Statistik für Naturwissenschaftler

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik für Naturwissenschaftler"

Transkript

1 Hans Walser Statistik für Naturwissenschaftler k Binomialverteilung Normalverteilung 6 Normalverteilung Lernumgebung

2 Hans Walser: 6 Normalverteilung Inhalt 1 Manipulation an Funktionen Große Zahlen n Münzenwurf Boys Münzenwurf Vergleich dreier Versuche Produktionsprozess Der 95%-Mann For fans only: Der zentrale Grenzwertsatz von de Moivre... 9 last modified: 25. Juli 2011

3 Hans Walser: 6 Normalverteilung 1 1 Manipulation an Funktionen Wie verhalten sich jeweils die beiden Funktionsgraphen? a) f( x) und g( x) = f( x 1) b) f( x) und g( x) = f( x) 1 c) f( x) und g( x) = f( x+1) 1 d) f( x) und g( x) = f( x+1)+1 e) f( x) und g( x) = 3f( x) f) f( x) und g( x) = f ( 3x) g) f( x) und g( x) = 3f ( 3x) h) f( x) und g( x) = 1 4 f( x) i) f( x) und g( x) = f x ( 4 ) ( ) j) f( x) und g( x) = 1 4 f x 4 Ergebnis a) 1 b) 1 c) 1, 1 d) 1, 1 e) Strecken in y-richtung, Faktor 3 f) Schrumpfen in x-richtung, Faktor 1 3 g) Strecken in y-richtung, Faktor 3, Schrumpfen in x-richtung, Faktor 1 3 h) Schrumpfen in y-richtung, Faktor 1 4 i) Strecken in x-richtung, Faktor 4 j) Strecken in x-richtung, Faktor 4, Schrumpfen in y-richtung, Faktor Große Zahlen n Ein Laplace Würfel wird n mal geworfen. Ein Erfolg ist das Werfen einer Fünf. Bestimmen Sie je für n = 60 und für n = 240: a) Mit welcher Wahrscheinlichkeit trifft man exakt den Mittelwert? P n ( k = µ )=? b) Mit welcher Wahrscheinlichkeit kommt man in eine 10%-Umgebung des Mittelwertes? P n 0.9µ k 1.1µ ( ) =? Kommentar zu den Resultaten?

4 Hans Walser: 6 Normalverteilung 2 Ergebnis n = 60 a) b) n = 240 a) b) Kommentar: Gegenläufige Wahrscheinlichkeiten. 3 Münzenwurf a) Mit welcher Wahrscheinlichkeit erhalten wir beim Wurf von 20 Laplace-Münzen aa) genau 12 Mal Kopf? ab) zwischen 11 und 13 Mal Kopf? b) Mit welcher Wahrscheinlichkeit erhalten wir beim Wurf von 40 Laplace-Münzen ba) genau 24 Mal Kopf? bb) zwischen 22 und 26 Mal Kopf? c) Mit welcher Wahrscheinlichkeit erhalten wir beim Wurf von 80 Laplace-Münzen ca) genau 48 Mal Kopf? cb) zwischen 44 und 52 Mal Kopf? Bearbeitung a) Binomialverteilung (Werte aus der Tabelle) aa) 20 P 20 ( 12)= 12 ( )( 1 2 ) 12 1 ( )

5 Hans Walser: 6 Normalverteilung 3 ab) 13 ( )( 1 2 ) k 1 ( ) 20 k P 20 ( 11 k 13)= 20 k = = k= k Histogramm b) Binomialverteilung muss durch Normalverteilung approximiert werden. Es ist: ba) µ = np = 20 = 10 Direkte Berechnung: P 40 ( 24 1 ) e ( 10 ) Berechnung mit Normalverteilungstabelle (linear interpoliert): u b = b+ 1 2 µ = = ( 1.423)= u a = a 1 2 µ = = ( 1.107)= P 40 ( 22) ( 1.423) ( 1.107)= =

6 Hans Walser: 6 Normalverteilung 4 bb) Berechung mit Normalverteilungstabelle (linear interpoliert): u b = b+ 1 2 µ = = ( 2.055)= u a = a 1 2 µ = = ( 0.474)= P 40 ( 22 k 26) ( 2.055) ( 0.474)= = k Glockenkurve mit Integral c) Binomialverteilung muss durch Normalverteilung approximiert werden. Es ist: ca) µ = np = 40 = 20 Direkte Berechnung: P 80 ( 48 1 ) e ( 20 ) Berechnung mit Normalverteilungstabelle (linear interpoliert): u b = b+ 1 2 µ = = ( 1.901)= u a = a 1 2 µ = = ( 1.677)= P 80 ( 48) ( 1.901) ( 1.677)= =

7 Hans Walser: 6 Normalverteilung 5 cb) Berechung mit Normalverteilungstabelle: u b = b+ 1 2 µ = = ( 2.795)= u a = a 1 2 µ = = ( 0.783)= P 80 ( 44 k 52) ( 2.795) ( 0.783)= = Die Wahrscheinlichkeit, genau in die Mitte zu kommen, nimmt mit wachsendem n ab. Die Wahrscheinlichkeit, in eine 10%-Umgebung der Mitte zu kommen, nimmt mit wachsendem n zu. Dasselbe mit MuPAD: a) Binomialverteilung aa) n:=20: p:=1/2: k:=12: q:=1-p: P:=float(binomial(n, k)*p^k*q^(n-k)): print(unquoted, "P(".n.",".k.") = ".P); ab) P(20,12) = n:=20: p:=1/2: a:=11: b:=13: t := time(): q:=1-p: P:=sum(float(binomial(n, k)*p^k*q^(n-k)), k=a..b): zeit:=(time() - t): print(unquoted, "P(".n.",".a." <= k <= ".b.") = ".P); print(unquoted,"zeitaufwand = ".zeit." Millisekunden"); P(20,11 <= k <= 13) = Zeitaufwand = 14 Millisekunden b) MuPAD schafft es auch exakt mit der Binomialverteilung: ba) P(40,24) = bb) P(40,22 <= k <= 26) = Zeitaufwand = 15 Millisekunden Wir können aber auch die Normalverteilung anwenden: ba) Dabei können wir direkt arbeiten: n:=40: p:=1/2: k:=24: q:=1-p:

8 Hans Walser: 6 Normalverteilung 6 mu:=n*p: sigma:=sqrt(n*p*q): P:=float(1/(sigma*sqrt(2*PI))*exp(-1/2*((kmu)/sigma)^2)): print(unquoted, "P(".n.",".k.") = ".P); P(40,24) = Wir können aber auch mit einem Integral arbeiten: n:=40: p:=0.5: a:=24: b:=24: q:=1-p: mu:=n*p: sigma:=sqrt(n*p*q): phi:=k->1/(sigma*sqrt(2*pi))*exp(-1/2*((kmu)/sigma)^2): P:=int(phi(k), k=a-1/2..b+1/2): print(unquoted, "P(".n.",".a." <= k <= ".b.") = ".P); bb) P(40,24 <= k <= 24) = n:=40: p:=0.5: a:=22: b:=26: q:=1-p: mu:=n*p: sigma:=sqrt(n*p*q): phi:=k->1/(sigma*sqrt(2*pi))*exp(-1/2*((kmu)/sigma)^2): P:=int(phi(k), k=a-1/2..b+1/2): print(unquoted, "P(".n.",".a." <= k <= ".b.") = ".P); P(40,22 <= k <= 26) = c) MuPAD schafft es auch exakt mit der Binomialverteilung: ca) P(80,48) = cb) P(80,44 <= k <= 52) = Zeitaufwand = 18 Millisekunden Wir können aber auch die Normalverteilung anwenden: ca) Direkt: P(80,48) = Mit Integral: P(80,48 <= k <= 48) = cb) P(80,44 <= k <= 52) =

9 Hans Walser: 6 Normalverteilung 7 4 Boys The Mitcham Public Health Department found an unexpected boom in boy birth during May. There were 60 boys and 40 girls born during the month. Die Wahrscheinlichkeit für eine Knabengeburt sei p = 0.5. Ist die vorstehende Meldung eine echte Sensation? Berechnen Sie die Wahrscheinlichkeit, dass die beobachtete Anzahl Knabengeburten um so viel oder mehr wie in der Zeitungsnotiz von der erwarteten Anzahl abweicht. Ergebnis Wir testen zweiseitig, mit 1 2 -Korrektur µ = σ = 5 Normalverteilung n = 100, p = q = 0.5, µ = np = 50, = npq = 5 u = 59.5 µ = 1.9, 1.9 ( ) = Tabelle , P = 21 u ( ( )) = = 5.74% 5 Münzenwurf Wie groß ist die Wahrscheinlichkeit, bei 4040 Münzenwürfen 2048 oder noch mehr Köpfe zu erhalten, wenn man annimmt, dass Kopf und Zahl gleichwahrscheinlich sind? Ergebnis n = 4040, p = 1 2, q = 1 2 µ = np = 2020 = npq = u = 28 = ( u)= P = 1 ( u)= = 18.94%

10 Hans Walser: 6 Normalverteilung 8 6 Vergleich dreier Versuche Münzenwurf mit guter Münze. Was hat die größte Wahrscheinlichkeit: a) Bei 10 Würfen mehr als acht Mal Kopf zu werfen? b) Bei 100 Würfen mehr als 80 Mal Kopf zu werfen? c) Bei 1000 Würfen mehr als 800 Mal Kopf zu werfen? Bearbeitung 10 a) P = ( 9 ) ( 10 ) = 1 ( ) = b) Anwendung der Normalverteilung: µ = 50 = 5 Wir sind außerhalb des 6 -Bereiches. Also P = 0. c) P = 0. 7 Produktionsprozess a) Auf einer Maschine werden Unterlagsscheiben hergestellt. Untersuchungen während einer längeren Zeit haben ergeben, dass die Dicke einer solchen Unterlagsscheibe normalverteilt ist mit µ = 2.5 mm und = 0.05 mm. Welches ist die Wahrscheinlichkeit, dass die Dicke einer solchen Unterlagsscheibe zwischen 2.43 mm und 2.57 mm liegt? b) Welche Genauigkeit kann für die Dicke einer solchen Unterlagsscheibe mit einer Wahrscheinlichkeit von 95% garantiert werden? Ergebnis a) b) P( x 2.598)= Der 95%-Mann Die Deutsche Bahn operiert für die Planung ihrer ergonomisch ausgereiften Sitzen mit dem 95%-Mann: Er ist 1.84m groß, nur 5% der Männer sind größer. Angenommen, der 99%-Mann ist 1.87m groß. Wie groß ist dann der Durchschnittsmann? Bearbeitung Wir setzen Normalverteilung voraus. Der Tabelle entnehmen wir: ( ) = 0.95 = 95% und ( 2.326) = 0.99 = 99%. Damit gilt: µ =1.84 µ =1.87 Daraus ergibt sich = und µ =1.77. Der 50%-Mann ist also 1.77m groß.

11 Hans Walser: 6 Normalverteilung 9 9 For fans only: Der zentrale Grenzwertsatz von de Moivre Der Satz besagt: lim ( 2k k k )2 2k k = 1 Das kann umgeformt werden zu: lim k k 2 4k 2k ( k ) = 2 Bearbeitung Es sei f( k)= 24k. Wir erhalten die Tabelle: 2 2k k( k ) f( k) k Hintergrund Wir approximieren die Binomialverteilung mit n = 2k und p = 1 2 durch die Normalverteilung. Dabei ist µ = np = 2k 1 2 erhalten: 2k P 2k ( k)= k ( ) k = 2 2k 2k 1 ( k ) ( )( 1 2 ) k = k und = np ( 1 p ) = k 2. Wir 1 ( k µ ) 2 2 e 2 2 = 1 e 1 2 k 2 2 Somit ist: 2 2k ( 2k k ) 1 k Für k wird die Approximation immer besser. Daher der Limes: lim ( 2k k )2 2k k = 1 k ( k k) 2 2 = 1 k

Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung!

Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung! 0.20 0.8 0.6 0.4 0.2 0.0 0.08 0.06 0.04 0.02 0.00 0 5 0 5 20 k Modul 206: Verteilungen!!Normalverteilung!!Poisson-Verteilung! 0.20 0.8 0.6 0.4 0.2 0.0 0.08 0.06 0.04 0.02 0.00 0 5 0 5 20 k Normalverteilung!

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

11. Approximation der Binomialverteilung durch die Normalverteilung

11. Approximation der Binomialverteilung durch die Normalverteilung 7. Approximation der Binomialverteilung durch die Normalverteilung Die Berechnung der Binomialverteilung ist wegen der Binomialkoeffizienten nicht unproblematisch. Man kann sie deshalb in gewissen Fällen

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 5 Binomialverteilung Lernumgebung Hans Walser: 5 Binomialverteilung ii Inhalt Ungerade und gerade Binomialkoeffizienten... 2 Delegation... 2 3 Rochefort...

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Approximation der Binomialverteilung durch die Normalverteilung

Approximation der Binomialverteilung durch die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 4.0.007 Approimation der Binomialverteilung durch die Normalverteilung Histogramme von Binomialverteilungen sind für nicht zu kleine n glockenförmig. Mit größer

Mehr

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003 Polizeidienst-Aufgabe Abiturprüfung Bayern LK 003 a) Bei einem Einstellungstermin für den Polizeidienst waren 0% der Bewerber Frauen, von denen 90% die Aufnahmeprüfung bestanden. Drei Viertel derjenigen,

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung

Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei

Mehr

Normalverteilung und Dichtefunktionen

Normalverteilung und Dichtefunktionen Normalverteilung und Dichtefunktionen Ac Einführung der Normalverteilung als Approximationsfunktion der Binomialverteilung Da die Binomialverteilung für große n das Aussehen einer Glockenkurve besitzt

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π

P n (k) f(k) = 1 σ 2π e ) 2. σ 2π 53 Allgemein gilt der folgende Satz. Satz 6.1 (Lokaler Grenzwertsatz von de Moivre und Laplace) Die Wahrscheinlichkeit P n (k) einer Binomialverteilung (mit der Erfolgswahrscheinlichkeit p im Einzelexperiment)

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

6.2 Approximation der Binomialverteilung

6.2 Approximation der Binomialverteilung 56 6.2 Approximation der Binomialverteilung Im Beispiel auf den Seiten 52 53 haben wir gesehen, dass die Wahrscheinlichkeiten P 50 (k) der dort betrachteten Binomialverteilung durch die Werte der Funktion

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

12 Die Normalverteilung

12 Die Normalverteilung 12 Die Normalverteilung Die Normalverteilung ist eine der wichtigsten Wahrscheinlichkeitsverteilungen in der Praxis, weil aufgrund des sogenannten zentralen Grenzwertsatzes in vielen Situationen angenommen

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

0, t 0,5

0, t 0,5 XIII. Die Normalverteilung ==================================================================. Der lokale Grenzwertsatz --------------------------------------------------------------------------------------------------------------

Mehr

1 Stochastische Konvergenz 2

1 Stochastische Konvergenz 2 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Von der Binomialverteilung zur Normalverteilung

Von der Binomialverteilung zur Normalverteilung Von der Binomialverteilung zur Normalverteilung Wir interessieren uns für Binomialverteilungen mit grossen Werten für n. Als Beispiele können wir uns das Experiment vorstellen, dass ein idealer Würfel

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75

Sigma-Umgebung. Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5. n = 20 p = 0,75 Sigma-Umgebung Vergleichen wir die beiden Binomialverteilungen: n = 30 p = 0,5 0,2 (z.b. 30-maliges Werfen einer Münze, X Anzahl von Zahl ) 5 10 15 20 n = 20 p = 0,75 0,2 5 10 15 20 Der Erwartungswert

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Moivre-Laplace und Stetigkeitskorrektur

Moivre-Laplace und Stetigkeitskorrektur Moivre-Laplace und Stetigkeitskorrektur Abstract: Vorstellung und Veranschaulichung des Satzes (mit wxmaxima), Stetigkeitskorrektur, Beispiel für seine Benutzung Moivre-Laplace Theorem ( ) n Sei b n,p

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Korollar 116 (Grenzwertsatz von de Moivre)

Korollar 116 (Grenzwertsatz von de Moivre) Ein wichtiger Spezialfall das Zentralen Grenzwertsatzes besteht darin, dass die auftretenden Zufallsgrößen Bernoulli-verteilt sind. Korollar 116 (Grenzwertsatz von de Moivre) X 1,..., X n seien unabhängige

Mehr

Hypothesentest, ein einfacher Zugang mit Würfeln

Hypothesentest, ein einfacher Zugang mit Würfeln R. Brinkmann http://brinkmann-du.de Seite 4..4 ypothesentest, ein einfacher Zugang mit Würfeln Von einem Laplace- Würfel ist bekannt, dass bei einmaligem Wurf jede einzelne der Zahlen mit der Wahrscheinlichkeit

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test)

Test auf einen Anteilswert (Binomialtest) Vergleich zweier Mittelwerte (t-test) Spezielle Tests Test auf einen Anteilswert (Binomialtest) Vergleich zweier Anteilswerte Test auf einen Mittelwert (Ein-Stichproben Gauss bzw. t-test) Vergleich zweier Mittelwerte (t-test) Test auf einen

Mehr

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: )

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: ) A A1a 2197120 on on A A1a 2311330 on on on on on on on A A1a 2316420 on on A A1a 2332345 on on on on on on on A A1a 2371324 on on on on on on on A A1a 2382962 on on A A1a 2384710 on on on on on on on A

Mehr

Aufgabe 10 Eine Firma produziert einen bestimmten Massenartikel, mit einem Ausschussanteil von p=4%. Berechnen Sie unter der Annahme die Wahrscheinlic

Aufgabe 10 Eine Firma produziert einen bestimmten Massenartikel, mit einem Ausschussanteil von p=4%. Berechnen Sie unter der Annahme die Wahrscheinlic Binomialverteilung Aufgabe 1 Eine Urne enthält 4 schwarze, 3 rote und 3 weiße Kugeln. Es wird 10-mal mit Zurücklegen gezogen. Wie wahrscheinlich ist es, genau 5 schwarze Kugeln zu ziehen? Aufgabe 2 Ein

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Weierstraß-Institut für Angewandte Analysis und Stochastik Von der Binomialverteilung zur Normalverteilung

Weierstraß-Institut für Angewandte Analysis und Stochastik Von der Binomialverteilung zur Normalverteilung Weierstraß-Institut für Angewandte Analysis und Stochastik Von der Binomialverteilung zur Normalverteilung Wolfgang König (WIAS und TU Berlin) Mohrenstraße 39 10117 Berlin Tel. 030 20372 0 www.wias-berlin.de

Mehr

Beispielaufgaben Binomialverteilung Lösungen

Beispielaufgaben Binomialverteilung Lösungen L. Schmeink 05a_beispielaufgaben_binomialverteilung_lösungen.doc 1 Beispielaufgaben Binomialverteilung Lösungen Übung 1 Der Würfel mit zwei roten (A) und vier weißen Seitenflächen (B) soll fünfmal geworfen

Mehr

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington

Wahrscheinlichkeit und die Normalverteilung. Jonathan Harrington Wahrscheinlichkeit und die Normalverteilung Jonathan Harrington Der Bevölkerungs-Mittelwert 99 Stück Papier nummeriert 0, 1, 2, 99 Ich ziehe 10 davon und berechne den Mittelwert. Was ist der Mittelwert

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Würfel-Aufgabe Bayern LK 2006

Würfel-Aufgabe Bayern LK 2006 Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln

Mehr

2 Fortführung der Differenzialrechnung... 48

2 Fortführung der Differenzialrechnung... 48 Inhaltsverzeichnis Inhaltsverzeichnis 1 Folgen und Grenzwerte................................................................................... 10 1.1 Rekursive und explizite Vorgabe einer Folge...........................................................

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Zentraler Grenzwertsatz

Zentraler Grenzwertsatz Statistik 2 für SoziologInnen Zentraler Grenzwertsatz Univ.Prof. Dr. Marcus Hudec Statistik für SoziologInnen 1 Zentraler Grenzwertsatz Inhalte Themen dieses Kapitels sind: Der zentrale Grenzwertsatz und

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel

Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Wahrscheinlichkeit3 Binomialverteilung/Bernoulli-Formel Aufgaben Lösen Sie A1 und A sowohl mit der Bernoulli-Formel als auch mit dem TR(BV), die anderen Aufgaben lösen sie mit dem TR(BV). A1 Eine Familie

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 205 Binomialverteilung Lernumgebung Hans Walser: Modul 205, Binomialverteilung. Lernumgebung ii Inhalt Kaspar, Melchior und Balthasar... 2 Ungerade

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 21.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 401-0622-00 U 11 Zur Übungsstunde vom 21.05.2010 Aufgabe 31 (Rechnen mit der Normalverteilung

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften 2 3 3 4 6 4 5 0 0 5 6 5 20 5 6 Tabellen (leicht gekürzte Version) Hans Walser: Tabellen ii Inhalt Binomische Verteilung.... Binomische Verteilung (ohne

Mehr

Summenformel für arithmetische Reihen. Summenformel für geometrische Reihen. Wie groß ist die Summe der Zahlen von 1 bis n?

Summenformel für arithmetische Reihen. Summenformel für geometrische Reihen. Wie groß ist die Summe der Zahlen von 1 bis n? Summenformel für arithmetische Reihen Wie groß ist die Summe der Zahlen von bis n? + + 3 + + (n ) + n n + (n ) + (n ) + + + + Idee: Reihe umkehren s n = n(n+) Diese Überlegung lässt sich auf beliebige

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 3914 jutta.arrenberg@th-koeln.de QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren)

Mehr

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2 4 4.4 Punktschätzung Wir betrachten eine endliche oder unendliche Grundgesamtheit, zum Beispiel alle Studierenden der Vorlesung Mathe II für Naturwissenschaften. Im endlichen Fall soll die Anzahl N ihrer

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert nämlich

Mehr

Wirtschaftsstatistik Normalverteilung

Wirtschaftsstatistik Normalverteilung Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 39 14 jutta.arrenberg@fh-koeln.de Wirtschaftsstatistik Normalverteilung Aufgabe 10.1 Die Lebensdauer

Mehr

Konfidenzintervalle. Einführung von Ac

Konfidenzintervalle. Einführung von Ac Konfidenzintervalle Einführung von Ac Problem: ( Schluss von der Stichprobe auf die Gesamtheit - Schätzen ) Von einer binomialverteilten Zufallsgröße X sei n (der Stichprobenumfang) gegeben, aber p (Erfolgswahrscheinlichkeit)

Mehr

8 Experimentieren: Sigma-Regeln

8 Experimentieren: Sigma-Regeln 8 Experimentieren: Sigma-Regeln Didaktische Hinweise Mit dieser Station wird ein Unterrichtsbeispiel zur Einführung der Sigma-Regeln vorgestellt, die von den Schülerinnen und Schülern an mehreren Beispielen

Mehr

Normalverteilung. Mathematik 8. Arbeitsblatt A 8-2: Normalverteilung

Normalverteilung. Mathematik 8. Arbeitsblatt A 8-2: Normalverteilung Schule Bundesgymnasiu um für Berufstätige Salzburg Modul Thema Mathematik 8 Arbeitsblatt A 8-2: Normalverteilung Normalverteilung Viele natürlich vorkommende, voneinander unabhängige Größen sind normalverteilt

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 9 t-verteilung Lernumgebung Hans Walser: 9 t-verteilung ii Inhalt 1 99%-Vertrauensintervall... 1 2 95%-Vertrauensintervall... 1 3 Akkus... 2 4 Wer ist der

Mehr

Arbeitsblatt 27: Normalverteilung Kerzen

Arbeitsblatt 27: Normalverteilung Kerzen Erläuterungen und Aufgaben Zeichenerklärung: [ ] - Drücke die entsprechende Taste des Graphikrechners! [ ] S - Drücke erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücke erst die Taste

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 7. n (Konvergenz, LLN, CLT) n heisst für uns n gross Literatur Kapitel 7 * Statistik in Cartoons: Kapitel 5, Seite 114 in Kapitel 6 * Stahel:

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

Meßprozeß, Meßfehler und Statistik

Meßprozeß, Meßfehler und Statistik 0- Meßprozeß, Meßfehler und Statistik Vorbereitung : Begriff der Wahrscheinlichkeit, statistische Verteilungen (Binomialverteilung, Poissonverteilung, Gaussverteilung), Meßfehler und Fehlerfortpflanzung.

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Stetige Wahrscheinlichkeitsverteilung

Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Beurteilende Statistik mit Hilfe didaktischer Software

Beurteilende Statistik mit Hilfe didaktischer Software Beurteilende Statistik mit Hilfe didaktischer Software Andreas Ulovec, Fakultät für Mathematik, Universität Wien Es wird selbst erstellte Software vorgestellt und anhand von Beispielen erklärt, mit deren

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt R. Brinkmann http://brinkmann-du.de Seite 2.05.2009 Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt Aufgabe 0 0. In einer bestimmten Stadt an einer bestimmten

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen

EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen EdM Hessen Qualifikationsphase 978-3-507-87911-9 Bleib fit in Differenzialrechnung 1 Integralrechnung Lernfeld: Wie groß ist? 1.1 Der Begriff des Integrals 1.1.1 Aus Änderungsraten rekonstruierter Bestand

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 28.10.2014 Warum wird Stochastik in der Schule unterrichtet? Welche Vorteile kann der Stochastikunterricht in den MU bringen? Welche Nachteile kann der Stochastikunterricht haben? Welche Ziele

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( ) R. Brinkmann http://brinkmann-du.de Seite 7.09.0 Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse

Mehr

Über den Autor 7. Teil Beschreibende Statistik 29

Über den Autor 7. Teil Beschreibende Statistik 29 Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

1 wenn Erfolg im j-ten Versuch

1 wenn Erfolg im j-ten Versuch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 5.1 Binomialverteilung - Alternative Darstellung n Versuche mit 2 möglichen Ausgängen. Setze Y j = 1 wenn Erfolg im j-ten Versuch 0 wenn

Mehr