Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Größe: px
Ab Seite anzeigen:

Download "Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen"

Transkript

1 Sommersemester 2016 Didaktik der Grundschulmathematik Di, Uhr, HS 1 I Zahlen und Operationen V Arithmetik in der Grundschule V Die Entwicklung mathematischer Kompetenzen V Zahlenraum bis 20 (Kl. 1) V Erstes Rechnen V Zahlenraum bis 100 (Kl. 2)- Rechenstrategien V Multiplizieren und Dividieren II Raum und Form V Dreiecke im Quadrat III Muster und Strukturen V Muster und Strukturen IV Größen und Messen V Größen und Messen Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen V Daten, Zufall und Wahrscheinlichkeit V Daten, Zufall und Wahrscheinlichkeit VI Spielerisches Lernen; Offene Aufgaben V Offene Aufgaben individuelle Förderung V Spielerisches Lernen Prüfungen vom

2 Unterrichtssequenz: Zahlzerlegungen im Zehnerraum (V3) ANFANGEN Spiel: Ich kenne eine Zahl, die du nicht kennst ERARBEITEN/ÜBEN strukturiert legen am Zwanzigerfeld: die 8, 6, 9 strukturiert legen und schnell entdecken Schreibe oder male eigene Zahlenrätsel auf Kärtchen. BEENDEN Kärtchen der Kinder an der Tafel nach Zahlen ordnen. Zu welcher Zahl haben wir viele Zerlegungen gefunden? Zu welchen Zahlen nur wenige? Kannst du sagen, warum das so ist?

3 V 4 Addieren und Subtrahieren im Zahlenraum bis 20 1 Grundlagen 2 Erarbeiten der Operationen in Klasse 1 3 Rechenstrategien 4 Automatisieren des Kleinen Eins-Plus-Eins 5 Beispielhafte Planung einer Unterrichtssequenz 3

4 1 Grundlagen Grundmodelle der Operationen Zeichen und Begriffe 4

5 Grundmodelle der Operationen 5

6 s. auch Padberg (2005), S. 84 f. Grundmodelle - Addieren semantisch: dazutun (dynamisch); zusammenfassen (statisch) Sachverhalte: dazulegen, dazukommen, zusammenlegen, dazugewinnen, anhängen, erhöhen, sparen, wachsen, hinzukaufen,... 6

7 Grundmodelle - Subtrahieren semantisch: Wegnehmen (dynamisch); Sachverhalte: wegfahren, herunterfallen, herausfallen, aufessen, verlieren, ausgeben, abhängen, verwelken,... Unterschied bestimmen (statisch) Der Unterschied (die Differenz) zwischen 5 und 2 ist 3. 7

8 Eine Beziehung, die auch geklärt werden muss: Subtraktion als Umkehroperation der Addition Die Frage, welche Zahl b man zu einer Zahl a addieren muss, um eine vorgegebene Zahl c zu erhalten, führt zur Umkehrung der Addition, zur Subtraktion. Welche natürliche Zahl muss man zu 5 addieren, um 12 zu erhalten? Man kann rechnen 12-5=7, also ist 5+7=12. 8

9 Paul hat 3 Steine und findet noch 5. Wie viele Steine hat er jetzt? (3+5=x) Paul hat 3, Anna hat 5 Steine. Wie viele haben sie zusammen? (3+5=x) Paul hat 8 Steine und verliert 5. Wie viele hat er jetzt noch? (8-5=x) Paul hat 8 Steine. 5 sind dunkel, die anderen sind hell. Wie viele helle Steine hat er? (8=5+x; 5+x=8; 8-5=x) 9

10 Zeichen und Begriffe 10

11 (Term) Zahlen, die man addiert, sind Summanden. Du errechnest eine Summe. Gleichung 11

12 (Term) Du errechnest eine Differenz. Gleichung 12

13 Minuend; Subtrahend 13

14 Formulieren Sie Textaufgaben unter Nutzung der Fachbegriffe 14

15 2 Erarbeiten der Operationen in Klasse 1 15

16 Weg 1: erst Addition, etwas später die Subtraktion - Zerlegen von Mengen; Terme mit dem Pluszeichen - Einführen der Addition; Üben - Einführen der Subtraktion; Üben - Zusammenhang zwischen beiden Operationen - Zahlenbuch; Welt der Zahl; Primo; Mathematikus;... 16

17 Welche Terme passen? Quelle: Atlas Mathematik I 17

18 Verbinde die Punkte. Schreibe einen Term zur Karte. Quelle: P. Geering/ Kunath, Atlas Mathematik I 18

19 Weg 2: gemeinsames Erarbeiten von Addition und Subtraktion Erzähle Weg- und Dazu-Geschichten. Schreibe die Rechenaufgaben. Matheprofis; Leonardo 19

20 Weitere Erarbeitungsideen zu Weg 2 20

21 (1) Ein- und Aussteigen Quelle: Geering/Kunath. Ich kann Mathematik. Klasse 1. Lernbuchverlag. 21

22 (2) Bohnenschachtel-Aktiviäten Die Abbildungen in den Lehrbüchern zeigen häufig nur den dynamischen Aspekt. Welche Veranschaulichung müsste jeweils noch ergänzt werden? Matheprofis Oldenbourg 22

23 (3) Einstieg über Vorerfahrungen (offene Aufgabe) Welche Rechenaufgaben kennst du schon? Kinder notieren ihre Rechenaufgaben Zusammenstellen der Aufgaben (Veröffentlichen) Dann können an diesen Aufgaben Rechenstrategien erarbeitet und bewusst gemacht werden (Wie hast du gerechnet, wie könnte man noch rechnen?). 23

24 (4) Zugang über Sachsituationen Unter dem Pflaumenbaum findet Sarah 2 Pflaumen und dann noch 6 Pflaumen. Wie viele Pflaumen hat Sarah gefunden? Paul hat schon 10 Pflaumen. 3 davon haben einen Wurm, die mag er nicht. Wie viele verspeist Paul wahrscheinlich? Die Mama stellt den Kindern ein Schüsselchen mit 12 Pflaumen hin. Sarah und Paul essen gleich 5 auf. Wie viele sind noch in der Schüssel? Wie kann man das aufschreiben? 2+6=8...; 10-3=7...; 12-5=

25 3 Rechenstrategien Quellen: - Padberg/Benz (2011) - Radatz/Schipper; Wittmann/Müller - Strategien der Kinder 25

26 Zählstrategien (1) Vollständiges Auszählen (2) Weiterzählen vom 1. Summanden aus (3) Weiterzählen vom größeren Summanden aus (4) Weiterzählen vom größeren Summanden aus in größeren Schritten vgl. auch Padberg/Benz (2011), S. 82/83 26

27 Strategien für den Zehnerübergang: schrittweise oder Zehnerergänzung (10 als Zwischenergebnis) 8+5= = Zehnerübergang mit Hilfe des Verdoppelns bzw. Halbierens 8+8=16; 8+9=17 (16+1) 16-8=8; 16-9= 7 27

28 Die wichtigste Strategie im Anfangsunterricht ist die Zehnergänzung (schrittweises Rechnen). Auf dieser Strategie baut das weitere Rechnen auf. Rechenschwache Kinder erwerben diese Strategie nur mit großer Mühe. Eine gute Veranschaulichung ist wichtig. 28

29 Rechnen bis 20 Rechenstrategien im Überblick Zählstrategien Zehnerergänzung (schrittweise) Kraft der Fünf Verdoppeln Nutzen von (leichteren) Nachbaraufgaben Nutzen von Tauschaufgaben Nutzen von Analogien Ergänzen vom Subtrahenden zum Minuenden 29

30 Unterstützende Arbeitsmittel 30

31 Zehnerübergang am Rechenrahmen 1) Darstellen des ersten Summanden 6+8 Zunächst 6 oben, dann die vier von acht auf der oberen Stange, und noch die fehlenden vier auf der unteren, 6+4+4=14, 6+8=14 2) Auffüllen des Zehners Wir schreiben: = = 14 3) Den Rest auf der folgenden Stange darstellen. Quelle: Schipper 2009, S

32 Addieren und Subtrahieren am Zwanzigerfeld (Quelle: Handbuch Wittmann/Müller; Padberg) -Aufgaben legen und besprechen - Kraft der Fünf bewusst machen -Aufgaben zur Zehnerergänzung -Verdopplungsaufgaben und Ableitungen 7+5; Nachbaraufgaben -Analogieaufgaben 32

33 Zahlenbuch Rechnen am Zwanzigerfeld

34 Nachbaraufgaben nutzen Zahlenbuch leichte Aufgaben 34

35 Wie könnten die Kinder rechnen? Aufgaben im ersten Zehner: 5+3, 6-4, 9-8, 1+7, Aufgaben zur Zehnerüberschreitung: 7+8, 13-9, 17-9, Aufgaben im zweiten Zehner: 14-3, 13+2, 35

36 4 Automatisieren des Kleinen Eins-Plus-Eins Grundaufgaben der Addition und Subtraktion (Aufgaben mit einstelligem Summanden und entsprechende Umkehrungen) 36

37 Das Einspluseins enthält mehr als 100 Grundaufgaben, die automatisiert werden sollen. Deshalb: Vielfältige Beziehungen bewusst machen, Rechengesetze nutzen damit sich die Zahl der tatsächlich zu automatisierenden Rechensätze reduziert. abwechslungsreiches Üben organisieren (s. Einführungsvorlesung Aufgabenformate) und konkrete Lernaufgaben stellen 37

38 Zahlentripel nutzen Lerne die Grundaufgaben mit der Summe (dem Minuenden) 8. Arbeiten mit Zahlentripeln: z. B.: 6, 2, 8 38

39 Übersichten als Lernhilfe Einspluseins-Tafel Zahlenbuch Die Plus-Rechentafel Matheprofis 39

40 Zahlenbuch, Klett 40

41 Die Plus- Rechentafel Matheprofis/ Oldenbourg 41

42 5 Beispielhafte Planung einer Unterrichtssequenz

43 ANFANGEN Unterrichtssequenz Kl. 1 ERARBEITEN BEENDEN

44 Fazit 44

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind

Arithmetik in der Grundschule Di 08-10 Uhr HS 1. Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind Sommersemester 2016 Arithmetik in der Grundschule Di 08-10 Uhr HS 1 V 1 12.04. V 2 19.04 Arithmetik in der Grundschule Anfänge und Ziele Die Entwicklung des Zahlbegriffs beim Kind V 3 26.04. Zahlenraum

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Didaktik der Grundschulmathematik 3.1

Didaktik der Grundschulmathematik 3.1 Didaktik der Grundschulmathematik 3.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 3.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Aufbau des Zahlbegriffs

Mehr

Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik 2011 V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Übersicht: Blitzrechnen / Kopfrechentraining 1 6

Übersicht: Blitzrechnen / Kopfrechentraining 1 6 PHBern, Institut für Weiterbildung Weltistrasse 40, CH-3006 Bern T +4 3 309 27, F +4 3 309 27 99 weiterbildung.phbern.ch, info-iwb@phbern.ch Übungsformate Übersicht: Zahlenbuch 6 Übungsformat. 2. 3. 4.

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Mit Flex und Flo durch das 1. Schuljahr 1

Mit Flex und Flo durch das 1. Schuljahr 1 Mit Flex und Flo durch das 1. Schuljahr 1 Erhebung der Lernausgangslage* Eingangsdiagnostik (ca. 1 Woche) o Vergleichen und ergänzen, Farben und Formen kennen o Vergleichen o Figur-Grund-Wahrnehmung o

Mehr

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule:

Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: Stoffverteilungsplan Mathematik Klassenstufe 3 Schuljahr: Schule: ZEIT INHALTE KOMPETENZEN Rechenrakete Bemerkungen Schulwochen 1000 LEITIDEEN: ZAHLEN UND OPERATIONEN RAUM UND FORM MUSTER UND STRUKTUREN

Mehr

Didaktik der Arithmetik Subtraktionsverfahren

Didaktik der Arithmetik Subtraktionsverfahren 7.2) Subtraktion Didaktik der Arithmetik Subtraktionsverfahren Vorlesung: Lernen und Anwenden von Arithmetik Universität Münster Vorkenntnisse von Schulanfängern: Im Vergleich zur Addition sind die Vorkenntnisse

Mehr

Vorgehensweisen bei der halbschriftlichen Subtraktion

Vorgehensweisen bei der halbschriftlichen Subtraktion Vorgehensweisen bei der halbschriftlichen Subtraktion Auf dieser Seite erhalten Sie die Möglichkeit, sich mit Vorgehensweisen von Grundschülern bei Aufgaben zur halbschriftlichen Subtraktion auseinanderzusetzen.

Mehr

Bildungsstandards Grundschule MATHEMATIK. Skriptum

Bildungsstandards Grundschule MATHEMATIK. Skriptum Bildungsstandards Grundschule MATHEMATIK Skriptum erstellt auf Basis der vom Bildungsministerium zur Verfügung gestellten Fassung Bildungsstandards für Mathematik 4. Schulstufe Version 2.2. von den Mitgliedern

Mehr

Jahrgangsübergreifendes Lernen in Klasse 1 und 2

Jahrgangsübergreifendes Lernen in Klasse 1 und 2 Jahrgangsübergreifendes Lernen in Klasse und Eine Handreichung zum Nussknacker Jahrgangsübergreifendes Lernen in Klasse und Die vorliegende Handreichung zeigt Möglichkeiten, mit dem Nussknacker in jahrgangsgemischten

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

1 Schuleigener Arbeitsplan für das Fach Mathematik Stand: 14.06.10 Jahrgangsstufe 1

1 Schuleigener Arbeitsplan für das Fach Mathematik Stand: 14.06.10 Jahrgangsstufe 1 1 Schuleigener Arbeitsplan für das Fach Mathematik Stand: 14.06.10 Jahrgangsstufe 1 Zeitraum Kompetenz (Schwerpunkt) mögliche Themen - Überprüfungsmöglichkeiten Methoden/ Medien/ fachbezogene Hilfsmittel

Mehr

3. Rechnen mit natürlichen Zahlen

3. Rechnen mit natürlichen Zahlen 3. Rechnen mit natürlichen Zahlen 3.1 Inhaltliches Verstehen von Rechenoperationen 3.2 Die Grundaufgaben: Das 1+1 und 1x1 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.4 Die schriftlichen

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe

Bereich: Zahlen und Operationen. Schwerpunkt: Flexibles Rechnen. Zeit/ Stufe Schwerpunkt: Flexibles Rechnen Thema Kompetenz Kenntnisse/ Fertigkeiten/ Voraussetzungen, um die Kompetenz zu erlangen - Flexibles Rechnen (Addition, Subtraktion, Multiplikation, Division) - nutzen aufgabenbezogen

Mehr

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation

Zur Behandlung der Multiplikation. Konzept der Kernaufgaben bei der Multiplikation Zur Behandlung der Multiplikation Konzept der Kernaufgaben bei der Multiplikation Wiederholung: Schriftliche Subtraktion Dana spart für ein neues Fahrrad, das 237 kostet. Sie hat schon 119. Dana rechnet

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25)

M ATHEMATIK Klasse 3. Stoffverteilungsplan Sachsen. Der Zahlenraum bis 1000 (S. 14 25) M ATHEMATIK Klasse 3 Stoffverteilungsplan Sachsen Duden Mathematik 3 Lehrplan: Lernziele / Inhalte Der (S. 14 25) Entwickeln von Zahlvorstellungen/Orientieren im Schätzen und zählen, Zählstrategien, Anzahl

Mehr

Rechnen mit negativen Zahlen

Rechnen mit negativen Zahlen Rechnen mit negativen Zahlen Begründungen 3 3-5 -4-3 1. Klammern auflösen 20 (8+5) } {{ } = 20 8 5 13-2 -1 10 (7 3) } {{ } = 10 7+3 4 3 (4+2) = 3 4+3 2 0 1 2 3 4 5 6 7 8 9 10 +3 Statt 13 in einem zu subtrahieren,

Mehr

Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik

Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik Schuleigener Arbeitsplan der Grundschule Barienrode zum Kerncurriculum Mathematik 1 Erwartete Kompetenzen am Ende des 1. Schuljahrgangs Erwartete prozessbezogene Kompetenzen am Ende des 1. Schuljahrganges

Mehr

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien

Zur Behandlung der Division. Klassifikationstypen und heuristische Strategien Zur Behandlung der Division Klassifikationstypen und heuristische Strategien Wiederholung: Erkennen der Operation und des Klassifikationstypes Am Inselsberg ist ein neuer Skilift in Betrieb genommen worden.

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36

RLP Daten TransKiGs Unterrichtsbeispiele Grundschule. Daten und Zufall 2. Dr. Elke Warmuth. Sommersemester 2016 1 / 36 Daten und Zufall 2 Dr. Elke Warmuth Sommersemester 2016 1 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene Standards, S. 30 2 / 36 Berliner Rahmenlehrplan ab 2017 Neuer RLP, Inhaltsbezogene

Mehr

LEHRPLAN VOLKSSCHULE Mathematik 3.Klasse Volksschule

LEHRPLAN VOLKSSCHULE Mathematik 3.Klasse Volksschule Grundstufe II LEHRPLAN VOLKSSCHULE Mathematik 3.Klasse Volksschule Aufbau der natürlichen Zahlen Ausgehend vom Vorwissen der Grundstufe I, ist der Zahlenraum schrittweise zu erweitern. Das Verstehen großer

Mehr

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen.

Box. Mathematik 2. Begleitheft mit. 20 Kopiervorlagen zur Lernstandskontrolle. Beschreibung der Übungsschwerpunkte. Beobachtungsbogen. Box Mathematik 2 Begleitheft mit 20 Kopiervorlagen zur Lernstandskontrolle Beschreibung der Übungsschwerpunkte Beobachtungsbogen Lernbegleiter -Box Mathematik 2 Inhalt des Begleitheftes Zur Konzeption

Mehr

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 =

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 = Name: 1) SUBTRAHIERE DIE KLEINERE ZAHL VON DER GRÖßEREN: a) 43,86 521,43 b) 15864,2 85,8 c) 0,8 0,643 2) RECHNE VORTEILHAFT! a) 1,45 + 25,0 44,1 d) 63,8 + 40,03 35,4 b) 0,85 + 1,0835 0,084 e),6 30,04 +

Mehr

Automatisieren von Strategien, nicht von Einzelfakten!

Automatisieren von Strategien, nicht von Einzelfakten! Automatisierendes Üben mit "rechenschwachen" Kindern: Automatisieren von Strategien, nicht von Einzelfakten! 20. Symposion mathe 2000 Dortmund, 18. September 2010 Michael Gaidoschik, Wien michael.gaidoschik@chello.at

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Lernaufgaben Mathematik

Lernaufgaben Mathematik Ministerium für Schule und Weiterbildung des Landes Nordrhein - Westfalen Lernaufgaben Mathematik Grundschule Zahlen und Operationen Entdeckerpäckchen : Beziehungshaltige Plusaufgaben untersuchen I. Übersicht:Mathematik

Mehr

Zahlen und Operationen (Klasse 3)

Zahlen und Operationen (Klasse 3) Zahlen und (Klasse 3) LZ überwiegend Zahldarstellungen, Zahlbeziehungen, Zahlvorstellungen verstehen beherrschen In Kontexten rechnen LZ voll Du orientierst Dich sicher im Zahlenraum bis 1000 und kannst

Mehr

5 Rechengeschichten Plus oder Minus? Zeitaufwand ca. 3 Unterrichtsstunden

5 Rechengeschichten Plus oder Minus? Zeitaufwand ca. 3 Unterrichtsstunden 5 Rechengeschichten Plus oder Minus? Zeitaufwand ca. 3 Unterrichtsstunden 33 Angebahnte Kompetenzen Inhaltsfeld Inhaltsbezogene Kompetenzen Kompetenzbereich Prozessbezogene Kompetenzen Zahlen und Operationen

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Stoffverteilungsplan Mathematik Klasse 6

Stoffverteilungsplan Mathematik Klasse 6 Argumentieren und Beweisen Argumentieren eine Vermutung anhand von Beispielen auf Plausibilität prüfen und anhand eines Gegenbeispiels widerlegen Analysieren Lösungswege und begründen Probleme mit eigenen

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

Multiplikation und Division: Lernstände und Entwicklungen

Multiplikation und Division: Lernstände und Entwicklungen Multiplikation und Division: Lernstände und Entwicklungen Kinder bringen nicht nur Vorwissen mit, wenn sie als Erstklässler in die Schule kommen. Auch wenn ab Mitte des zweiten Schuljahres Multiplikation

Mehr

Förderung arithmetischer Basiskompetenzen bei lernschwachen Schülern

Förderung arithmetischer Basiskompetenzen bei lernschwachen Schülern Förderung arithmetischer Basiskompetenzen bei lernschwachen Schülern Simone Knorr Gliederung 1. Die Ausgangssituation 2. Das Blitzrechen- Projekt 3. Erfahrungen und Ergebnisse 4. Anmerkungen, Fragen, 1

Mehr

Schüler/innen-Arbeitsheft Seite 1

Schüler/innen-Arbeitsheft Seite 1 Schüler/innen-Arbeitsheft Seite 1 M 1 Zum Lesen Mathematische Stenographie In der Mathematik werden die Grundrechenarten häufig benutzt, um Vorgänge (wie das Einzahlen oder Abheben von Geld auf ein Konto)

Mehr

Vorläuferfertigkeiten ein Blick auf den Schulbeginn im Fach Mathematik

Vorläuferfertigkeiten ein Blick auf den Schulbeginn im Fach Mathematik Vorläuferfertigkeiten ein Blick auf den Schulbeginn im Fach Mathematik Barbara Maier-Schöler Rechnen lernen beginnt nicht erst mit dem Eintritt in die Schule - die Einschulung ist keine Stunde Null des

Mehr

Jahrgang: 6 Themenkreise 1/8

Jahrgang: 6 Themenkreise 1/8 Rechnen mit Bruchzahlen Addieren und Subtrahieren von Bruchzahlen Rechengesetze Multiplizieren und dividieren von Bruchzahlen Rechengesetze Vermischte Übungen Berechnung von Termen Vertiefende Aufgaben

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Zauberquadrate entdecken

Zauberquadrate entdecken Haus 7: Gute Aufgaben Zauberquadrate entdecken Von Mathematik kann man natürlich erst auf den höheren Stufen sprechen. In der Grundschule wird ja nur gerechnet (Moderator der Sendung Kulturzeit im 3sat,

Mehr

Das legasthene Kind in der Montessorischule

Das legasthene Kind in der Montessorischule Das legasthene Kind in der Montessorischule Das Markenspiel Die vier Grundrechenarten mit dem Markenspiel begreifen Andrea Rother Pro und Contra Keine Leistungsbewertung (Noten) Kein Zeitdruck Individuelle

Mehr

Zahlen sind nicht nur zum Rechnen da auch zum Entdecken von Mustern, Strukturen und Strategien

Zahlen sind nicht nur zum Rechnen da auch zum Entdecken von Mustern, Strukturen und Strategien 1 Zahlen sind nicht nur zum Rechnen da auch zum Entdecken von Mustern, Strukturen und Strategien Workshop bei der 12. Internationalen Schulmathematik-Tagung an der TU-Wien 23. 26. 02. 2010, Hans HUMENBERGER,

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Finde für die Aufgabe 21 + 48 = 69 verschiedene schlaue Rechenwege und notiere die Rechenschritte.

Finde für die Aufgabe 21 + 48 = 69 verschiedene schlaue Rechenwege und notiere die Rechenschritte. Aufgabe 1.4 Idee und Aufgabenentwurf: Rainer Meiers, Nicolaus-Voltz-Grundschule Losheim am See Klasse 2 (November 2012) Finde für die Aufgabe 21 + 48 = 69 verschiedene schlaue Rechenwege und notiere die

Mehr

Zu Handlungen und Darstellungen eine. Zahlen unter verschiedenen Aspekten auffassen, darstellen, strukturieren. passende Aufgabe finden.

Zu Handlungen und Darstellungen eine. Zahlen unter verschiedenen Aspekten auffassen, darstellen, strukturieren. passende Aufgabe finden. Klasse 1 Zeitraum Inhalte Kompetenzbereiche erwartete inhaltsbezogene Kompetenzen Bis zu den Herbstferien (6 Wochen) HERBST (Eingangsdiagnostik) Zahlenraum bis 10 Mengen zuordnen Die Zahlen 1 bis 5 Mengen

Mehr

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen

Mathematik heute 5 (ISBN 978-3-507-81140-9) Lernbereiche Stunden Inhalt Seite Inhalt Seite Kapitel 1 Zahlen und Größen. 6 Zahlen und Größen Zahlen und Operationen 30 Kapitel 1: Kapitel 1 Zahlen und Größen 6 Zahlen und Größen 1 Vielfache von großen Zahlen darstellen, lesen und inhaltlich interpretieren Zahlen über 1 Million Stellentafel Große

Mehr

Parkettierungen herstellen und erforschen

Parkettierungen herstellen und erforschen Parkettierungen herstellen und erforschen Mögliche Zugänge zum Thema Bezüge zum Lehrplan Eigene Erkundungen zum Thema Pause Austausch über die Erkundungen Einbettung der Vorschläge in den Unterricht Begriffsbestimmung

Mehr

Lehrplan Mathematik Klasse 4

Lehrplan Mathematik Klasse 4 Lehrplan Mathematik Klasse 4 Lernziele/ Inhalte Lernziel: Entwickeln von Zahlvorstellungen Orientieren im Zahlenraum bis 1 Million Schätzen und überschlagen Große Zahlen in der Umwelt Bündeln und zählen

Mehr

Klassenübersichten zum Dokumentationsbogen

Klassenübersichten zum Dokumentationsbogen Grundschule am Schloßplatz Offene Ganztagsschule Umweltschule in Europa Schulstraße 1 26316 Varel ( 04451 / 862 999 Fax: 04451 / 960 999 gs-schlossplatz@t-online.de Klassenübersichten zum Dokumentationsbogen

Mehr

5. Addition und Subtraktion

5. Addition und Subtraktion 5. Addition und Subtraktion 78 5. Addition und Subtraktion Lesen Sie zuerst in der Studieneinheit E2 die fachwissenschaftlichen Kapitel zu den Mengenverknüpfungen sowie in der Studieneinheit E3 das Kapitel

Mehr

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini

1/2. Matherad. Kopiervorlagen. Nina Fiedel-Gellenbeck Alma Tamborini 1/2 Matherad Kopiervorlagen Nina Fiedel-Gellenbeck Alma Tamborini 1. Auflage 1 5 4 3 2 1 17 16 15 14 13 Alle Drucke dieser Auflage sind unverändert und können im Unterricht nebeneinander verwendet werden.

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Wie löst man eine Gleichung?

Wie löst man eine Gleichung? Wie löst man eine Gleichung? Eine Gleichung wird gelöst, indem man sie, ohne dass sich die Lösungsmenge ändert, Schritt für Schritt in eine sog. unmittelbar auflösbare Gleichung umwandelt. Unter einer

Mehr

Lehrziele für die 2.Schulstufe. Deutsch-Lesen-Schreiben:

Lehrziele für die 2.Schulstufe. Deutsch-Lesen-Schreiben: Lehrziele für die 2.Schulstufe Deutsch-Lesen-Schreiben: Sprechen Erzählen, mitteilen, zuhören: Erlebnisse in einfachen Sätzen wiedergeben können Zu Bildern und Wörtern Sätze finden Reimwörter bilden können

Mehr

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg

Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Haus 3: Umgang mit Rechenschwierigkeiten, Modul 3.1 Wenn 6 + 6 gleich 12 ergibt, dann gibt 7 + 6 = 13 Aufgabenbeziehungen an der Einspluseinstafel erkennen und nutzen ein langer Weg Mit Nachbaraufgaben

Mehr

Positive und negative Zahlen

Positive und negative Zahlen Positive und negative Zahlen Inhaltsverzeichnis Inhaltsverzeichnis... 2 Impressum... 3 Qualifizierungseinheit Addition und Subtraktion mit positiven und negativen Zahlen 4 Addition und Subtraktion gemischt...

Mehr

Primo.Das passt! Primo.Mathematik und das Kerncurriculum für Niedersachsen. 4. Schuljahr 3. Schuljahr 2. Schuljahr. 1. Schuljahr 931.

Primo.Das passt! Primo.Mathematik und das Kerncurriculum für Niedersachsen. 4. Schuljahr 3. Schuljahr 2. Schuljahr. 1. Schuljahr 931. Primo.Das passt! Primo.Mathematik und das Kerncurriculum für Niedersachsen 4. Schuljahr 3. Schuljahr 2. Schuljahr 931.221 1. Schuljahr Vorwort Primo.Mathematik und das Kerncurriculum für Niedersachsen

Mehr

Anbahnung und Förderung mathematischer Fähigkeiten im Übergang vom Kindergarten zur Grundschule

Anbahnung und Förderung mathematischer Fähigkeiten im Übergang vom Kindergarten zur Grundschule Anbahnung und Förderung mathematischer Fähigkeiten im Übergang vom Kindergarten zur Grundschule Andrea Peter-Koop Universität Oldenburg Mathematik gilt gemeinhin nicht nur als das abstraktestes und theoretischste

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Materialkommentar. Übungen zur Prävention von Rechenstörungen

Materialkommentar. Übungen zur Prävention von Rechenstörungen kommentar Übungen zur Prävention von Rechenstörungen Trotz aller individuell unterschiedlichen Ausprägungen von Rechenstörungen gibt es Aufgabenstellungen, die für die Mehrheit der betroffenen Kinder besonders

Mehr

Viele Wege führen über den Zehner! Einige Anregungen zur Behandlung von Aufgaben mit Zehnerübergang im ersten Schuljahr

Viele Wege führen über den Zehner! Einige Anregungen zur Behandlung von Aufgaben mit Zehnerübergang im ersten Schuljahr Viele Wege führen über den Zehner! Einige Anregungen zur Behandlung von Aufgaben mit Zehnerübergang im ersten Schuljahr Michael Gaidoschik, 2012 1 Einleitung Additionen und Subtraktionen mit Zehnerübergang

Mehr

Fachcurriculum Mathematik Klasse 9/10

Fachcurriculum Mathematik Klasse 9/10 Stromberg-Gymnasium Vaihingen an der Enz Fachcurriculum Mathematik Klasse 9/10 Klasse 9 Vernetzung In allen Lerneinheiten sollten die folgenden Kompetenzen an geeigneten Beispielen weiterentwickelt werden:

Mehr

Vorwort 7 Einführung zum Einsatz offener Aufgaben 8 Tabellarische Übersichten: Jahresplanung Seite 16 Bearbeitungsstand innerhalb der Klasse 16

Vorwort 7 Einführung zum Einsatz offener Aufgaben 8 Tabellarische Übersichten: Jahresplanung Seite 16 Bearbeitungsstand innerhalb der Klasse 16 Inhaltsübersicht Vorwort 7 Einführung zum Einsatz offener Aufgaben 8 Tabellarische Übersichten: Jahresplanung Seite 16 Bearbeitungsstand innerhalb der Klasse 16 Offene Aufgaben für Klassenstufe 3 17 Aufgaben

Mehr

Übungsmaterialien zur Bruchrechnung

Übungsmaterialien zur Bruchrechnung Übungsmaterialien zur Bruchrechnung Die Materialien sind einsetzbar in Klasse. Unterschiedliche Aspekte des Bruchbegriffs werden angesprochen. Einige Seiten müssen im Maßstab : ausgedruckt werden. Daher

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Schriftliche Addition 1. Schriftliche Subtraktion 2

Schriftliche Addition 1. Schriftliche Subtraktion 2 Schriftliche Addition Addiere folgende Zahlen und rechne die Probe! 0 99 / 0 0 5 05 / 55 09 0 9 / 0 0 0 00 / 9 590 0 / 05 9 / 0 90 90 / 0 0 5 0 / 509 0 0 / 9 Schriftliche Subtraktion Subtrahiere folgende

Mehr

Hilf mir, es selbst zu denken! Was ist mehr, 1/8 oder 1/9?

Hilf mir, es selbst zu denken! Was ist mehr, 1/8 oder 1/9? Hilf mir, es selbst zu denken! Was ist mehr, 1/8 oder 1/9? Anfangsunterricht - Vom zählenden Rechnen zum strukturierten problemlösenden operativen Denken in Zusammenhängen Als ich zur Wäscheleine auf der

Mehr

Lerneinheit 3: Mit Euro und Cent rechnen

Lerneinheit 3: Mit Euro und Cent rechnen LM Maßeinheiten S. 11 Übergang Schule - Betrieb Lerneinheit 3: Mit Euro und Cent rechnen A: Werden mehrere Größen addiert (+) oder voneinander subtrahiert (-), muss man alle Größen zuvor in die gleiche

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Beobachtungsbogen bezogen auf die Kompetenzerwartungen in den verschiedenen Bereichen des Faches Mathematik (Klasse 3 und 4)

Beobachtungsbogen bezogen auf die Kompetenzerwartungen in den verschiedenen Bereichen des Faches Mathematik (Klasse 3 und 4) Beobachtungsbogen bezogen auf die Kompetenzerwartungen in den verschiedenen Bereichen des Faches Mathematik (Klasse 3 und 4) für: Schuljahr: Grundlegende mathematische Bildung zeigt sich in fachbezogenen

Mehr

Schriftliche Subtraktion

Schriftliche Subtraktion Schriftliche Subtraktion 1. Schriftliche Subtraktion Grundidee Art der Durchführung des Übertrages: Rechentechnik Entbündeln Erweitern Auffüllen Art der Differenzberechnung: Rechenverfahren Abziehen X

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

Kinder auf dem Weg zur Erfassung der Struktur von Anschauungsmaterialien

Kinder auf dem Weg zur Erfassung der Struktur von Anschauungsmaterialien Hannover Institut für Didaktik der Mathematik und Physik Kinder auf dem Weg zur Erfassung der Struktur von Anschauungsmaterialien, lueken@idmp.uni-hannover.de Verlauf des Workshops Muster und Struktur

Mehr

MATHEMATIK 3. KL. Inhaltsverzeichnis Mathematik 3. bis 6. Klasse. www.schultraining.ch. Bearbeitungsstand

MATHEMATIK 3. KL. Inhaltsverzeichnis Mathematik 3. bis 6. Klasse. www.schultraining.ch. Bearbeitungsstand MATHEMATIK 3. KL. ID Typ Pool Zahlenbereich Zahlen ordnen bis 1000 (ID 1067-3) 1067 Übung 34 Zahlwörter - Zahlen (ID 1056-3) 1056 Übung 42 Zahlennachbarn (ID 1058-3) 1058 Übung 31 Zahlen ordnen (ID 1061-3)

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Kerncurriculum. Mildenberger Verlag

Kerncurriculum. Mildenberger Verlag Jahresplan und Synopse Kerncurriculum Niedersachsen Mathetiger Die Synopse können Sie auch als Word-Datei von unserer Website downloaden. Bestell-Nr. 1822 03 / 2008 Inhalt: Vorwort: Seite 2 Der Mathetiger

Mehr

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen

Mehr

Zählen. 1) Gegenstände im Kinderzimmer zählen und mit Strichen darstellen.

Zählen. 1) Gegenstände im Kinderzimmer zählen und mit Strichen darstellen. Zählen ) Gegenstände im Kinderzimmer zählen und mit Strichen darstellen. Immer! Wie viele Möglichkeiten findest du? Vergleiche mit anderen Kindern. Vier zerlegen ) Vierer-Muster erfinden. Gefundene Möglichkeiten

Mehr

= 60 16 + B7 16 100 16 = B7 16 100 16 = 117 16 100 16 = 17 16 = 23 10

= 60 16 + B7 16 100 16 = B7 16 100 16 = 117 16 100 16 = 17 16 = 23 10 Hinweise zur Rückführung der Subtraktion auf eine Addition unter Verwendung des B-Komplements (Version vom 02.07.2010) siehe auch Vorlesungsskript Prof. H.-P. Bauer, Kapitel 6.3.2 bzw. Übersicht Digitaltechnik,

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten

Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Inhalt/Lernziele Teil A Bruchteile erkennen Bruchteile von Grössen bestimmen Brüche und Bruchteile ergänzen A1, A2, A3 A4, A5 A6, A7, A8, A9 Arbeitszeit Teil A 40 Minuten Teil B 40 Minuten Anzahl Kanten

Mehr

Lehrkraft: Wochenstundenzahl:

Lehrkraft: Wochenstundenzahl: Schuljahr 20 / Schule: Lehrkraft: Wochenstundenzahl: Hinweis: Sachrechnen ist im amtlichen Lehrplan als eigener Lernbereich aufgeführt. In der unterrichtlichen Behandlung werden Ziele und Inhalte dieses

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Fachwortschatz Mathematik

Fachwortschatz Mathematik Fachwortschatz Mathematik - erstes Schuljahr Grundwortschatz Redemittel für Kinder Redemittel für Lehrkräfte 4 < 7 A B C Haus 4: Sprachförderung im Mathematikunterricht, Modul 4.1 Fachbegriffe / fachgebundene

Mehr