PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE"

Transkript

1 PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE 21. Auflage Mit 581 Bildern, 556 Aufgaben mit Lösungen 150 Wiederholungsaufgaben ohne Lösungen, einer Beilage mit 15 Raumbildern und einer Formelsammlung A Fachbuchverlag Leipzig

2 Inhaltsverzeichnis 1. Einführung 15 Planimetrie Winkel Punkt, Linie, Fläche Arten von Winkeln Neben- und Scheitelwinkel Winkel an geschnittenen Parallelen Winkel mit senkrecht aufeinanderstehenden Schenkeln Symmetrie und geometrische örter Arten der Symmetrie Zentral8ymmetrie Zentralsymmetrie bei Parallelen... * Zentralsymmetrie bei Flächen Axialsymmetrie Axialsymmetrie bei Geraden und Winkeln Axialsymmetrie bei Flächen Geometrische örter Fundamentalkonstruktionen Dreiecke Vorbetrachtungen Arten der Dreiecke Dreieckstransversalen * Sätze über das Dreieck 36

3 8 Inhaltsverzeichnis Sätze über die Winkel im und am Dreieck Winkelsummensatz Außen-und Innenwinkel Summe der Außenwinkel Sätze über die Seiten eines Dreiecks Sätze über die Seiten und Winkel im Dreieck Schnittpunkte der Dreieckstransversalen Schnittpunkt der Mittelsenkrechten Schnittpunkt der Höhen Schnittpunkt der Seitenhalbierenden Schnittpunkt der Winkelhalbierenden Kongruenz Vorbetrachtungen Kongruenzsätze Ähnlichkeit Strahlensätzo Streckenverhältnisse Strahlensätze Streckenteilung als Anwendung der Strahlensätze Ähnlichkeitssätzo Begriff der Ähnlichkeit Ähnlichkeitssätze ". 52 Aufgaben 1 bis Dreieckskonstruktionen Vorbetrachtungen Dreieckskonstruktionen mit gegebenen Winkeln und Seiten Dreieckskonstruktionen mit Transversalen Berechnung des Dreiecks ' Allgemeines Dreieck Vorbetrachtungen Berechnung des allgemeinen Dreiecks Rechtwinkliges Dreieck Flächenberechnung Satz des EUKLID Satz des PYTHAGORAS Höhensatz im rechtwinkligen Dreieck. 72 Aufgaben 13 bis Gleichschenkliges Dreieck Berechnung des gleichschenkligen Dreiecks Sonderfälle des gleichschenkligen Dreiecks Gleichschenklig-rechtwinkliges Dreieck Gleichseitiges Dreieck 79 Aufgaben 50 bis 73 83

4 Inhaltsverzeichnis 9 6. Vierecke Allgemeines Viereck Parallelogramm Sonderfälle des Parallelogramms Rechteck Rhombus und Quadrat Trapez Berechnung des Vierecks Rhomboid und Rechteck Rhombus und Quadrat 90 Aufgaben 74 bis Trapez Trapezmethode Trapezformel 96 Aufgaben 110 bis Vielecke Unregelmäßiges Vieleck Regelmäßiges Vieleck Winkel und Seiten im regelmäßigen Vieleck Konstruktion regelmäßiger Vielecke Vorbetrachtungen Regelmäßiges Vier- und Achteck Regelmäßiges Sechs- und Dreieck Regelmäßiges Zehn- und Fünfeck Näherungskonstruktion Berechnung des regelmäßigen Vielecks Allgemeine Berechnungen Seitenbeziehungen zwischen einem n- und einem 2n-Eck bei gleichem Umkreisradius Seitenbeziehung zwischen einem Sehnen-und einem Tangentenvieleck Sonderfälle 106 Aufgaben 137 bis Kreis Vorbetrachtungen Linien, Strecken und Winkel am und im Kreis Flächen HO 8.2. Sätze über die Strecken und Linien am und im Kreis Sehne und Bogen HO

5 10 Inhaltsverzeichnis Radius und Tangente Winkel am und im Kreis Mittelpunkts-und Umfangswinkel Sehnentangentenwinkel Sehnenviereck Tangentenviereck Streckenverhältnisse am Kieis Konstruktionsbeispiele Berechnungen am Kreis Streckenberechnungen Kreisumfang Kreisbogen Sehne Flächenberechnungen Fläche des Sehnenvierecks 123 Aufgaben 167 bis Fläche von Kreis und Kreisring Fläche des Sektors Fläche des Segments 127 Aufgaben 169 bis Stereometrie Lage von Linien und Ebenen im Baum Gerade und Ebene Ebenen im Raum Körperliche Ecke, Allgemeines über mathematische Körper Ebenflächig begrenzte Körper Eulerscher Polyedersatz Wichtige Polyeder Berechnung des Würfels Berechnung des Rechtkantes, 144 Aufgaben 247 bis Prismatische Körper VoTliotrachtungen Berechnung des geraden Prismas 148 Aufgaben 275 bis

6 Inhaltsverzeichnis Satz des CAVALIERI Pyramide und Pyramidenstumpf Vorbetrachtungen Berechnung der Pyramide Berechnung des Pyramidenstumpfes Näherungsf ormel zur Berechnung des Pyramidenstumpf es 161 Aufgaben 298 bis Prismoide Vorbetrachtungen Berechnung der Prismoide 166 Ausgaben 324 bis Fünf regelmäßige Polyeder Vorbetrachtungen Eigenschaften der regelmäßigen Polyeder Tetraeder Oktaeder Hexaeder Ikosaeder Dodekaeder Berechnung der regelmäßigen Polyeder 177 Aufgaben 338 bis Krummflächig begrenzte Körper Kreiszylinder Vorbetrachtungen Berechnung des vollen und des hohlen Kreiszylinders Gerader Voll-und Hohlzylinder Schiefer Voll-und Hohlzylinder Schief geschnittener gerader Kreiszylindor 183 Aufgaben 351 bis 387, Zylinderhuf 189 Aufgaben 388 bis Kegel und Kegelstumpf, Vorbetrachtungen Berechnung des geraden und des schiefen Kegels Berechnung des Kegelstumpf es Wichtige Beziehungen an Kegel und Kegelstumpf Näherungsformeln zur Berechnung des Kegelstumpfes. 198 Aufgaben 395 bis Kugel und ihre Teile 20, Vorbetrachtungen Volumen der Kugel Volumen der Kugelschicht Volumen des Kugelsegmentes 207

7 12 Inhaltsverzeichnis Volumen des Kugelsektors Volumen des Hohlkugelsektors Oberfläche der Kugel Fläche der Kugelkappe Fläche der Kugelzone 211 Aufgaben 424 bis Trigonometrie der Ebene Vorbetrachtungen 217 Aufgaben 470 bis Trigonometrische Funktionen für spitze Winkel Definition der trigonometrischen Funktionen im rechtwinkligen Dreieck Sinusfunktion Cosinus-, Tangens- und Cotangensfunktion Funktion und Cofunktion Erklärung der trigonometrischen Funktionen am Einheitski'eis und ihr Verlauf im I. Quadranten Funktionswerte für besondere Winkel Zusammenhang zwischen den Funktionen desselben Winkels Trigonometrische Funktionswerte 229 Aufgaben 478 bis Berechnung des rechtwinkligen Dreiecks Fünf Grundaufgaben Zahlenbeispiele und Anwendungen 233 Aufgaben 487 bis Trigonometrische Funktionen beliebiger Winkel Verallgemeinerung des Winkelfunktionsbegriffs Verlauf der Winkelfunktionen Veranschaulichung des Funktionsverlaufs Periodizität der Winkelfunktionen Quadrantenrelationen Beziehungen für zwei Winkel, die sich zu ganzen Vielfachen von 90 f-^-) ergänzen Beziehungen für zwei Winkel, die sich um ganze Vielfache von 90 I -~-) unterscheiden Beziehungen zwischen positiven und negativen Winkeln 246 Aufgaben 503 bis

8 Inhaltsverzeichnis Additionstheoreme und andere goniometrische Formeln Funktionen von Winkelsummen und -differenzen (Additionstheoreme) Funktionen von Winkel-vielfachen und Winkelteilen Funktionen des doppelten Winkels Funktionen des mehrfachen Winkels Funktionen des halben Winkels; fortgesetzte Winkelhalbierung Summen und Differenzen von Funktionen und ihre Verwandlung in Produkte 257 Aufgaben 508 bis Goniometrische Gleichungen Goniometrische Gleichungen mit einer Unbekannten Lineare Gleichungen mit einer Funktion des unbekannten Winkels Quadratische Gleichungen mit derselben 'Funktion des unbekannten Winkels Gleichungen mit derselben Funktion verschiedener Argumente Gleichungen mit verschiedenen Funktionen gleicher Argumente Gleichungen mit verschiedenen Funktionen verschiedener Argumente Goniometrische Gleichungen mit zwei Unbekannten Beide Gleichungen enthalten Winkelfunktionen der unbekannten Winkel Eine Gleichung enthält eine Beziehung zwischen den unbekannten Winkeln selbst. 280 Aufgaben 513 bis Berechnung des schiefwinkligen Dreiecks Sinussatz Cosinussatz Lösung der Grundaufgaben für Seiten und Winkel mit dem Sinus- und Cosinussatz -. ' Eine Seite und zwei Winkel sind gegeben Fall WSW " FallSWW Zwei Seiten und ein Winkel sind gegeben Fall SSW (doppeldeutiger Fall) Fall SWS Drei Seiten sind gegeben (Fall SSS) Betrachtungen über bequeme und genaue Berechnung Cosinusformel und Tangensformel Gleichungen von MOLLWEIDE und NEPER 295

9 14 Inhaltsverzeichnis Halbwinkelsätze Berechnung weiterer Stücke des echiefwinkligon Dreiecks Umkreisradius des Dreiecks Inkreisradius des Dreiecks und die Dreiecksfläche Zweckmäßigste Verfahren für die Auflösung des Dreiecks Fall SWS FallSSS Anwendungen 304 Aufgaben 516 bis Zyklometrische Funktionen 314 Aufgaben 553 bis Rechnen mit kleinen Winkeln 321 Aufgaben 555 bis Wiederholungsaufgaben 1 bis 160 (ohne Lösungen) 328 Lösungen zu den Aufgaben 1 bis Sachwortverzeichnis 380 Beilagen: 15 nach dem Anaglyphen verfahren hergestellte Raumbilder 1 Rot-Blau-Brille Formelsammlung

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Inhaltsverzeichnis. I Planimetrie.

Inhaltsverzeichnis. I Planimetrie. Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an

Mehr

Inhaltsverzeichnis. 1 Geschichtliches - Mathematische Zeichen 13

Inhaltsverzeichnis. 1 Geschichtliches - Mathematische Zeichen 13 Inhaltsverzeichnis 1 Geschichtliches - Mathematische Zeichen 13 1.1 Geschichtliches 13 1.2 Mathematische Zeichen 17 2 Zahlen und Größen 19 2.1 Begriff der Zahl 19 2.2 Dekadisches Zahlensystem... 20 2.3

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Mathematik für Ahnungslose

Mathematik für Ahnungslose Mathematik für Ahnungslose Eine Einstiegshilfe für Studierende Von Dipl.-lng. Yära Detert, Rodenberg S. Hirzel Verlag Stuttgart VII Inhaltsverzeichnis Vorwort Verzeichnis mathematischer Symbole V XII 1

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathematik I. Algebra für Berufsmaturitätsschulen. Hans Marthaler Benno Jakob. Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium

Mathematik I. Algebra für Berufsmaturitätsschulen. Hans Marthaler Benno Jakob. Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium Hans Marthaler Benno Jakob Mathematik I Algebra für Berufsmaturitätsschulen Ein Lehr- und Arbeitsbuch für den Unterricht und für das Selbststudium Mit zahlreichen Beispielen aus Naturwissenschaft und Technik

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

Vorkurs der Ingenieurmathematik

Vorkurs der Ingenieurmathematik Jürgen Wendeler 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Vorkurs der Ingenieurmathematik Mit 249 Aufgaben

Mehr

Geometrie Stereometrie

Geometrie Stereometrie TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.7 Geometrie Stereometrie Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Juni 2009

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks

Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Inhaltsverzeichnis. Gepmetrie

Inhaltsverzeichnis. Gepmetrie Inhaltsverzeichnis Gepmetrie Einleitung. i 5 I. Gebrauch des Lineals und des Winkelhakens i Zweck der Geometrie. Begriff der Ebene. Gebrauch des Lineals. Prüfung des Lineals. Gebrauch des Winkelhakens.

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte.

Definitionen. 1. Ein Punkt ist, was keine Teile hat. 3. Die Enden einer Linie sind Punkte. Das erste der dreizehn Bücher von Euklids Elementen beginnt nach der Ausgabe in Ostwald s Klassikern der exakten Wissenschaften (Nr. 235), Leipzig 1933, folgendermaßen: Definitionen. 1. Ein Punkt ist,

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2 Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlung Mathematik Inhaltsverzeichnis 1 Bezeichnungen und Symbole 1.1 Zahlenmengen.................................. 1. Griechisches Alphabet............................. 1.3 Logische Symbole................................

Mehr

Mathematik für Elektrotechniker Methoden - Problemlösungen - Anwendungen

Mathematik für Elektrotechniker Methoden - Problemlösungen - Anwendungen Mathematik für Elektrotechniker Methoden - Problemlösungen - Anwendungen Band 1: Grundstufe von Ulrich Freyer und Heinz-Josef Bauckholt Mit 358 Bildern, zahlreichen Beispielen, Übungen und Testaufgaben

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit

befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Planimetrie Lernziele befasst sich mit der ebenen Geometrie, Winkel, Dreieck, Viereck, Satzgruppe Pythagoras, Kreisberechnungen, Strahlensätze, Ähnlichkeit Selbständiges Erarbeiten der Kurztheorie Kenntnis

Mehr

Formeln für Flächen und Körper

Formeln für Flächen und Körper Formeln für Flächen und Körper FLÄCHENBERECHNUNG... QUADRAT... RECHTECK... 3 PARALLELOGRAMM... 3 DREIECK... 4 GLEICHSCHENKLIGES DREIECK... 5 GLEICHSEITIGES DREIECK... 6 TRAPEZ... 7 GLEICHSCHENKLIGES TRAPEZ...

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Mathematik für Elektrotechniker

Mathematik für Elektrotechniker Mathematik für Elektrotechniker Methoden - Problemlösungen - Bandl: Grundstufe Anwendungen von Ulrich Freyer und Heinz-Josef Bauckholt Mit 358 Bildern, zahlreichen Beispielen, Übungen und Testaufgaben

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

mentor Lernhilfe: Mathematik 8. Klasse Baumann

mentor Lernhilfe: Mathematik 8. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 8. Klasse Geometrie: Dreieckkonstruktionen, Kongruenzsätze, Kreis und Gerade, Raumgeometrie von Rolf aumann 1. uflage mentor Lernhilfe: Mathematik 8. Klasse

Mehr

Stichwortverzeichnis. 3-D siehe Dreidimensionalität D-Grafiker 303

Stichwortverzeichnis. 3-D siehe Dreidimensionalität D-Grafiker 303 3-D siehe Dreidimensionalität 289 3-D-Grafiker 303 A Additionsregel 61, 332 Ähnliche Dreiecke 234 Anwendung 240 Beweis 239, 240 Eigenschaften 238 Voraussetzungen 235, 237, 238 Winkel-Winkel-Satz 236 Ähnlichkeit

Mehr

C Cusanus 34. E Ecken -Dreieck 40 -Viereck 50 Elemente 10 Ellipse -Begriffe 64 -Konstruktionen 66 Euklidsatz 46

C Cusanus 34. E Ecken -Dreieck 40 -Viereck 50 Elemente 10 Ellipse -Begriffe 64 -Konstruktionen 66 Euklidsatz 46 Register 85 86 Register A Abbildung 20 Abstandsaifferenz (Hyperbel I 75 Abstandssumme (Ellipse) 64 Achsen (Ellipse) 65 Achse (Hyperbel) 75 Achse (Parabel) 71 Achsenkonstruktion (Ellipse) 70 Achteck 60

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10

Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 10 Stand 2008 Lehrbuch: Mathematik heute 10 Schuleigener Kompetenzplan für das Fach Mathematik Jahrgang 0 Stand 008 Lehrbuch: Mathematik heute 0 Inhalte Seiten Kompetenzen gemäß Kerncurriculum Eigene Bemerkungen Quadratische Gleichungen Quadratischen

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

Teil I: Algebra.

Teil I: Algebra. Teil I: Algebra 1 Mathematische Begriffe und Schreibweisen 1 1.1 Zahlen 1 1.2 Mengen 1 1.2.1 Aufzählende Mengenschreibweise 1 1.2.2 Beschreibende Mengenschreibweise 2 1.2.3 Mengendiagramme 2 1.2.4 Beziehungen

Mehr

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel

Buch: Mathematik heute [Realschule Niedersachsen], Schroedel Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19

Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19 Grundlagen für die Mittelstufe 7 Inhaltsverzeichnis 1. SYMBOLE UND ZEICHEN...17 2. DIE NATÜRLICHEN ZAHLEN N...19 2.1. Ziffernsysteme...19 2.1.1. Dekadisches Zehnersystem...19 2.1.1.1. Darstellung am Zahlenstrahl...20

Mehr

Stoffverteilungsplan Klasse 7

Stoffverteilungsplan Klasse 7 Stoffverteilungsplan Klasse 7 Rahmenlehrplan Im Blickpunkt: Mathematische Kompetenzen 6 Viel Erfolg im neuen Schuljahr 1 Zahlen und Operationen 30 Basiswissen: Brüche und Dezimalzahlen Kapitel 1: Rationale

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Aufgabe 1. Wie muss? richtig angeschrieben werden?

Aufgabe 1. Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001.

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001. Digitaler Mathe-Adventskalender 2006 Lehrplan Mathematik Sekundarstufe I Geschwister-Scholl-Gymnasium Pulheim, August 2001 Klasse 5 Klasse 8 Klasse 6 Klasse 9 Klasse 7 Klasse 10 Klasse 5 Natürliche Zahlen

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Inhaltsverzeichnis. 1 Hinweise zur Benutzung des Buches... 1

Inhaltsverzeichnis. 1 Hinweise zur Benutzung des Buches... 1 1 Hinweise zur Benutzung des Buches... 1 2 Zur Technik des Zahlenrechnens... 5 2.1 DerZahlbegriff... 5 2.1.1 DienatürlichenZahlen... 5 2.1.2 DasdekadischePositionssystem... 7 2.1.3 DasdualePositionssystem...

Mehr

Kompetenzliste 0503_US_wd.indd 1 15.06.2011 11:31:33

Kompetenzliste 0503_US_wd.indd 1 15.06.2011 11:31:33 Kompetenzliste 15.06.2011 11:31:33 Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 2

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

ELEMENTAR-MATHEMATIK

ELEMENTAR-MATHEMATIK WILLERS ELEMENTAR-MATHEMATIK Ein Vorkurs zur Höheren Mathematik 13., durchgesehene Auflage von Dr.-Ing. G. Opitz und Dr. phil. H. Wilson Mit 189 Abbildungen VERLAG THEODOR STEINKOPFF DRESDEN 1968 Inhaltsverzeichnis

Mehr

Mathematik zum Studienbeginn

Mathematik zum Studienbeginn Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 10., aktualisierte Auflage STUDIUM

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

3vieweg. Mathematik zum Studienbeginn. Arnfried Kemnitz

3vieweg. Mathematik zum Studienbeginn. Arnfried Kemnitz Arnfried Kemnitz Mathematik zum Studienbeginn Grundlagenwissen für alle technischen, mathematisch-naturwissenschaftlichen und wirtschaftswissenschaftlichen Studiengänge 3vieweg Vll Inhaltsverzeichnis 1

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Einleitung... 4 VORSCHAU

Einleitung... 4 VORSCHAU Inhaltsverzeichnis Einleitung................................................................... 4 Geometrische Grundformen ab Klasse 5 1 Ebene Figuren und Körper im Alltag......................................

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Hans Marthaler Benno Jakob Katharina Schudel. Mathematik II. Geometrie für die Berufsmaturität

Hans Marthaler Benno Jakob Katharina Schudel. Mathematik II. Geometrie für die Berufsmaturität Hans arthaler Benno Jakob Katharina Schudel athematik II Geometrie für die Berufsmaturität VORWORT athematik ist ein wichtiges Hilfsmittel und Werkzeug für künftige Fachhochschulstudierende und Berufsleute.

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Dreiecke Kurzfragen. 30. Juni 2012

Dreiecke Kurzfragen. 30. Juni 2012 Dreiecke Kurzfragen 30. Juni 2012 Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks angeschrieben? Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.

Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. 38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

Mathematik. Geometrie Trigonometrie Vektorgeometrie. Diese Zusammenfassung basiert mitunter auf den Skripts von Josef Schuler, ZS HSLU T&A.

Mathematik. Geometrie Trigonometrie Vektorgeometrie. Diese Zusammenfassung basiert mitunter auf den Skripts von Josef Schuler, ZS HSLU T&A. Geometrie Trigonometrie Vektorgeometrie Diese Zusammenfassung basiert mitunter auf den Skripts von Josef Schuler, ZS HSLU T&A. Felix Rohrer www.ximit.ch 2011-11-11 Geometrie, Trigonometrie & Vektorgeometrie

Mehr

Perlen der Mathematik

Perlen der Mathematik Claudi Alsina Roger B. Nelsen Perlen der Mathematik 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen Aus dem Englischen übersetzt von Thomas Filk ~ Springer Spektrum Inhaltsverzeichnis

Mehr

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg

Heinz Rapp. Mathematik. Grundlagen für die Fachschule Technik. Mit über 500 Abbildungen 2., überarbeitete Auflage. vieweg Heinz Rapp Mathematik Grundlagen für die Fachschule Technik Mit über 500 Abbildungen 2., überarbeitete Auflage 31 vieweg Inhaltsverzeichnis 1 Mathematische Begriffe und Schreibweisen 1 1.1 Zahlen 1 1.1.1

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr