Künstliche Intelligenz Dirk Krechel SS 2009

Größe: px
Ab Seite anzeigen:

Download "Künstliche Intelligenz Dirk Krechel SS 2009"

Transkript

1 Künstliche Intelligenz Dirk Krechel SS 2009

2 Überblick über das Modul 1. Einführung 2. Symbolische Verfahren Logik Aussagenlogik Prädikatenlogik Horn Logik Prolog 3. Suchen und Bewerten Problemlösen durch Suche Uninformierte Suche Heuristische Suche Search Engines 4. Subsymbolische Verfahren McCulloch Pitts Neuronen PDP Neuronenmodell Lernmodelle Backpropagation Unsupervised Learning...

3 4 Neuronale Netze 4.1 Einführung und Motivation 4.2 McCulloch Pitts Neuronen 4.3 PDP Neuronenmodell 4.4 Lernmodelle Backpropagation Unsupervised Learning

4 Lernen in Neuronalen Netzen Lernen in Neuronalen Netzen Überwachtes Lernen Feste Lernaufgabe: Geg.: Eingabe E,Ausgabe A Unüberwachtes Lernen Freie Lernaufgabe: Geg.: Eingabe E Correlation Learning Competitive Learning

5 Unüberwachtes Lernen Idee: Das neuronale Netz versucht an Hand von Eingabe Muster diese in sinnvolle Cluster einzuteilen. Beispiel: Kreis Dreieck Quadrat

6 Clustering: mögliche Ergebnisse 2-dimensionale Beispiele mit Real Value Attributen x 2 x 2 x x 1 1 Cluster result 1 Cluster result 2 Für Euklidischen Abstand : Cluster Ergebnis 1 ist besser Für Abstandsmaß = gewichteter euklidischer Abstand mit Gewicht 1 =0 und 2 =1: Cluster Ergebnis 2 ist besser

7 Clusterbildung Ziele: Unterschiede zwischen Objekten eines Clusters sind minimal Unterschiede zwischen Objekten verschiedener Cluster sind maximal

8 Eine Methode: Wettbewerbs Lernen (1) Zwei Neuronen im Wettbewerb out j A j... w 1j w 2j... A A in 1 in 2

9 Wettbewerbs Lernen (2) Annahme: Normalisierte Gewichte w ij = 1 j, j < w ij <1 Eingabe-, Ausgabewerte sind binär Zwei Möglichkeiten: Ein Neuron ist der Gewinner und kann lernen ( winner takes all ) mehrere Neuronen können lernen

10 Wettbewerbs Lernen (3) Der Lernalgorithmus (mit Lernrate a): for all training data In = (in 1, in 2,... in m ) do for all neurons j in the competition layer do compute w ij * in i ; determine the winning neuron S as the one for which w is * in i is maximal; out S := 1; for all neurons j S do out j := 0 for all i do w is := w is + a * in i m * w is )

11 Wettbewerbs Lernen (4) Analyse: Wenn in i = 0 dann w is abschwächen Wenn in i = 1 und vorhergehendes w is < 1/m dann w is erhöhen Folgerungen: Die Gewichte w is sind jetzt näher an in i w is =1, weil - Gewichtsänderungen von w is = a( - w is ) 1 m = a ( in i - w is ) 1-1 = a(1 1) = 0 in i m

12 Vorteile und Nachteile Nachteile: schwierig, gute Initialisierung zu finden Instabilität Vorteile: gute Clusterbildung einfacher und schneller Algorithmus Baustein für komplexere Netzwerke

13 Mehr wie ein Gewinnerneuron Self Organizing Map (Kohonen Map) Zwei Layer Achitektur ähnliche Cluster werden durch benachbarte Neurone des Competitive Layers repräsentiert Competitive Layer... Input Layer

14 Idee der Kohonen Maps (1) Kohonon's SOMs ist ein unüberwachtes Lernverfahren. Ziel ist es die zugrundeliegende Struktur der Daten zu erkennen. Kohonen's SOM werden topologieerhaltende Karten genannt, wegen der auf den Knoten des Netzwerks beruhende topologische Struktur. Eine topologische Karte ist einfach eine Abbildung die die Nachbarschaftbeziehungen erhält. Eine Unstetigkeit wird topologischer Defekt genannt.

15 Idee der Kohonen Maps (2) Was meint man mit benachbart oder entfernt? Man kann sich die Ausgabeknoten in einer Linie oder auf einer Ebene angeordnet vorstellen: Die Eingabe- und Ausgaberäume können verschiedene Dimensionen haben: Der Ausgaberaum hat normalerweise eine kleinere Dimension. Ziel ist es das Netz so zu trainieren, dass benachbarte Ausgaben zu benachbarten Eingaben korrespondieren.

16 Kohonen Map (1) Ausgaberaum A normalerweise mit einer kleineren Dimension Eingaberaum V

17 Kohonen Map (2) Die SOM definiert eine Abbildung des Raums der Eingabedaten aufgespannt durch x 1..x n in ein einoder zweidimensionales Array von Knoten. Die Abbildung wird so durchgeführt, dass die topologischen Relationen im n- dimensionalen Eingaberaum erhalten bleiben wenn sie auf die SOM gemapt werden.. Zusätzlich wird auch die lokale Dichte der Daten durch die Karte beachtet: Gebiete mit mehr Daten im Eingaberaum werden auf größere Bereiche im Ausgaberaum abgebildet.

18 Verkleinern der Nachbarschaft (1) Das schwarze Neuron in der Mitte ist der Gewinner Die Rechrecke beschreiben die schrumpfende Nachbarschaft Generell kann die Nachbarschaft durch geeignete geometrische Formen festgelegt werden

19 Verkleinern der Nachbarschaft (2) Verkleinern der Nachbarschaft stellt das im Verlauf des Trainings immer kleinere Features oder Unteschiede kodiert werden. Das schrittweise herabsetzen der Lernrate sichert die Stabilität Die beiden Methoden stellen sicher das der Lernprozess eine Art von Konvergenz hat.

20 Lernen (1) Lernen eines Kohonen Netz: Wie beim Competitive Learning: for all training data IN = (in 1, in 2,...) do for all Kohonen neurons j do n (in w ) j 2 ij Compute i 1 Determine neuron S for which this value is minimal for all Kohonen neurons j from the neighborhood of S do w ij := w ij + a (in j w ij )

21 Lernen (2) Lernen von Kohonen Netzen Interpretation: Alle Kohonen Neuronen einer ausgewählten Nachbarschaft von S adaptieren ihre Gewichte in Richtung des gelernten Vektors IN Die Größe der Nachbarschaft variiert. Normalerweise verkleinert sie sich mit der Zeit Nach einem erfolgreichen Lernprozess bilden sich Gruppen mit ähnlichen Gewichtsvektoren Das Netz findet Kategorien in den gelernten Daten.

22 Kohonen-Netze Grundprinzipien: Cluster durch Voronoi Regionen X 2 X N 2 N 2 N 3 N 3 N 1 N 4 N 5 N 1 N 4 N 5 X 1 X

23 Kohonen-Netze Grundprinzipien: Cluster durch Voronoi Regionen (2) X 2 Präsentiertes Datum 5 N 2 N 3 N 1 N 4 N 5 X

24 Kohonen-Netze Grundprinzipien: Beispiel für eine dreifache Clusterbildung Initialisierung dreier Kohonen-Neuronen

25 Kohonen-Netze Grundprinzipien: Beispiel für eine dreifache Clusterbildung 1. Lernschritt 2. Lernschritt

26 Kohonen-Netze Grundprinzipien: Beispiel für eine dreifache Clusterbildung Endordnung der Neuronen nach mehreren weiteren Schritten

27 Anwendungen von Neuronalen Netzen Beispiel Matchen von MR-Kontrastbildserien für die Früherkennung von Brustkrebs Medizinisches Problem MR-Mammographie ist ein Kontrastmittel untersuchung Eine specifischer Anstieg/Abbau der Signalstärke ist typisch für einen Tumor Zur Zeit müssen Native- und Kontrastmittelvolumen manuell analysiert werden.(sehr Zeitaufwendig da eine Untersuchung aus bis zu 160 Bildern bestehen kann Atmung ----> Bewegungsartifakte

28 Anwendungen von Neuronalen Netzen: Mammalyzer (Architekur)

29 Anwendungen von Neuronalen Netzen: Mammalyzer (GUI)

30 Anwendungen von Neuronalen Netzen: Mammalyzer Ziele: Muss trotz lokaler Deformationen anwendbar sein Man muss ein optimales Pixel zu Pixelmapping finden Der Algorithmus muss Topologie erhaltend sein Folgende praktische Anforderungen erfüllen 15 Minuten für einen Patient Auf Standardhardware laufen

31 Anwendungen von Neuronalen Netzen: Matcher Modifiziertes Kohonen Netzwerk Initialisierung des Netzes mit dem Nativbildern Training mit den Kontrastmittelbildern modifizierte Lernregel ---- > lokale Transformationen

32 Anwendungen von Neuronalen Netzen: Algorithmus Initialisiere globale Parameter Bilde Neuronale Netze Initialisiere mit den Pixelwerten der nativen Bilder Trainiere mit den Pixelwerten der Kontrastbilder Berechne signifikante Neuronen Berechne Lernfeature lokaler Gradient und lokaler mittlerer Grauwert für alle benötigten Neuronen

33 Anwendungen von Neuronalen Netzen: Algorithmus Lernzyklus Verringere Lernrate und lokale Umgebung Ermittele das Gewinnerneuron für jedes signifikante Neuron Update der Gewichte Rekonstruiere das Bild aus dem Netz

34 Anwendungen von Neuronalen Netzen: Modified Learning Rule

35 Anwendungen von Neuronalen Netzen: Matcher

36 Anwendungen von Neuronalen Netzen: Matcher

37 Anwendungen von Neuronalen Netzen: Matcher

PROCMON. Performance und Condition Monitoring komplexer verfahrenstechnischer Prozesse. Christian W. Frey. christian.frey@iosb.fraunhofer.

PROCMON. Performance und Condition Monitoring komplexer verfahrenstechnischer Prozesse. Christian W. Frey. christian.frey@iosb.fraunhofer. PROCMON Performance und Condition Monitoring komplexer verfahrenstechnischer Prozesse Christian W. Frey 2011 PROCMON Performance und Condition Monitoring komplexer verfahrenstechnischer Prozesse 1. Motivation

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003,2015, DHBW Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Aufbau des Gehirns Säugetiergehirn,

Mehr

Einführung in. Neuronale Netze

Einführung in. Neuronale Netze Grundlagen Neuronale Netze Einführung in Neuronale Netze Grundlagen Neuronale Netze Zusammengestellt aus: Universität Münster: Multimediales Skript Internetpräsentation der MFH Iserlohn (000) U. Winkler:

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

eingereicht bei Prof. Dr. Peter Roßbach

eingereicht bei Prof. Dr. Peter Roßbach Bewertung von Investmentfonds mittels Self-Organizing Maps Bachelor-Thesis an der HfB Business School of Finance & Management eingereicht bei Prof. Dr. Peter Roßbach von Peter Wirtz Matrikelnummer: 4077437

Mehr

Erkennung von automatisierten Zugriffen auf Webseiten unter Verwendung von Selbstorganisierenden Karten

Erkennung von automatisierten Zugriffen auf Webseiten unter Verwendung von Selbstorganisierenden Karten Fachhochschule Wedel Fachbereich Medieninformatik Bachelor-Thesis Erkennung von automatisierten Zugriffen auf Webseiten unter Verwendung von Selbstorganisierenden Karten Eine Machbarkeitsstudie eingereicht

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1 Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten

Mehr

Automatisierte Dossier- Erstellung mittels Text-Mining

Automatisierte Dossier- Erstellung mittels Text-Mining Automatisierte Dossier- Erstellung mittels Text-Mining Paul Assendorp Grundseminar 11.12.2014 Paul Assendorp Automatisierte Dossier-Erstellung 1 Gliederung Motivation Textmining Tools Aktueller Stand Ausblick

Mehr

Technische Universität München. und Künstliche Intelligenz. Diplomarbeit. Parallelimplementierung von rekurrenten selbstorganisierenden Karten

Technische Universität München. und Künstliche Intelligenz. Diplomarbeit. Parallelimplementierung von rekurrenten selbstorganisierenden Karten Technische Universität München Lehrstuhl für Kommunikationsnetze Prof. Dr.-Ing. Jörg Eberspächer Lehrstuhl für Theoretische Informatik und Künstliche Intelligenz Prof. Dr. Dr. h.c. Wilfried Brauer Diplomarbeit

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Cluster-Analyse Ziel: Anwendungsbereiche: Nutzen: Bezug zur Statistik: Bezug zu maschinellem Lernen:

Cluster-Analyse Ziel: Anwendungsbereiche: Nutzen: Bezug zur Statistik: Bezug zu maschinellem Lernen: Cluster-Analyse Ziel: Analyse von Daten ohne Klassenzugehörigkeit (mit Klassen siehe Klassifikation). Objekte werden so zu Clustern zusammengefasst, dass innerhalb eines Clusters die Objekte möglichst

Mehr

Data Mining mit RapidMiner

Data Mining mit RapidMiner Motivation Data Mining mit RapidMiner CRISP: DM-Prozess besteht aus unterschiedlichen Teilaufgaben Datenvorverarbeitung spielt wichtige Rolle im DM-Prozess Systematische Evaluationen erfordern flexible

Mehr

Mustererkennung mit Baumautomaten

Mustererkennung mit Baumautomaten Mustererkennung mit Baumautomaten Eine Ausarbeitung von Gisse Alvarado für das Seminar Mustererkennung mit syntaktischen und graphbasierten Methoden bei Prof. Dr. W. Kurth/ Th. Mangoldt Cottbus 2006 Inhalt

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Morphologie auf Binärbildern

Morphologie auf Binärbildern Morphologie auf Binärbildern WS07 5.1 Konen, Zielke WS07 5.2 Konen, Zielke Motivation Aufgabe: Objekte zählen Probleme: "Salt-&-Pepper"-Rauschen erzeugt falsche Objekte Verschmelzen richtiger Objekte durch

Mehr

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Ideen der Informatik. Maschinelles Lernen. Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Ideen der Informatik Maschinelles Lernen Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung

Mehr

Data Warehousing im Verkehrsbereich

Data Warehousing im Verkehrsbereich Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 Knowledge Discovery in Databases & Data Mining Bearbeitung: Kai Goller Betreuer: Matthias Gimbel 1 Inhalt 1. Aufgaben & Ziele 1.1. Ausgangssituation

Mehr

Einführung Point Cloud Library

Einführung Point Cloud Library Fakultät Umweltwissenschaften / Professur für Photogrammetrie Professur für Geoinformationssysteme Einführung Point Cloud Library Inhalt 1. Was ist PCL? 2. Was kann PCL? 3. Wie funktioniert PCL? 4. Module

Mehr

Vorbereitungsaufgaben

Vorbereitungsaufgaben Praktikum Bildverarbeitung / Bildinformationstechnik Versuch BV 4 / BIT 3: Mustererkennung Paddy Gadegast, CV00, 160967 Alexander Opel, CV00, 16075 Gruppe 3 Otto-von-Guericke Universität Magdeburg Fakultät

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Seminar Komplexe Objekte in Datenbanken

Seminar Komplexe Objekte in Datenbanken Seminar Komplexe Objekte in Datenbanken OPTICS: Ordering Points To Identify the Clustering Structure Lehrstuhl für Informatik IX - Univ.-Prof. Dr. Thomas Seidl, RWTH-Aachen http://www-i9.informatik.rwth-aachen.de

Mehr

SYN Grundlagen Algorithmen Anwendung FIN. Anomalieerkennung. UnFUG WS2011/2012. Alexander Passfall Hochschule Furtwangen

SYN Grundlagen Algorithmen Anwendung FIN. Anomalieerkennung. UnFUG WS2011/2012. Alexander Passfall <alex@passfall.de> Hochschule Furtwangen 1/23 UnFUG WS2011/2012 Alexander Passfall Hochschule Furtwangen 3. November 2011 2/23 Inhalt 1 Grundlagen Typen Funktionsweise 2 Algorithmen Outlier Detection Machine Learning 3 Anwendung

Mehr

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren

Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Ziel Termin3 Klassifikation multispektraler Daten unüberwachte Verfahren Einteilung (=Klassifikation) der Pixel eines multispektralen Datensatzes in eine endliche Anzahl von Klassen. Es sollen dabei versucht

Mehr

Bildmerkmalssuche. Seminar Computational Photography. Visual Computing Department of Computer Science

Bildmerkmalssuche. Seminar Computational Photography. Visual Computing Department of Computer Science Bildmerkmalssuche Seminar Computational Photography EINFÜHRUNG 2 Einführung Bildmerkmalssuche: sehr wichtiges Thema des künstlichen Sehens Erkennen von Objekten auf dem Bild oder in einer Bildsequenz anhand

Mehr

Das Projekt. Projektbeschreibung

Das Projekt. Projektbeschreibung Projektbeschreibung 1 Inhaltsverzeichnis Das Projekt Projektbeschreibung 1 Vorverarbeitung der Daten 3 Die View der SOM-Plugin 8 Hierarchische SOM 12 Lernalgorithmus SOM 15 SOM Begriffserklärung 19 Edge-Histogramm

Mehr

Spatial Data Mining. Thomas Gäbler 04IN1

Spatial Data Mining. Thomas Gäbler 04IN1 Spatial Data Mining 1. Motivation 2. Räumliche Datenbanken 2.1 Unterschied zum klassischen Data Mining 2.2 topologische Beziehungen 2.3 metrische Beziehungen 2.4 gerichtete Beziehungen 3. Spatial Data

Mehr

Customer Analytics mit der SOM-Technik

Customer Analytics mit der SOM-Technik Customer Analytics mit der SOM-Technik Basierend auf fortschrittlicher Data-Mining-Technologie hilft Ihnen Synesis Interactive Analyzer, Ihre Kunden besser zu verstehen. Die Software findet homogene Kundengruppen

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Tobias Stähle 23.05.2014 1 Einführung 1.1 Was ist Machine Learning? Während am Anfang Computer noch auf das reine Ausrechnen beschränkt waren

Mehr

Merkmalbasierte Zeichenerkennung mittels neuronaler Netze

Merkmalbasierte Zeichenerkennung mittels neuronaler Netze UNIVERSITÄT BAYREUTH MATHEMATISCHES INSTITUT Merkmalbasierte Zeichenerkennung mittels neuronaler Netze Diplomarbeit von Lisa Sammer Datum: 10. Mai 2005 Aufgabenstellung / Betreuung: Prof. Dr. Lars Grüne

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Künstliches binäres Neuron

Künstliches binäres Neuron Künstliches binäres Neuron G.Döben-Henisch Fachbereich Informatik und Ingenieurwissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs

Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs 1. Klagenfurter KMU Tagung Tanja Schuschnig Alexander Brauneis Institut für Finanzmanagement 25.09.2009

Mehr

Kapitel 9. Kombination von Vektor- und Rasterdaten. Rasterdaten. 3. Transformationen des Formats. 4. Kombinierte Auswertungen

Kapitel 9. Kombination von Vektor- und Rasterdaten. Rasterdaten. 3. Transformationen des Formats. 4. Kombinierte Auswertungen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 9 Kombination von Vektor- und Rasterdaten Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2011/12 Ludwig-Maximilians-Universität

Mehr

Neuronale Netze. Thema: Semesterarbeit zum Forschungsseminar: Neuere psychologische Fachliteratur SS 2006

Neuronale Netze. Thema: Semesterarbeit zum Forschungsseminar: Neuere psychologische Fachliteratur SS 2006 Leopold - Franzens - Universität Innsbruck Institut für Psychologie Thema: Neuronale Netze Semesterarbeit zum Forschungsseminar: Neuere psychologische Fachliteratur SS 2006 Lehrveranstaltungsleiter: Ao.

Mehr

Fachhochschule Köln. Konzepte des maschinellen Lernens. Ausarbeitung. Florian Keller

Fachhochschule Köln. Konzepte des maschinellen Lernens. Ausarbeitung. Florian Keller Fachhochschule Köln 07 Fakultät für Informations-, Medien-, und Elektrotechnik Institut für Nachrichtentechnik Studiengang Master Technische Informatik Konzepte des maschinellen Lernens Ausarbeitung vorgelegt

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Informationstheorethisches Theorem nach Shannon

Informationstheorethisches Theorem nach Shannon Informationstheorethisches Theorem nach Shannon Beispiel zum Codierungsaufwand - Wiederholung: Informationstheorethisches Modell (Shannon) Sei x eine Aussage. Sei M ein Modell Wieviele Bits sind aussreichend,

Mehr

Large-Scale Image Search

Large-Scale Image Search Large-Scale Image Search Visuelle Bildsuche in sehr großen Bildsammlungen Media Mining I Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.{de,org}

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Computerlinguistische Textanalyse

Computerlinguistische Textanalyse Computerlinguistische Textanalyse 10. Sitzung 06.01.2014 Einführung in die Textklassifikation Franz Matthies Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller

Mehr

Uwe Lämmel. Data-Mining mittels künstlicher neuronaler Netze. Heft 07 / 2003 W D P. Wismarer Diskussionspapiere / Wismar Discussion Papers

Uwe Lämmel. Data-Mining mittels künstlicher neuronaler Netze. Heft 07 / 2003 W D P. Wismarer Diskussionspapiere / Wismar Discussion Papers Fachbereich Wirtschaft Department of Business Uwe Lämmel Data-Mining mittels künstlicher neuronaler Netze Heft 07 / 2003 W D P Wismarer Diskussionspapiere / Wismar Discussion Papers Der Fachbereich Wirtschaft

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Data Mining Approaches for Instrusion Detection Espen Jervidalo WS05/06 KI - WS05/06 - Espen Jervidalo 1 Overview Motivation Ziel IDS (Intrusion Detection System) HIDS NIDS Data

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

CLINICAL DECISION SUPPORT SYSTEMS

CLINICAL DECISION SUPPORT SYSTEMS CLINICAL DECISION SUPPORT SYSTEMS INHALTSVERZEICHNIS 1/2 Diagnosefindung Prävention Medikamente (Auswahl, Dosierung etc.) INHALTSVERZEICHNIS 2/2 Supervised, Unsupervised Bayes-Netzwerke Neuronale Netze

Mehr

CLUSTERED NEURONAL NETWORK - DOKUMENTATION

CLUSTERED NEURONAL NETWORK - DOKUMENTATION CLUSTERED NEURONAL NETWORK - DOKUMENTATION Johannes Hoppe 03.02.2009 1 1 INHALT 1 Das Projekt Clustered Neuronal Network... 3 1.1 Das Team... 3 1.2 Die Idee... 3 1.3 Microsoft Windows Compute Cluster Server

Mehr

Neuerungen Analysis Services

Neuerungen Analysis Services Neuerungen Analysis Services Neuerungen Analysis Services Analysis Services ermöglicht Ihnen das Entwerfen, Erstellen und Visualisieren von Data Mining-Modellen. Diese Mining-Modelle können aus anderen

Mehr

Unsupervised Kernel Regression

Unsupervised Kernel Regression 9. Mai 26 Inhalt Nichtlineare Dimensionsreduktion mittels UKR (Unüberwachte KernRegression, 25) Anknüpfungspunkte Datamining I: PCA + Hauptkurven Benötigte Zutaten Klassische Kernregression Kerndichteschätzung

Mehr

OUTSOURCING ADVISOR. Analyse von SW-Anwendungen und IT-Dienstleistungen auf ihre Global Sourcing Eignung. Bewertung von Dienstleistern und Standorten

OUTSOURCING ADVISOR. Analyse von SW-Anwendungen und IT-Dienstleistungen auf ihre Global Sourcing Eignung. Bewertung von Dienstleistern und Standorten Outsourcing Advisor Bewerten Sie Ihre Unternehmensanwendungen auf Global Sourcing Eignung, Wirtschaftlichkeit und wählen Sie den idealen Dienstleister aus. OUTSOURCING ADVISOR Der Outsourcing Advisor ist

Mehr

Grundlagen. 1. Grundlagen

Grundlagen. 1. Grundlagen Grundlagen 1. Grundlagen Grafikprogramme unterscheiden sich in einem wesentlichen Punkt: sie sind entweder Pixelorientiert (wie beispielsweise Corel Photo Paint)oderVektororientiert(wieetwaCorelDRAW).

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Grundlagen der Programmierung 2. Parallele Verarbeitung

Grundlagen der Programmierung 2. Parallele Verarbeitung Grundlagen der Programmierung 2 Parallele Verarbeitung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 27. Mai 2009 Parallele Algorithmen und Ressourcenbedarf Themen: Nebenläufigkeit,

Mehr

Von Keerthikan T. & Siyar Kolusari 10.12.2012

Von Keerthikan T. & Siyar Kolusari 10.12.2012 M226 OBJECT ORIENTIERT PROGRAMMIEREN Project Checkers An online multi-player Java Game Von Keerthikan T. & Siyar Kolusari 10.12.2012 Inhaltsverzeichnis 1. Projektbeschreibung 3 1.1. Inhalt 3 2. Ziele

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Die Berechnung des Menschen

Die Berechnung des Menschen Munich Center for Technology in Society Die Berechnung des Menschen Wissenschaftstheoretische Grundlagen von Big Data in den Life Sciences und im Gesundheitsbereich Lehrstuhl für Philosophie und Wissenschaftstheorie

Mehr

Data Mining - Clustering. Sven Elvers

Data Mining - Clustering. Sven Elvers Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 2 Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 3 Data Mining Entdecken versteckter Informationen, Muster und Zusammenhänge

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Universität Ulm Seminararbeit zum Thema Data Mining und Statistik: Gemeinsamkeiten und Unterschiede vorgelegt von: Daniel Meschenmoser betreut von: Dr. Tomas Hrycej Dr. Matthias Grabert Ulm, im Februar

Mehr

Clusteranalyse und Genetische Algorithmen

Clusteranalyse und Genetische Algorithmen Duale Hochschule Baden-Württemberg Standort Stuttgart, Campus Horb Florianstraße 15 72160 Horb am Neckar TIT 2008/NS 6. Semester Data-Mining Prof. Peter Schubert Data-Mining Algorithmen Clusteranalyse

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

1 Hochverfügbarkeit. 1.1 Einführung. 1.2 Network Load Balancing (NLB) Quelle: Microsoft. Hochverfügbarkeit

1 Hochverfügbarkeit. 1.1 Einführung. 1.2 Network Load Balancing (NLB) Quelle: Microsoft. Hochverfügbarkeit 1 Hochverfügbarkeit Lernziele: Network Load Balancing (NLB) Failover-Servercluster Verwalten der Failover Cluster Rolle Arbeiten mit virtuellen Maschinen Prüfungsanforderungen von Microsoft: Configure

Mehr

Geodaten in der Datenbank: Wozu? Was ist Oracle Spatial? Spatial war doch immer eine Option, oder...? Kann Oracle mehr als Vektordaten...?

Geodaten in der Datenbank: Wozu? Was ist Oracle Spatial? Spatial war doch immer eine Option, oder...? Kann Oracle mehr als Vektordaten...? ,QVHUW3LFWXUH+HUH! $XIGHQ2UWNRPPWHVDQ *HRGDWHQXQGGLH2UDFOH3ODWWIRUP *HRGDWHQXQGGLH2UDFOH3ODWWIRUP +lxiljh)udjhq Geodaten in der Datenbank: Wozu? Was ist Oracle Spatial? Spatial war doch immer eine Option,

Mehr

Alternativen zur OpenText Suche. 29. OpenText Web Solutions Anwendertagung Mannheim, 18. Juni 2012 Sebastian Henne

Alternativen zur OpenText Suche. 29. OpenText Web Solutions Anwendertagung Mannheim, 18. Juni 2012 Sebastian Henne Alternativen zur OpenText Suche 29. OpenText Web Solutions Anwendertagung Mannheim, 18. Juni 2012 Sebastian Henne Übersicht Allgemeines zur Suche Die OpenText Common Search Indexierung ohne DeliveryServer

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

LFE Medieninformatik Projektarbeit. Flock Mail. Michael Weiler

LFE Medieninformatik Projektarbeit. Flock Mail. Michael Weiler LFE Medieninformatik Projektarbeit Flock Mail Michael Weiler Agenda Einleitung Spam Statistiken & Filter Schwarmintelligenz Verwandte Arbeiten Design Motivation GUI Visualisierung von emails Implementierung

Mehr

Data Mining für die industrielle Praxis

Data Mining für die industrielle Praxis Data Mining für die industrielle Praxis von Ralf Otte, Viktor Otte, Volker Kaiser 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22465 0 Zu Leseprobe schnell und

Mehr

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Dr. Thomas Bernard 6. Karlsruher Automations-Treff (KAT) Leit- und Automatisierungstechnik der Zukunft Karlsruhe,

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Computer Graphik II Tesselierung impliziter Kurven und Flächen

Computer Graphik II Tesselierung impliziter Kurven und Flächen Computer Graphik II impliziter Kurven und Flächen 1 impliziter Flächen Problem: Nullstellenmenge kann nicht explizit berechnet werden! Lösung: ApproximaCon der Fläche auf Zellen Beispiel 2D: f p ( )

Mehr

Intergraph Geospatial World Tour SMARTERDECISIONS

Intergraph Geospatial World Tour SMARTERDECISIONS Intergraph Geospatial World Tour Bern, 7. März 2013 SMARTERDECISIONS MFB-GeoConsulting Company profile Solutions in Geographic Imaging Innovative, individualisierte Dienstleistungen für die Geodaten-Verarbeitung:

Mehr

Maple Ein WMS zur Visualisierung von Tagclouds generiert aus OpenStreetMap Daten

Maple Ein WMS zur Visualisierung von Tagclouds generiert aus OpenStreetMap Daten Fakultät Forst-, Geo- und Hydrowissenschaften Institut für Kartographie Maple Ein WMS zur Visualisierung von Tagclouds generiert aus OpenStreetMap Daten Stefan Hahmann Fakultät Forst-, Geo- und Hydrowissenschaften

Mehr

6. Künstliche Intelligenz

6. Künstliche Intelligenz 6.1. Turing-Test 6.2. Lernen In diesem Abschnitt besprechen wir wie man an Hand von Beispielen lernt, Objekte zu erkennen und verschiedene Dinge voneinander zu unterscheiden. Diese sogenannte Mustererkennung

Mehr

Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten am Beispiel der Kreditwürdigkeitsprüfung

Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten am Beispiel der Kreditwürdigkeitsprüfung Prof. Dr. Gerhard Arminger Dipl.-Ök. Alexandra Schwarz Bergische Universität Wuppertal Fachbereich Wirtschaftswissenschaft Fach Statistik Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Überblick. Einführung Graphentheorie

Überblick. Einführung Graphentheorie Überblick Einführung Graphentheorie Graph-Algorithmen mit Map Kurzeinführung Graphentheorie Algorithmus zum Finden von Cliquen Graphen bestehen aus Knoten (englisch: Node, Vertex, Mehrzahl Vertices) Kanten

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

9th NEMO-SpectroNet Collaboration Forum

9th NEMO-SpectroNet Collaboration Forum 9th NEMO-SpectroNet Collaboration Forum Jena, 15.12.2010 Color and Multi Spectral Imaging An Overview Dr. Ing. Thomas Fahlbusch, PhotonicNet GmbH, Hannover Farbaufnahme 1-Chipkamera Bayer Farbmosaik Chips

Mehr

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille

CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. Stefan Fleischer, Adolf Hille CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles Stefan Fleischer, Adolf Hille Gliederung des Vortrags Motivation Physikalische Modellgrundlagen CPM im Einzelnen Resultate

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Alexandru Arion, Benjamin Schöllhorn, Ingo Reese, Jürgen Gebhard, Stefan Patsch, Stephan Frank

Alexandru Arion, Benjamin Schöllhorn, Ingo Reese, Jürgen Gebhard, Stefan Patsch, Stephan Frank Message Broker (MB) Alexandru Arion, Benjamin Schöllhorn, Ingo Reese, Jürgen Gebhard, Stefan Patsch, Stephan Frank Programmierung verteilter Systeme Lab Institut für Informatik Universität Augsburg Universitätsstraße

Mehr

Was ist SVG? Inhalt: Allgemeines zu SVG Besondere Merkmale Vor- und Nachteile Dateiformat Standardobjekte Koordinatensystem Beispiele Links

Was ist SVG? Inhalt: Allgemeines zu SVG Besondere Merkmale Vor- und Nachteile Dateiformat Standardobjekte Koordinatensystem Beispiele Links Was ist SVG? Was ist SVG? Inhalt: Allgemeines zu SVG Besondere Merkmale Vor- und Nachteile Dateiformat Standardobjekte Koordinatensystem Beispiele Links SVG: Allgemeines zu SVG SVG = Scalable Vector Graphics

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Big-Data-Visualisierung über Geo-Daten mit SQL-Server & Power BI. Robert Schulz, PhD Consultant für Datenmanagement bei ergon Datenprojekte GmbH

Big-Data-Visualisierung über Geo-Daten mit SQL-Server & Power BI. Robert Schulz, PhD Consultant für Datenmanagement bei ergon Datenprojekte GmbH Big-Data-Visualisierung über Geo-Daten mit SQL-Server & Power BI Robert Schulz, PhD Consultant für Datenmanagement bei ergon Datenprojekte GmbH Wofür werden Geo-Daten benutzt? Zeiterfassung & -auswertung

Mehr

die Kunst, mit wenig Farbklexen bunte Bilder zu machen Halftoning, Dithering

die Kunst, mit wenig Farbklexen bunte Bilder zu machen Halftoning, Dithering Farbreduktion die Kunst, mit wenig Farbklexen bunte Bilder zu machen Halftoning, Dithering zwei Schritte: geeignete Farben (Repäsentanten) finden Farbreduktion alle Bildfarben den Repräsentanten zuordnen

Mehr