Elektronische Bauelemente Beispielaufgaben zur Vorbereitung auf das Praktikum und die Abschlußklausur

Größe: px
Ab Seite anzeigen:

Download "Elektronische Bauelemente Beispielaufgaben zur Vorbereitung auf das Praktikum und die Abschlußklausur"

Transkript

1 1. Widerstände Elektronische Bauelemente Beispielaufgaben zur Vorbereitung auf das Praktikum und die Abschlußklausur 1.1. Vergleichen Sie Kohleschicht- und Metallschichtwiderstände hinsichtlich der aufgezählten Eigenschaften (größer - kleiner, gut schlecht, etc.): Kohleschicht Metallschicht Stromrauschen Temperaturkoeffizient Preis Langzeitstabilität 1.2. Was ist ein VDR-Widerstand, worauf beruht seine Funktion und wofür wird er eingesetzt? Geben Sie das Schaltzeichen an! Stellen Sie die I/U-Kennlinie eines VDR-Widerstands dar! 1.3. Was ist ein NTC-Widerstand, worauf beruht seine Funktion und wofür wird er eingesetzt? Geben Sie das Schaltzeichen an! Stellen Sie die I/U-Kennlinie eines NTC-Widerstands dar! 1.4. Was ist ein PTC-Widerstand, worauf beruht seine Funktion und wofür wird er eingesetzt? Geben Sie das Schaltzeichen an! Stellen Sie die I/U-Kennlinie eines PTC-Widerstands dar! 1.5. Stellen Sie die wesentlichen Eigenschaften von Kohle- und Metallschichtwiderständen gegenüber! 1.6. Wie kann man bei gewickelten Drahtwiderständen die Induktivität vermindern? 1.7. Wo werden Drahtwiderstände eingesetzt? 1.8. Welche der dargestellten Widerstandsbauformen ist für HF-Anwendungen am besten geeignet? Begründen Sie Ihre Entscheidung! a) b) c) d) a) Schichtwiderstand kappenlos b) Schichtwiderstand mit Metallkappen c) Schichtwiderstand mit Wendelschliff d) Drahtwiderstand, einfach gewickelt 1.9. Für einen Widerstand werden folgende Angaben zur Verlustleistung gemacht: Nennverlustleistung P N bei Nenntemperatur T N = 70 C: 1W Maimal zulässige Betriebstemperatur T max : 130 C a) Bis zu welcher Leistung kann der Widerstand belastet werden, wenn die Umgebungstemperatur bis zu 110 C betragen kann? b) Bis zu welcher maximalen Umgebungstemperatur darf der Widerstand betrieben werden, wenn die in ihm umgesetzte Verlustleistung 0,5 W beträgt.

2 2. Kondensatoren 2.1. Welcher Zusammenhang besteht zwischen Ladung Q, Spannung U und Kapazität C an einem Kondensator? 2.2. Was versteht man unter den Verlusten eines Kondensators? 2.3. Welche Bedeutung hat die Güte eines Kondensators für seinen Einsatz in elektronischen Schaltungen? 2.4. Ordnen Sie den aufgezählten Kondensatortypen je zwei der folgenden Eigenschaften zu! a) großes Verhältnis C/V b) hohe Konstanz von C c) Selbstheilung bei Durchschlag d) starke Temperaturabhängigkeit von C e) hohe Verluste f) geringe Verluste g) ausgeprägte Alterung h) Spannungsabhängigkeit von C i) polarer Kondensator j) hohe Spitzenspannung Metallisierte Kunststofffolie: Elektrolytkondensator: 2.5. Wie ist ein Elektrolytkondensator aufgebaut und welche Aufgabe hat der Elektrolyt? 2.6. Erklären Sie den prinzipiellen Aufbau eines Elektrolytkondensators! Welche Aufgabe hat der Elektrolyt? Welchen Vorteil und welche Nachteile haben Elkos gegenüber anderen Bauformen von Kondensatoren? Worauf muß beim Einsatz von Elkos besonders geachtet werden? 2.7. Welche Art der Zusammenschaltung von Elektrolytkondensatoren ist unzulässig und welche Schaltung wirkt wie ein unipolarer Kondensator (a...e)? a) b) c) unzulässig: d) e) unpolar: 2.8. Skizzieren Sie in einem Zeigerdiagramm Strom und Spannung an einem verlustfreien Kondensator im Wechselstromkreis! Wie weicht ein realer, verlustbehafteter Kondensator hiervon ab? 2.9. Geben Sie das Ersatzschaltbild für einen realen Kondensator an und erläutern Sie die Komponenten! Wie läßt sich die Kapazität eines Kondensators mit Hilfe eines Wechselspannungsgenerators und zweier Multimeter (Effektivwerte von Wechselstrom und Wechselspannung) bestimmen?

3 3. Spulen 3.1. Was sagt der A L -Wert eines Spulenkerns aus? 3.2. Nennen Sie die wesentlichen Anwendungsgebiete für folgende Spulenkerne. Blechkerne: Masseeisenkerne: Ferritkerne: 3.3. Skizzieren Sie den Verlauf der Spannung an der Spule im Schaltbild, wenn die Generatorspannung U1 die dargestellte Zeitabhängigkeit besitzt! U1 R L U2 U1 t U2 t 3.4. Welche Erscheinungen tragen zum Verlustfaktor einer Spule bei? 3.5. Mit welchen konstruktiven Maßnahmen können die Verluste einer Spule bei hohen Frequenzen verringert werden?

4 4. Halbleiterdioden 4.1. Erklären Sie den inneren Aufbau und die Wirkungsweise einer Halbleiterdiode! 4.2. Skizzieren Sie die vollständige I/U-Kennlinie einer Si-Diode und bezeichnen Sie alle wichtigen Kenngrößen! 4.3. Skizzieren Sie die I-U-Kennlinie einer Halbleiterdiode und zeigen Sie an, wie sich diese mit steigender Temperatur ändert! 4.4. Wie groß ist die typische Schwellspannung für Gleichrichterdioden aus: Ge: Si: Se: 4.5. Bei der dargestellten Stabilisatorschaltung mit Z-Diode ändert sich die Eingangsspannung U 1 von 10 V auf 13 V. Erklären Sie mit Hilfe der Arbeitsgeraden von R, wie sich die Ausgangsspannung U 2 ändert! 4.6. Worauf beruht der Durchbruch einer Diode in Sperrrichtung? 4.7. Skizzieren Sie die Abhängigkeit der Sperrschichtkapazität von der Sperrspannung U R! 4.8. Skizzieren Sie den zeitlichen Verlauf der Spannung am Widerstand R und definieren Sie daran die Schaltzeiten einer Diode! U 1 t U 1 U R U R t

5 U 1 t U 1 R U R U R t 4.9. Nennen Sie die wichtigsten Typen von Dioden und deren Anwendung! Skizzieren Sie den zeitlichen Verlauf des Stroms durch die Diode entsprechend der Schaltung a). Die Frequenz der Eingangsspannung beträgt f=50 Hz. Wie ändert sich der Strom durch die Diode, wenn entsprechend Schaltung b) parallel zu R = 1kΩ ein Kondensator von C=50 F geschaltet wird? Skizzieren Sie qualitativ den Stromverlauf auch für diesen Fall. Welche Sperrspannung muss die Diode mindestens aufweisen, welche Nennspannung ist für den Kondensator vorzusehen und welche Bauform ist zu verwenden? a) b) 100 V eff R 100 V eff R C I D /ma t/ms -200 U sperr > Bauform von C: Nennspannung von C:

6 4.11. Für welche Sperrspannung muß die Diode in der abgebildeten Gleichrichterschaltung mindestens ausgelegt sein? Skizzieren Sie den zeitlichen Verlauf der Spannung am Lastwiderstand R entsprechend der Schaltung a). Die Frequenz der Eingangsspannung beträgt 50 Hz. Wie ändert sich die Spannung, wenn entsprechend Schaltung b) parallel zu R = 1kΩ ein Kondensator von C=50 F geschaltet wird? Skizzieren Sie qualitativ den Spannungsverlauf auch für diesen Fall. Welche Sperrspannung muss die Diode mindestens aufweisen, welche Nennspannung ist für den Kondensator vorzusehen und welche Bauform ist zu verwenden? a) b) 100 V eff R 100 V eff R C U R /V t/ms -200 U sperr > Bauform von C: Nennspannung von C:

7 5. Bipolare Transistoren 5.1. Erläutern Sie Aufbau und Funktionsweise eines bipolaren Transistors! 5.2. Geben Sie das Schaltzeichen für einen pnp-transistor an und bezeichnen Sie Ströme und Spannungen. Welche Beziehungen gelten zwischen den Strömen? 5.3. Welche grundsätzlichen Betriebsarten eines Transistors kennen Sie. Erklären Sie die Unterschiede und Anwendungsfälle! 5.4. Geben Sie eine Variante für die vollständige Beschaltung eines npn-transistors an, um einen Wechselspannungsverstärker in Emitterschaltung zu realisieren! 5.5. Vergleichen Sie die drei Grundschaltungen des bipolaren Transistors hinsichtlich des Stromverstärkungsfaktors und des differentiellen Eingangswiderstands! 5.6. Was versteht man unter der Grenzfrequenz der Stromverstärkung eines bipolarentransistors in Basisschaltung f und in Emitterschaltung f? Welcher Zusammenhang besteht zwischen diesen beiden Kenngrößen und der Transitfrequenz f T? 5.7. Berechnen Sie die Widerstände für die NF-Verstärkerstufe für den vorgegebenen Arbeitspunkt. Wählen Sie die nächstliegenden Werte aus der Normreihe E24 aus und geben Sie die berechnete Verlustleistung, den nächstliegenden Wert aus der Nennlastreihe und die Bauform (Draht, Metallschicht, Kohleschicht) an. Gegeben: Betriebsspannung: U B = +15 V Arbeitspunkt: U CE = 7V, I C = 7mA Transistordaten: B = 140 U BE = 0,7V bei I C =7mA berechneter Wert Normwert Verlustleistung Nennbelastbarkeit Bauform R C gegeben 1k R E R 1 R 2

8 5.8. Bei einigen Exemplaren der in Serie gefertigten Schaltstufen wird das Relais beim Anlegen der Steuerspannung von 14V nicht angezogen. Welche Ursache lässt sich anhand der gegebenen Bauelementedaten dafür finden? Nehmen Sie die notwendigen Veränderungen in der Schaltung vor, um ein sicheres Anziehen des Relais zu garantieren! 5.9. Dimensionieren Sie den Basiswiderstand R B so, dass ein sicheres Anziehen des Relais garantiert werden kann!

9 5.10. Dimensionieren Sie den Koppelkondensator C1 in der folgenden Schaltung so, daß bei einer Frequenz von f=200 Hz kein Verstärkungsabfall verursacht wird. Legen Sie Bauform, Nennwert (E6) und Nennspannung fest und tragen Sie die Polarität in der Schaltung ein! R G = 10, R 1 = 20k, R 2 = 5k, R L = 100k, r be = 500, U G = 1Vsin( t)

10 6. Feldeffekttransistoren 6.1. Erläutern Sie Aufbau und Wirkungsweise eines selbstleitenden n-kanal-mosfets, geben Sie das Schaltzeichen an und skizzieren Sie Steuer- und Ausgangs- Kennlinienfelder! 6.2. Erläutern Sie Aufbau und Wirkungsweise eines selbstsperrenden n-kanal-mosfets, geben Sie das Schaltzeichen an und skizzieren Sie Steuer- und Ausgangs- Kennlinienfelder! 6.3. Erklären Sie die Begriffe Steilheit und Abschnürspannung an der Steuerkennlinie von Feldeffekttransistoren! 6.4. Erläutern Sie den Aufbau und die Wirkungsweise eines Sperrschicht-FETs! 6.5. Skizzieren Sie Ausgangs- und Steuerkennlinien eines n-kanal Sperrschicht-FETs und definieren Sie den differentiellen Ausgangswiderstand, die Abschnürspannung U p sowie die Steilheit! 6.6. Ordnen Sie den Schaltbildern die genaue Bezeichnung des Bauelementes zu. a) b) c) d) e) f) a) d) b) e) c) f)

11 6.7. Zu welchem FET gehören die abgebildeten Kennlinien? 6.8. Erläutern Sie am Beispiel eines n-kanal-sperrschicht-fets die für die Einstellung des Arbeitspunktes notwendige Beschaltung, wenn nur eine Spannungsquelle zur Versorgung der Schaltung zur Verfügung steht (Schaltskizze und kurze Erklärung)! 6.9. Wofür werden Feldeffekttransistoren eingesetzt? Welche Vorteile besitzen Feldeffekttransistoren gegenüber bipolaren Transistoren? Dimensionieren Sie die passiven Bauelemente R d, R s und C 2 der Verstärkerschaltung mit SFET. Legen Sie Bauformen und Nennwerte fest (E24-Reihe und Nennverlustleistung für Widerstände, E6-Reihe und Nennspannung für Kondensatoren). Gegeben: Schaltung: U B = 20 V R gen = 10 K R L = 1 M Transistordaten: U p = -1,78V I DSS = 4mA, Kennliniengleichung: I D = I DSS (1 U GS /U P ) 2 Der Arbeitspunkt des FETs wird auf I D = 2mA und U D = U B /2 gelegt. Die Schaltung soll im Bereich von Hz eine konstante Verstärkung aufweisen. berechneter Wert Normwert E24 Verlustleistung /W Nennbelastbarkeit /W Nennspannung /V Bauform R S X R D X C 2 X X

12 7. Thyristoren 7.1. Erklären Sie Aufbau und Wirkungsweise eines Thyristors! 7.2. Skizzieren Sie die vollständige I/U-Kennlinie eines Thyristors und bezeichnen Sie die wichtigsten Kinogrössen und Kennlinienbereiche! 7.3. Welchen Einfluß haben die Höhe und die Dauer des Zündimpulses auf das Zündverhalten von Thyristoren? 7.4. Wie verändert sich das Zündverhalten bei Temperaturerhöhung? 7.5. Was muß beim Schalten von induktiven Lasten mit Thyristoren beachtet werden? 7.6. Geben Sie Beispiele für die Anwendung von Thyristoren an! 7.7. Worin besteht der Unterschied zwischen Thyristor und Triac? 7.8. Welche unerwünschten Arten der Zündung können bei Thyristoren auftreten? 7.9. Sowohl ein Thyristor als auch ein Transistor kann als elektronischer Schalter eingesetzt werden. Welcher wesentliche Unterschied besteht in der Ansteuerung der beiden Bauelemente? 8. Optoelektronische Bauelemente 8.1. Welches Halbleitermaterial wird für Fotowiderstände eingesetzt, deren spektrale Empfindlichkeit der des menschlichen Auges nahekommt? 8.2. Erläutern Sie die wichtigsten Kenngrößen von Fotowiderständen! 8.3. Welche Vor- und Nachteile haben Fotowiderstände gegenüber anderen Lichtempfängern? 8.4. Nennen Sie wesentliche Anwendungsfälle für Fototransistoren, Fotodioden und Fotowiderstände. Worin unterscheiden sich diese Bauelemente hinsichtlich ihres Einsatzes? 8.5. Erklären Sie Aufbau und Funktionsweise einer Fotodiode! 8.6. Erklären Sie Aufbau und Funktionsweise eines Fotoelements! 8.7. Erklären Sie Aufbau und Funktionsweise eines Fotowiderstands! 9. Magnetoelektronische Bauelemente 9.1. Nennen Sie Anwendungsbeispiele für Hall-Bauelemente! 9.2. Erklären Sie den Hall- Effekt! Werte der Widerstands - Normreihe E 24 : 1,0 1,1 1,2 1,3 1,5 1,6 1,8 2,0 2,2 2,4 2,7 3,0 3,3 3,6 3,9 4,3 4,7 5,1 5,6 6,2 6,8 7,5 8,2 9,1 Nennbelastbarkeit für Widerstände : 0,05 W 0,1 W 0,25 W 0,5 W 1 W 2 W 3 W 6 W 10 W

Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik

Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik/Mikroprozessortechnik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Dauer: 90 Minuten Diplomprüfung WS 11/12 Elektronik/Mikroprozessortechnik

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur 06.09.2010 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 06.09.2010 Grundlagen der Elektrotechnik II (M, EUT, LUM) Seite 1 von 5 Aufgabe 1 (4 Punkte) Name: Mit Matr.-Nr.: Lösung r = 30 cm d = 1 mm Q = 7,88 10-6 As ε 0 = 8,85 10-12 As/Vm ε r = 5 Der dargestellte

Mehr

Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten

Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Diplomprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2011 Elektronik/Mikroprozessortechnik, 90 Minuten Matr.-Nr.: Name, Vorname:

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

Transistorverstärker in Emitterschaltung

Transistorverstärker in Emitterschaltung Transistorverstärker in Emitterschaltung Bild 1 zeigt den Transistor BD139 in Emitterschaltung, der die Wechselspannung u e verstärken und über einen Lautsprecher (R C = 16 Ω) ausgeben soll. Weitere Daten:

Mehr

Klausur "Elektronik" am 11.03.2001

Klausur Elektronik am 11.03.2001 Name, Vorname: Matr.Nr.: Klausur "Elektronik" 6037 am 11.03.2001 Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 2 h. Zugelassene Hilfsmittel sind: Taschenrechner Formelsammlung auf maximal

Mehr

Praktikum Elektronik

Praktikum Elektronik Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel. (0351) 462 2437 ~ Fax (0351)

Mehr

PROTOKOLL ZUM VERSUCH TRANSISTOR

PROTOKOLL ZUM VERSUCH TRANSISTOR PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker

Mehr

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,

Mehr

A n a l o g e l e k t r o n i k

A n a l o g e l e k t r o n i k Klausur ( Probe ) im Lehrgebiet : Oktober 2018 A n a l o g e l e k t r o n i k Dauer: 120 min (Umfang der Prüfungsthemen) erlaubte Hilfsmittel: Tafelwerk, "handgechriebene" Formelsammlung; Taschenrechner;

Mehr

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Abschlussprüfung. Elektronische Bauelemente. Mechatronik + Elektrotechnik Bachelor. Name: Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Name: Abschlussprüfung Elektronische Bauelemente WS2010/11 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 26.1.2011 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder

Mehr

5 Elektronik. Detaillierte Lernziele: 5.1 Mechanische Widerstände. Ich kann anhand der Farbcodetabelle Widerstandswerte (inkl. Toleranz) bestimmen.

5 Elektronik. Detaillierte Lernziele: 5.1 Mechanische Widerstände. Ich kann anhand der Farbcodetabelle Widerstandswerte (inkl. Toleranz) bestimmen. 5 ELEKTRONIK 5 Elektronik Detaillierte Lernziele: 5.1 Mechanische Widerstände Ich kann anhand der Farbcodetabelle Widerstandswerte (inkl. Toleranz) bestimmen. Ich weiss, was z.b. die IEC-Normreihe E24

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Abschlussprüfung Schaltungstechnik 2

Abschlussprüfung Schaltungstechnik 2 Name: Platz: Abschlussprüfung Schaltungstechnik 2 Studiengang: Mechatronik SS2009 Prüfungstermin: Prüfer: Hilfsmittel: 22.7.2009 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing. Eder Nicht programmierbarer

Mehr

Kenngrößen von Transistoren und Eintransistorschaltungen. Protokoll. Von Jan Oertlin und Julian Winter. 7. Dezember 2012.

Kenngrößen von Transistoren und Eintransistorschaltungen. Protokoll. Von Jan Oertlin und Julian Winter. 7. Dezember 2012. Kenngrößen von Transistoren und Eintransistorschaltungen Protokoll Von Jan Oertlin und Julian Winter 7. Dezember 2012 Inhaltsverzeichnis 1 Einleitung 3 2 Transistorkenngrößen 3 2.1 Schaltung...........................................

Mehr

Sommersemester 2014, Dauer: 90 min Elektronik/Mikroprozessortechnik

Sommersemester 2014, Dauer: 90 min Elektronik/Mikroprozessortechnik Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2014, Dauer: 90 min Elektronik/Mikroprozessortechnik Matr.-Nr.: Name, Vorname:

Mehr

Inhalt Einleitung Grundlagen der Halbleiterphysik Widerstände, Kondensatoren, Drosselspulen

Inhalt Einleitung Grundlagen der Halbleiterphysik Widerstände, Kondensatoren, Drosselspulen Inhalt 1 Einleitung............................................ 11 1.1 Digital- und Analogtechnik............................... 11 1.2 Einteilung in Grundschaltungen........................... 12 1.2.1

Mehr

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski Operationsverstärker OPV-Kenndaten und Grundschaltungen Inhaltsverzeichnis 1 Eigenschaften von Operationsverstärkern 3 1.1 Offsetspannung..........................................

Mehr

Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 11/12 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 11/12 Fach: Elektronik,

Mehr

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen

Grundlagen - Labor. Praktikumsübung. Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen GRUNDLAGENLABOR 1(15) Fachbereich Systems Engineering Grundlagen - Labor Praktikumsübung Laborversuch GL-24 / Bipolar-Transistor, MOSFET, J-FET Kennlinien und Anwendungen Versuchsziele: Kennenlernen von

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

Übungsaufgaben EBG für Mechatroniker

Übungsaufgaben EBG für Mechatroniker Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:

Mehr

Gegeben ist eine Schaltung nach Bild1 mit zwei Siliziumdioden: Bild1. Aufgabenstellungen

Gegeben ist eine Schaltung nach Bild1 mit zwei Siliziumdioden: Bild1. Aufgabenstellungen Übung1 Gegeben ist eine Schaltung nach Bild1 mit zwei Siliziumdioden: Werte: R1= 2 kω Bild1 R2= 1kΩ U0= 6V Aufgabenstellungen Lösung Berechnen Sie die von dem Widerstand R2 aufgenommene Leistung, wenn

Mehr

Laborübung, NPN-Transistor Kennlinien

Laborübung, NPN-Transistor Kennlinien 15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später

Mehr

Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich aus der Fassung brächten.

Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich aus der Fassung brächten. Der MOS-FET-Transistor (Isolierschicht-Feldeffekt-Transistor) Voraussetzungen: Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

Aufgaben zur Einführung in die Messtechnik Elektrische Messtechnik

Aufgaben zur Einführung in die Messtechnik Elektrische Messtechnik F 1 Aufgaben zur Einführung in die Messtechnik Elektrische Messtechnik Wolfgang Kessel Braunschweig.PPT/F1/2003-11-06/Ke AUFGABE01 F 2 AUFGABE01: Potentiometer a) Wie hängt bei vorgegebener fester Eingangsspannung

Mehr

Dimensionierung vom Transistor Wechselspannungsverstärkern

Dimensionierung vom Transistor Wechselspannungsverstärkern Dimensionierung vom Transistor Wechselspannungsverstärkern mit NPN Transistor Schaltung Werte: V 1 = BC141; R L = 1 kω U B = 15 V Vorgaben: Der Arbeitspunkt des Transistors ist so einzustellen, dass U

Mehr

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen

Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski Transistor Eigenschaften einstufiger Transistor-Grundschaltungen Inhaltsverzeichnis 1 Transistorverstärker - Bipolar 3 1.1 Dimensionierung / Einstellung

Mehr

Übung Bauelemente und Schaltungstechnik. Wintersemester 2005/2006

Übung Bauelemente und Schaltungstechnik. Wintersemester 2005/2006 Übung Bauelemente und Schaltungstechnik Wintersemester 2005/2006 Prof. Dr. Dietmar Ehrhardt Universität Siegen im Februar 2006 Übung 1 - Widerstände und Heißleiter 1.1 Gegeben sei ein Schichtwiderstand

Mehr

U L. Energie kt ist groß gegenüber der Aktivierungs-

U L. Energie kt ist groß gegenüber der Aktivierungs- Probeklausur 'Grundlagen der Elektronik', SS 20. Gegeben ist die nebenstehende Schaltung. R 3 R R L U q 2 U q = 8 V R = 700 Ω =,47 kω R 3 = 680 Ω R L = 900 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen

Mehr

Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:

Mehr

4.10.Meßverfahren

4.10.Meßverfahren Inhaltsverzeichnis Grundlagen... 15 Einführung... 15 Eigenschaften von Bauelementen... 16 Zuverlässigkeit und Lebensdauer... 21 Stichprobenprüfung... 29 Verlustleistung und Wärmeableitung... 32 Montagehinweise...

Mehr

Ulrich Jucknischke. Das Technik-Projekt LED Taschenlampe

Ulrich Jucknischke. Das Technik-Projekt LED Taschenlampe Ulrich Jucknischke Das Technik-Projekt LED Taschenlampe Technik-Projekt: LED-Taschenlampe Probleme des Faches Physik: Wenig Motivation bis Ablehnung bei den Schülern. Zuviel Theorie ohne schülerinteressierende

Mehr

Aufgabe 1: Schaltender Transistor

Aufgabe 1: Schaltender Transistor Aufgabe 1: Schaltender Transistor Zur verlustarmen und stufenlosen Steuerung der Heckscheibenheizung eines Autos wird ein schaltender Transistor eingesetzt. Durch die Variation der Einschaltdauer des Transistors

Mehr

3.2 Arbeitspunkteinstellung

3.2 Arbeitspunkteinstellung 3 Der Bipolartransistor 3.2. Arbeitspunkteinstellung 28 3.2 Arbeitspunkteinstellung Wiederholung: Der Arbeitspunkt legt die Großsignalgrößen,,,,, und U CE, sowie die Kleinsignalgrößen r BE, S und g EA

Mehr

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS 201.. Gruppe: Teilnehmer Name Matr.-Nr.

HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS 201.. Gruppe: Teilnehmer Name Matr.-Nr. HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Schaltungs-Praktikum Schaltungen mit Z-Dioden Datum: WS/SS 201.. Gruppe: Teilnehmer Name Matr.-Nr. 1 2 3 Testat verwendete

Mehr

Wintersemester 2012/13

Wintersemester 2012/13 Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Unterlagen, Taschenrechner Wintersemester 2012/13 Schriftliche Prüfung im Fach Elektronik/Mikroprozessortechnik,

Mehr

2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12

2.4 Numerisches Lösungsverfahren: Iteration 100 C 50 C / A I 2 / V. 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 2 Diode 2.4. Numerisches Lösungsverfahren: Iteration 12 Aufgabe 6 Serienschaltung von Dioden Geg.: Diodenkennlinien für T =5 C und T =1 C U =1.2V Ges.: U 1,min und U 1,max für gegebenen Temperaturbereich

Mehr

E29 Operationsverstärker

E29 Operationsverstärker E29 Operationsverstärker Physikalische Grundlagen Ein Operationsverstärker (OPV) ist im Wesentlichen ein Gleichspannungsverstärker mit sehr hoher Verstärkung und einem invertierenden (E-) sowie einem nichtinvertierenden

Mehr

Transistor- und Operationsverstärkerschaltungen

Transistor- und Operationsverstärkerschaltungen Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung Elektronische Bauelemente WS2012/13 Mechatronik + Elektrotechnik Bachelor Prüfungstermin: Prüfer: Hilfsmittel: 23.1.2013 (90 Minuten) Prof. Dr.-Ing. Großmann,

Mehr

LABORÜBUNG Feldeffekttransistor

LABORÜBUNG Feldeffekttransistor LABORÜBUNG Feldeffekttransistor Letzte Änderung: 14.4 2005 Lothar Kerbl Inhaltsverzeichnis Überblick... 2 Messaufgabe 1: Steuerkennlinie n-kanal j-fet... 2 Steuerkennlinien von MOS-FETs... 4 Theoretische

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2018/19 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8. Wintersemester 2015/16 Elektronik

Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8. Wintersemester 2015/16 Elektronik Bachelorprüfung FAB + MBB (Schwerpunkt Mechatronik) / Diplomprüfung MBD Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Matr.-Nr.: Hörsaal: Wintersemester

Mehr

Aufgaben zur Analogen Schaltungstechnik!

Aufgaben zur Analogen Schaltungstechnik! Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt

Mehr

3*" Bauelemente der Elektronik

3* Bauelemente der Elektronik 3*" Bauelemente der Elektronik Eigenschaften und Anwendung 13., bearbeitete Auf läge VEB VERLAG TECHNIK BERLIN Inhaltsverzeichnis 1. Grundlagen 15 1.1. Einführung 15 1.2. Eigenschaften von Bauelementen

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Eine Stabilisierung für ein Netzteil entsprechend nebenstehender Schaltung soll aufgebaut und dimensioniert werden. Bestimmen Sie: 1. die erforderliche Z-Dioden-Spannung

Mehr

Klausur-Lösungen EL(M)

Klausur-Lösungen EL(M) Beuth-Hochschule, Prof. Aurich -1/5- Prüfungstag: Do, 11.7.2013 Raum: T202 Zeit: 10:00-12:00 Studiengang: 2. Wiederholung (letzter Versuch)? ja / nein. Name: Familienname, Vorname (bitte deutlich) Matr.:

Mehr

Operationsverstärker (E 20)

Operationsverstärker (E 20) Operationsverstärker (E 20) Ziel des Versuches In der physikalischen Messtechnik erfolgt die Verarbeitung elektrischer Signale (messen, steuern, regeln, verstärken) mit Hilfe elektronischer Schaltungen

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009 Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2

Mehr

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Serie 2006 Berufskunde schriftlich Elektrotechnik Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch

Mehr

Unterschrift: Hörsaal: Platz-Nr.:

Unterschrift: Hörsaal: Platz-Nr.: FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:

Mehr

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C)

6. Bipolare Transistoren Funktionsweise. Kollektor (C) NPN-Transistor. Basis (B) n-halbleiter p n-halbleiter. Emitter (E) Kollektor (C) 6.1. Funktionsweise NPN-Transistor Kollektor (C) E n-halbleiter p n-halbleiter C Basis (B) B Emitter (E) PNP-Transistor Kollektor (C) E p-halbleiter n p-halbleiter C Basis (B) B Emitter (E) 1 Funktionsweise

Mehr

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom

Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen

Mehr

Der Transistor als Schalter ein experimenteller Zugang VORANSICHT

Der Transistor als Schalter ein experimenteller Zugang VORANSICHT 24. Der Transistor als Schalter 1 von 14 Der Transistor als Schalter ein experimenteller Zugang Axel Donges, Isny im Allgäu Unser moderner Alltag ist heute ohne Transistoren nicht mehr denkbar. Doch wie

Mehr

Aufg. P max 1 12 Klausur "Elektrotechnik" am

Aufg. P max 1 12 Klausur Elektrotechnik am Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene

Mehr

1 Grundlagen. 1.1 Leistung und Arbeit. 1.2 Dämpfung und Verstärkung. 1.3 Widerstände. 1.3.1 Vernachlässigungsregeln 1 T. P (t)dt P (t) = u(t) i(t) P =

1 Grundlagen. 1.1 Leistung und Arbeit. 1.2 Dämpfung und Verstärkung. 1.3 Widerstände. 1.3.1 Vernachlässigungsregeln 1 T. P (t)dt P (t) = u(t) i(t) P = Grundlagen. Leistung und Arbeit W = P (t)dt P (t) = u(t) i(t) P = T T 0 u(t) i(t)dt.2 Dämpfung und Verstärkung P 2/P db U 2/U 2,00 3,4 4,00 6 2,00 0,00 0 3,6 00,00 20 0,00 (a) Verstärkung P 2/P db U 2/U

Mehr

ELEKTRONIK - Beispiele - Dioden

ELEKTRONIK - Beispiele - Dioden ELEKTRONIK - Beispiele - Dioden DI Werner Damböck (D.1) (D.2) geg: U 1 = 20V Bestimme den Vorwiderstand R um einen maximalen Strom von 150mA in der Diode nicht zu überschreiten. Zeichne den Arbeitspunkt

Mehr

Diplomprüfung SS 2010

Diplomprüfung SS 2010 Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Diplomprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Prof. Dr. G. Buch Prof. Dr. T. Küpper Zugelassene Hilfsmittel: alle

Mehr

Geregelte Stabilisierungsschaltung mit Längstransistor

Geregelte Stabilisierungsschaltung mit Längstransistor Geregelte Stabilisierungsschaltung mit Längstransistor I R1 R 1 U R1 I B3 U CE3 I B4 V 3 V 4 U CE4 I A I R2 U E R 2 U R2 U CE2 V 2 I R3 I Z V 1 U Z R 3 UR3 Eine Stabilisierung für ein Netzteil entsprechend

Mehr

welche physikalischen Grundgrößen in der Elektronik verwendet werden und wie sie voneinander abhängen,

welche physikalischen Grundgrößen in der Elektronik verwendet werden und wie sie voneinander abhängen, 8 Grundwissen 2 Elektrische Ladung, Strom, Spannung In diesem Kapitel lernen Sie, ein Grundverständnis der Elektrizität zur Beschäftigung mit Elektronik, welche physikalischen Grundgrößen in der Elektronik

Mehr

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,

Mehr

Das kleine. Werkbuch Elektronik. Franzis- Dieter Nührmann. Datensammlungen - Bauelemente - Grundschaltungen

Das kleine. Werkbuch Elektronik. Franzis- Dieter Nührmann. Datensammlungen - Bauelemente - Grundschaltungen Dieter Nührmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Das kleine Werkbuch Elektronik Datensammlungen -

Mehr

Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2009 Fach: Elektronik, Dauer: 90 Minuten Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung Elektronik Seite 1 von 8 Diplomvorprüfung SS 2009 Fach: Elektronik,

Mehr

Praktikum Analog- und Digitaltechnik. Versuch A2 Transistorschaltung

Praktikum Analog- und Digitaltechnik. Versuch A2 Transistorschaltung Praktikum Analog- und Digitaltechnik Versuch A2 Transistorschaltung Inhalt dieses Versuches: Verständnis von bipolar Transistoren als Schalter oder Verstärker Aufbau eines Brückengleichrichters Aufbau

Mehr

Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten

Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2013 Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Matr.-Nr.: Name,

Mehr

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

Elektronik. Für Studenten des FB WI Prof. M. Hoffmann FB ET/IT. Handout 4 Halbleiterdioden

Elektronik. Für Studenten des FB WI Prof. M. Hoffmann FB ET/IT. Handout 4 Halbleiterdioden Elektronik ür Studenten des B WI Prof. M. Hoffmann B ET/IT Handout 4 Halbleiterdioden Definition und unktion pn-übergang mit äußerer Spannung Kennlinien und Parameter Ersatzschaltbild Anwendungsbeispiele

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

Diplomvorprüfung WS 2009/10 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2009/10 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2009/10 Fach: Elektronik,

Mehr

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden

Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden Wirtschaftsingenieurwesen Elektronik/Schaltungstechnik Prof. M. Hoffmann Übung 3 Halbleiterdioden Aufgabe 1: Kennlinie, Kennwerte, Ersatzschaltbilder und Arbeitspunktbestimmung Gegeben sind die nachfolgende

Mehr

Testat zu Versuch 4 Variante 6 SS14

Testat zu Versuch 4 Variante 6 SS14 Testat zu Versuch 4 Variante 6 SS14 Name: Vorname: Matrikel.-Nr.: 1. Eine Wechselspannung mit einer Amplitude von U e = 24 V, fe = 2 khz soll mittels eines Einweggleichrichters gleichgerichtet werden.

Mehr

Kleinsignalverhalten bipolarer Transistoren 1 Theoretische Grundlagen 1.1 Einstellung des Arbeitspunktes

Kleinsignalverhalten bipolarer Transistoren 1 Theoretische Grundlagen 1.1 Einstellung des Arbeitspunktes Dr.-Ing. G. Strassacker STRASSACKER lautsprechershop.de Kleinsignalverhalten bipolarer Transistoren 1 Theoretische Grundlagen 1.1 Einstellung des Arbeitspunktes Will man einen bipolaren (npn- oder pnp-)

Mehr

Diplomprüfung Elektronik WS 2004/2005 Dienstag,

Diplomprüfung Elektronik WS 2004/2005 Dienstag, FH München FB 3 Maschinenbau Diplomprüfung Elektronik WS 4/5 Dienstag,..5 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: Unterschrift:

Mehr

13. Dioden Grundlagen

13. Dioden Grundlagen 13.1 Grundlagen Die Diode ist ein Bauteil mit zwei Anschlüssen, das die Eigenschaft hat den elektrischen Strom nur in einer Richtung durchzulassen. Dioden finden Anwendung als Verpolungsschutz (siehe Projekt)

Mehr

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1

Kennlinien von Dioden: I / A U / V. Zusammenfassung Elektronik Dio.1 Kennlinien von Dioden: I / A / V I = I S (e / T ) mit : T = kt / e 6mV I S = Sperrstrom Zusammenfassung Elektronik Dio. Linearisiertes Ersatzschaltbild einer Diode: Anode 00 ma I F r F 00 ma ΔI F Δ F 0,5

Mehr

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung

Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Berechnung einer Emitterschaltung mit Arbeitspunkt-Stabilisierung durch Strom-Gegenkopplung Diese Schaltung verkörpert eine Emitterschaltung mit Stromgegenkopplung zur Arbeitspunktstabilisierung. Verwendet

Mehr

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω Probeklausur Elektronik, W 205/206. Gegeben ist die folgende Schaltung: R U q R 3 R 2 R 4 U L 2 mit Uq= 0 V R= 800 Ω R2=, kω R3= 480 Ω R4= 920 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen Gesetze

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik

Viel Erfolg!! Aufgabe 1: Operationsverstärker (ca. 10 Punkte) Seite 1 von 8. Wintersemester 2016/17 Elektronik Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Wintersemester 2016/17 Elektronik Matr.-Nr.: Name, Vorname: Hörsaal: Unterschrift: Prof. Dr.-Ing. Tilman

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 02. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 02. 06.

Mehr

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet.

A1: Die Aufgabe 1 ist Grundlage für alle nachfolgenden Aufgaben und wird von jedem Studenten im Selbststudium erarbeitet. Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 4 Bipolartransistor als Schalter und Verstärker Übung 4: 07.06.2018 A1: Die Aufgabe 1 ist Grundlage

Mehr

Lehrplan. Elektronik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung

Lehrplan. Elektronik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung Lehrplan Elektronik Höhere Berufsfachschule für Automatisierungstechnik Ministerium für Bildung Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2010 Hinweis: Der

Mehr

Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden.

Transistoren. David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden. Transistoren David Schütze Projekt: Search-E Gruppe B2 Betreuer: Sascha Eden http://hobbyelektronik.de.tl/der-erste-transistor-der-welt.htm Gliederung Was ist ein Transistor Geschichte Bipolartransistor

Mehr

Diplomvorprüfung Elektronik WS 2008/09

Diplomvorprüfung Elektronik WS 2008/09 Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 90 Minuten Diplomvorprüfung Elektronik WS 2008/09 Name: Vorname:

Mehr

Ausarbeitung: MOSFET

Ausarbeitung: MOSFET Ausarbeitung: MOSFET Inhaltverzeichnis: 1. Einleitung 2. Definition 3. Aufbau 4. Kennlinien 5. Anwendungen 6. Vor- & Nachteile 7. Quellen 1 1.Einleitung: Die erste begrifflich ähnliche MOSFET- Struktur

Mehr

Laborversuch Feldeffekttransistoren Mess- und Sensortechnik

Laborversuch Feldeffekttransistoren Mess- und Sensortechnik Feldeffekttransistoren Ausgehend vom Ersatzschaltbild werden die wichtigsten statischen SPICE-Parameter bestimmt. Es folgt eine Einführung in die analoge Schaltungstechnik mit JFET's. Auf die Theorie wie

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Elektronik 1 Themenübersicht Halbleiterphysik Kristallaufbau und Eigenleitung Stellung der Halbleiter im Periodensystem der Elemente Kristallaufbau von Halbleitern Einordnung der Halbleiter

Mehr

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 1. Klausur Grundlagen der Elektrotechnik I-B 27. Mai Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 1. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Elektronik ist die technische Grundlage für die Verarbeitung von Signalen und Daten.

Elektronik ist die technische Grundlage für die Verarbeitung von Signalen und Daten. Elektronik ist die technische Grundlage für die Verarbeitung von Signalen und Daten. Die Elektronik setzt sich hierarchisch zusammen aus Bauelementen Baugruppen Geräten und Netzwerken. Der Schlüssel für

Mehr

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin

Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Serie 2007 Berufskunde schriftlich Gewerbliche Lehrabschlussprüfungen Telematiker / Telematikerin Name, Vorname Kandidatennummer Datum............ Zeit Hilfsmittel Bewertung 75 Minuten Formelbuch und Taschenrechner

Mehr

Passive Bauelemente, Grundgrößen

Passive Bauelemente, Grundgrößen Passive Bauelemente, Grundgrößen 1. Wie lauten die beiden wichtigsten Parameter eines ohmschen Widerstandes? 2. Wie lauten die beiden wichtigsten Parameter eines Kondensators? 3. Wie lauten die beiden

Mehr