n = n X i mit X i {u, u} u.i.v. und P (X i = u) = q = P (X i = u) gilt q Q(Z T = b, M T m) = Q(Z T = m b)( q )l Beweis: Betrachten wieder einen Pfad der Menge {Z T = b, M T m}. Wie im symmetrischen Fall spiegeln wir den Pfad ab dem Zeitpunkt τ m = min{t : S t = m}. Da q q gilt, haben originaler und gespiegelter Pfad andere W keiten. Zwischen den Zeiten τ m und T hat der originale Pfad so viele Aufwärtssprünge wie der gespiegelte Pfad abwärts geht. D.h. es müssen genau so viele downs in ups getauscht werden, wie Knotenpunkte zwischen m und b liegen. (Knotenpunkte zwischen m und b geben an, wie viel mehr der Pfad nach oben gegangen ist als nach unten) Mit b=lu und m=ku folgt, dass der gespiegelte Pfad gerade l-k ups mehr als der Originalpfad hat. Insgesamt also: Anzahl der gespiegelten Pfade bleibt gleich, aber bei der W keit muss an l-k Stellen -q durch q ersetzt werden und damit ergibt sich q Q(Z T = b, M T m) = Q(Z T = m b)( q )l. Nun möchten wir den down-and-out Call bewerten. Mit der Barriere B < K erhält man als Preis für den Down-and-out Call 4

5 E Q [ (S (+r) T T K) + { min T = (+r) T = (+r) T i:s 0 u i T >K St>B} ] E Q [ {ST =S 0 u i u (T i) } (S 0u i u (T i) K) + { min St>B} ] Q(S T = S 0 u i T, min S t > B)(S 0 u i T K) Die Wahrscheinlichkeit werden wir jetzt mit Hilfe des Spiegelungsprinzips berechnen: Sei B = S 0 u k und B < S T also k < i T Q(S T = S 0 u i T, min S t > B) = Q(S T = S 0 u i T, min S t B) = Q( S T S0 = u i T S, min t S 0 u k ) = Q(ln S T S0 Es ist ln S T S0 = (i T ) ln u, min = ln(y Y Y T ) = T mit Y i {e a, e a } := {u, u } = Q( T nach Satz = Q( T = Q( T ln St S 0 k ln u) ln(y i ) = (i T ) ln u, min ln(y i ) und ln(y i ) {a, a} ist gleichbedeutend t ln(y i ) k ln u) ln(y i ) = k ln u (i T ) ln u)( q q )i T ln(y i ) = k i + T ln u)( q q )i T = Q(S T = S 0 u k i+t )( q q )i T also Pfad mit k+t-i Aufwärtssprüngen und T (k + T i) = i k Abwärtssprüngen = ( ) T k+t i q T +k i ( q) i ( q )i T q Für den symmetrischen Fall ergibt sich die W keit Q(S T = S 0 u i T, min S t > B) nach Satz = Q(S T = S 0 u k i+t ) = ( ) T k+t i ( )T und damit der Preis E Q [ (+r) T (S T K) + { min St>B} ] 5

6 = (+r) T = (+r) T i:s 0 u i T >K i:s 0 u i T >K Q(S T = S 0 u i T, min S t > B)(S 0 u i T K) ( ( ) T k+t i ( )T )(S 0 u i T K) 6

7

Bewertung von exotischen Optionen im CRR Modell

Bewertung von exotischen Optionen im CRR Modell Bewertung von exotischen Optionen im CRR Modell Bachelorarbeit von Stefanie Tiemann 11. 08. 2010 Betreuer: Privatdozent Dr. Volkert Paulsen Institut für mathematische Statistik Fachbereich Mathematik und

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Bonus Zertifikate Geldanlage für Skeptiker

Bonus Zertifikate Geldanlage für Skeptiker Bonus Zertifikate Geldanlage für Skeptiker 4.12.2014 Martin Szymkowiak Eigenschaften von Bonus Zertifikaten Bonus Zertifikate 2 Für seitwärts tendierende, moderat steigende oder fallende Märkte Besitzen

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Bewertung von Barrier Optionen mit der Finite-Differenzen-Methode

Bewertung von Barrier Optionen mit der Finite-Differenzen-Methode Bewertung von Barrier Optionen mit der Finite-Differenzen-Methode Diplomarbeit vorgelegt von Ming Liao Universität Bielefeld Fakultät für Wirtschaftswissenschaften 9. Juni 2011 Themensteller: Prof. Dr.

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Down & Out Put auf DJ EuroStoxx 50 Preiswerte Absicherung & Mittel zur Replikation bekannter strukturierter Produkte

Down & Out Put auf DJ EuroStoxx 50 Preiswerte Absicherung & Mittel zur Replikation bekannter strukturierter Produkte Down & Out Put auf DJ EuroStoxx 50 Preiswerte Absicherung & Mittel zur Replikation bekannter strukturierter Produkte Gute Gründe für die Nutzung eines Down & Out Put Die Aktienmärkte haben im Zuge der

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Walter Sanddorf-Köhle Foliensatz Nr. 8 1 / 40 Erweiterungen des Binomialmodells Dividendenzahlungen Sei S der Wert einer Aktie

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Seminar: Finanzmathematik. Bewertung von Barriere Optionen im Black-Scholes Modell sowie die Symmetrie von P. Carr

Seminar: Finanzmathematik. Bewertung von Barriere Optionen im Black-Scholes Modell sowie die Symmetrie von P. Carr Seminar: Finanzmathematik Bewertung von Barriere Optionen im Black-Scholes Modell sowie die Symmetrie von P. Carr Deniz Atug 4. April 2010 Zusammenfassung Die vorliegende Arbeit gibt eine Einführung in

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

Computational Finance

Computational Finance Computational Finance : Simulationsbasierte Optionsbewertung Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 22. Juni 2015 Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

INHALT. Optionstypen

INHALT. Optionstypen Zertifikatestrukturen mit exotischen Optionen Aus der Sicht des Derivatehandels INHALT I. Trading & Derivatives Zertifikatestrukturen mit exotischen Optionen Aus der Sicht des Derivatehandels II. Exotische

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

Devisenoptionsgeschäfte

Devisenoptionsgeschäfte Devisenoptionsgeschäfte Die kaufende Partei einer Option erwirbt durch Zahlung der Prämie von der verkaufenden Partei das Recht, jedoch keine Verpflichtung, einen bestimmten Währungsbetrag zu einem vorher

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de

Adverse Selektion. Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Adverse Selektion Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Fachbereich Finanzwissenschaft Alfred Weber Institut für Wirtschaftswissenschaften Ruprecht-Karls- Universität Heidelberg

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

institut für banken und finanzplanung institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch

institut für banken und finanzplanung institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch Weiterbildungsseminar vom Freitag, 27. März 2009 in Nuolen im Auftrag von Volkswirtschaftsdepartement, Kanton Schwyz

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

Mathematiker in Banken

Mathematiker in Banken Mathematiker in Banken Matthias Tillmann Universität Münster 20.01.2008 Matthias Tillmann (WWU) Mathematiker in Banken 20.01.2008 1 / 23 Gliederung 1 Gliederung 2 Übersicht: Geschäftsbereiche der Dt. Bank

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Positionstrading. am 27.2.2012. Webinarbeginn um 19:00 Uhr. email des PTT: positiontrading@nextleveltrader.de 27.2.2012 1

Positionstrading. am 27.2.2012. Webinarbeginn um 19:00 Uhr. email des PTT: positiontrading@nextleveltrader.de 27.2.2012 1 am 27.2.2012 Webinarbeginn um 19:00 Uhr email des PTT: positiontrading@nextleveltrader.de 27.2.2012 1 Agenda für das Webinar am 27.2.2012: Depotcheck: Besprechung der laufenden Positionen (Auswahl) Ordercheck:

Mehr

Produkttypenbeschreibung

Produkttypenbeschreibung Produkttypenbeschreibung 09.05.2008 Hebel-Produkte Partizipations-Produkte Renditeoptimierungs-Produkte Kaptalschutz-Produkte Warrants Spread Warrants Knock-out Mini-Futures Hebel Diverse Tracker-Zertifikate

Mehr

WGZ Bonus-Zertifikat ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN. Stand: November 2010 ZERTIFIKATE AUF AKTIEN ODER INDIZES. Produktbeschreibung

WGZ Bonus-Zertifikat ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN. Stand: November 2010 ZERTIFIKATE AUF AKTIEN ODER INDIZES. Produktbeschreibung ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN Stand: November 2010 WGZ Bonus-Zertifikat ZERTIFIKATE AUF AKTIEN ODER INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Futures. Vontobel Mini Futures. Vontobel Investment Banking. Minimaler Einsatz, maximale Chance

Futures. Vontobel Mini Futures. Vontobel Investment Banking. Minimaler Einsatz, maximale Chance Vontobel Mini Futures Futures Minimaler Einsatz, maximale Chance Vontobel Investment Banking Vontobel Mini Futures mit minimalem Einsatz Maximales erreichen Anlegern, die das Auf und Ab der Märkte in attraktive

Mehr

Ein statistischer Vergleich der Rendite von langfristigen Anlagen

Ein statistischer Vergleich der Rendite von langfristigen Anlagen Was kostet eine Garantie? Ein statistischer Vergleich der Rendite von langfristigen Anlagen Uwe Wystup Version 5 April 2007 Uwe Wystup: Was kostet eine Garantie? Seite 1 Übersicht Renditen klassischer

Mehr

Target Volatility & Risk Control Indizes. Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz)

Target Volatility & Risk Control Indizes. Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz) Target Volatility & Risk Control Indizes Ulrich Stoof (Bloomberg LP) & Christian Menn (RIVACON & FH Mainz) Agenda Einleitung/Motivation Der Risk Control Mechanismus Exkurs: Varianz- und Volatilitätsschätzer

Mehr

Financial Engineering....eine Einführung

Financial Engineering....eine Einführung Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 30 60439 Franfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 2008/09 Klausur Derivate und Bewertung Wintersemester 2008/09 Aufgabe 1: Zinsurven,

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

DIE BEWERTUNG MITTELS FINANZCHEMIE. Peter Reichling

DIE BEWERTUNG MITTELS FINANZCHEMIE. Peter Reichling DIE BEWERTUNG VON ANLAGEZERTIFIKATEN MITTELS FINANZCHEMIE Peter Reichling Anlagezertifikate zählen derzeit zu den von Privatanlegern besonders nachgefragten Investitionsmöglichkeiten am deutschen Kapitalmarkt.

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Übung Währungstheorie WS 2007/08 - Julia Bersch

Übung Währungstheorie WS 2007/08 - Julia Bersch Übung Währungstheorie WS 2007/08 - Julia Bersch Aufgabe a - Zinsparität Spot exchange rate / Deviskassakurs: Wechselkurs, der sich auf dem Spotmarkt (=Deviskassamarkt) bildet Devis werd spätests 2 Tage

Mehr

Zur Bewertung von Derivaten Eine Einführung

Zur Bewertung von Derivaten Eine Einführung Zur Bewertung von Derivaten Eine Einführung Dr. Volkert Paulsen 17. September 2009 Im wesentlichen unternimmt man auf Finanzmärkten eine Zweiteilung in Basis- und derivative Finanzgüter. Ein Anteil an

Mehr

76 10. WEITERE ASPEKTE

76 10. WEITERE ASPEKTE 76 10. WEITERE ASPEKTE 10. Weitere Aspekte 10.1. Aktien mit Dividendenzahlungen Betrachten wir das Black Scholes-Modell. Falls die Aktie nun Dividenden bezahlt, wird der Wert der Aktie um den Wert der

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/46 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 7 Kruschwitz/Husmann (2012) Finanzierung

Mehr

Orderarten im Wertpapierhandel

Orderarten im Wertpapierhandel Orderarten im Wertpapierhandel Varianten bei einer Wertpapierkauforder 1. Billigst Sie möchten Ihre Order so schnell wie möglich durchführen. Damit kaufen Sie das Wertpapier zum nächstmöglichen Kurs. Kurs

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 20

Aufgaben Brealey/Myers [2003], Kapitel 20 Folie 0 Quiz: 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14 Practice Questions: 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17, 18, 21 Challenge Questions: 2 Folie 1 Lösungshinweis zu Quiz 4: Put-Call Parität: Fälligkeit

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Die zufällige Irrfahrt einer Aktie

Die zufällige Irrfahrt einer Aktie Die zufällige Irrfahrt einer Aktie Teilnehmer: Daniela Garske (Herder-Oberschule) Joseph Jung (Pamina-Schulzentrum Herxheim) Martin Laudien (Herder-Oberschule) Kaina Schäfer (Herder-Oberschule) Anja Seegert

Mehr

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Fraunhofer ITWM Kaiserslautern, 4..009 Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Ralf Korn (TU Kaiserslautern & Fraunhofer ITWM) 0. Einige praktische Probleme

Mehr

WGZ Express-Zertifikat

WGZ Express-Zertifikat ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN Stand: Dezember 2010 WGZ Express-Zertifikat ZERTIFIKATE AUF AKTIEN ODER INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015 Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015 Aufgabe 1: (20 min) a) Gegeben sei ein einperiodiger State Space-Markt mit zwei Zuständen, der aus zwei Wertpapieren bestehe, einer

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

So wähle ich die EINE richtige Option aus

So wähle ich die EINE richtige Option aus So wähle ich die EINE richtige Option aus Rainer Heißmann, Dresden, 16.01.2016 Experten. Sicherheit. Kompetenz. So wähle ich die EINE richtige Option aus Seite 2 von 18 Geld machen Voltaire (französischer

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca BIAGINI, München, Daniel ROST, München Money out of nothing? - Prinziien und Grundlagen der Finanzmathematik Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren

Mehr

Produkteliste Der Schlüssel zu exotischen Devisenoptionen

Produkteliste Der Schlüssel zu exotischen Devisenoptionen Produkteliste Der Schlüssel zu exotischen Devisenoptionen Knock Out (Kick Out) Die Knock Out (oder Kick Out Option) ist eine Standardoption, die automatisch endet, falls der Kassakurs vor dem Verfalldatum

Mehr

Indikatoren nicht Alles oder alles Nichts?

Indikatoren nicht Alles oder alles Nichts? Indikatoren nicht Alles oder alles Nichts? Technische Analyse mit einem neuen Indikator! Trendfolgeindikatoren Gleitende Durchschnitte MACD Trendbestimmungs -indikatoren Momentum Oszillatoren Bollinger

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Bewertung von Derivaten im Black-Scholes Modell

Bewertung von Derivaten im Black-Scholes Modell Bewertung von Derivaten im Black-Scholes Modell Bachelorarbeit Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Betreuung: PD Dr. Volkert

Mehr

Wie verdienen Investment Banken Ihr Geld? Uwe Wystup

Wie verdienen Investment Banken Ihr Geld? Uwe Wystup Wie verdienen Investment Banken Ihr Geld? Uwe Wystup Frankfurt am Main, 24 April 2004 22.04.04. 2 Agenda Investment Banking - Geschäftsfelder Massengeschäft Individualgeschäft Eigenhandel Beispiel 1: DAX-Sparbuch

Mehr

Down & Out. Hinter den Kulissen

Down & Out. Hinter den Kulissen Down & Out Hinter den Kulissen 1. Juni 2011 1. BNP Paribas, die Bank für eine Welt im Wandel 01. Juni 2011 2 BNP Paribas, die Bank für eine Welt im Wandel Allgemeine Eckdaten Ist das Elftgrößte Unternehmen

Mehr

15 Jahre Discount-Zertifikate Geschichte, Hintergründe, Einsatzbereiche

15 Jahre Discount-Zertifikate Geschichte, Hintergründe, Einsatzbereiche 15 Jahre Discount-Zertifikate Geschichte, Hintergründe, Einsatzbereiche Derivate Roundtable Frankfurt, 28. Juli 2010 Prof. Dr. Lutz Johanning Chair of Empirical Capital Market Research WHU Otto Beisheim

Mehr

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53 zu Aufgabe 3b) Binomialmodell: C 0 S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 S 0 0,909 65,8 6,53 Frage: Wie setzt sich das Duplikationsportfolio des Calls (anteiliger Aktienkauf teilweise kreditfinanziert)

Mehr

Konvergenzbeschleunigung für Binomialmethoden zur Bewertung von Barriereoptionen

Konvergenzbeschleunigung für Binomialmethoden zur Bewertung von Barriereoptionen Konvergenzbeschleunigung für Binomialmethoden zur Bewertung von Barriereoptionen K. Ilzig a, H.-J. Starkloff a, R. Wunderlich b a Technische Universität Chemnitz, Fakultät für Mathematik, 917 Chemnitz,

Mehr

DIE WELT DER STRUKTURIERTEN PRODUKTE DAS BUCH ZUR SVSP SWISS DERIVATIVE MAP

DIE WELT DER STRUKTURIERTEN PRODUKTE DAS BUCH ZUR SVSP SWISS DERIVATIVE MAP DIE WELT DER STRUKTURIERTEN PRODUKTE DAS BUCH ZUR SVSP SWISS DERIVATIVE MAP Martin F. Meier Paolo Vanini Philippe Béguelin Daniel Manser Eric Wasescha HERAUSGEBER PARTNER Teil 1 1 Einleitung 8 1.1 Die

Mehr

Sensitivitätsfaktoren

Sensitivitätsfaktoren Sensitivitätsfaktoren Überblick Sensitivitätsfaktoren zeigen die Änderungen des Optionspreises, wenn sich eine Einflussgröße ändert Sensitivitätsfaktoren werden mit einem Optionspreismodell errechnet Einflussgrößen:

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte SS 2013 12.8.2013 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Oesterreichische Nationalbank

Oesterreichische Nationalbank Oesterreichische Nationalbank F i n a n z i n s t r u m e n t e P r o d u k t h a n d b u c h T e i l C F r e m d w ä h r u n g e n 2 P Das vorliegende Produkthandbuch Teil C Fremdwährungen ist der dritte

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Finance: Übungsserie I

Finance: Übungsserie I Thema Dokumentart Finance: Übungsserie I Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: D1 Finanzmanagement Finance: Übungsserie I Aufgabe 1 1.1 Erklären Sie, welche zwei Arten von

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr