Appendix: Stetige Verteilungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Appendix: Stetige Verteilungen"

Transkript

1 Anhang A Appendix: Stetige Verteilungen In diesem Appendix werden der üblichen statistischen Praxis folgend Zufallsvariablen mit Großbuchstaben und Realisationen mit Kleinbuchstaben bezeichnet. A. Gleichverteilung Die Gleichverteilung spielt für das Folgende zwar keine große Rolle, aber aufgrund ihrer Einfachheit ist sie aus didaktischen Gründen gut geeignet um die Grundkonzepte zu wiederholen. Eine diskrete Zufallsvariable ist gleichverteilt, wenn jede ihrer möglichen m Ausprägungen mit gleicher Wahrscheinlichkeit eintritt: f(x) = Pr[X = x i ] = m (i =,...,m) Die Wahrscheinlichkeitsfunktion der Augenzahl eines Würfels ist z.b. Pr[X = x i ] = /6 für (i =,...,6). Für eine stetige Zufallsvariable liegen die möglichen Realisationen zwischen den beiden endlichen Grenzen a und b. Da für jede Dichtefunktion gilt + f(x)dx = folgt für die Dichtefunktion einer gleichverteilten stetigen Zufallsvariable X { für a b b a f(x) = sonst Die Wahrscheinlichkeit, dass eine Realisation von X einen Wert zwischen x und x 2 annimmt, ist x2 f(x)dx = Pr[x x x 2 ] = (x 2 x ) x b a Durch Integration der Dichtefunktion erhält man die Verteilungsfunktion F(x)

2 Empirische Wirtschaftsforschung 2 f(x) F(x) b a a x x 2 b x Abbildung A.: Dichte- und Verteilungsfunktion einer stetigen gleichverteilten Zufallsvariable. a b x für x < a x a F(x) = für a x b b a für x > b Abbildung A. zeigt die Dichte- und Verteilungsfunktion einer stetigen gleichverteilten Zufallsvariable. Der Erwartungswert ist E(X) = = = + b xf(x)dx = x a b a dx x 2 b 2(b a) = b2 a 2 2(b a) = a+b 2 weil (b 2 a 2 ) = (a+b)(b a). a a x dx+ b a xf(x)dx+ + b x dx Die Varianz var(x) = E[X E(X)] 2 = E(X 2 ) [E(X)] 2 kann ebenfalls berechnet werden: b ( ) ] E(X 2 ) = x 2 x 3 b dx = = b3 a 3 a b a 3(b a) a 3(b a) Unter Verwendung von b 3 a 3 = (b a)(a 2 +ab+b 2 ) erhalten wir schließlich var(x) = (a2 +ab+b 2 ) 3 ( ) 2 a+b = (a2 +b 2 2ab) 2 2 = (a b)2 2 Die Gleichverteilung ist also durch die zwei Parameter a und b vollständig bestimmt. A.2 Normalverteilung Die Normalverteilung spielt in der Ökonometrie eine besondere Rolle, und dies aus mehreren Gründen. Erstens sind viele Variablen in ihren Grundgesamtheiten

3 Empirische Wirtschaftsforschung 3 f(x) N(,.25).4 N(,4).2 N(2,2.25) Abbildung A.2: Dichtefunktionen von normalverteilten Zufallsvariablen mit unterschiedlichem µ und σ 2. annähernd normalverteilt (z.b. Körpergröße, Intelligenz, Meßfehler, etc.), zweitens können viele andere Verteilungen aus ihr hergeleitet werden (z.b. die χ 2 -, t- oder F-Verteilung), und drittens nähern sich bei sehr großen Beobachtungszahlen andere Verteilungen manchmal der Normalverteilung an (z.b. die Binomialverteilung). Außerdem werden wir später sehen, sind für große Beobachtungszahlen die Stichprobenkennwertverteilungen unabhängig von der Verteilung der Grundgesamtheit annähernd normalverteilt (zentraler Grenzwertsatz). Die Normalverteilung ist eine stetige Verteilung mit der Dichte f(x) = 2πσ 2 e (/2)[(x i µ)/σ] 2 mit µ = Erwartungswert, σ = Standardabweichung von X, π = ,e = Wenn eine Zufallsvariable X normalverteilt ist mit Mittelwert µ und Varianz σ 2, d.h. wird dies üblicherweise geschrieben als E(X) = µ var(x) = σ 2 X N(µ,σ 2 ) Abbildung A.2 zeigt drei Dichtefunktionen von normalverteilten Zufallsvariablen mit unterschiedlichem µ und σ 2. Eigenschaften der Normalverteilung:. Die Verteilung ist stetig und symmetrisch um den Erwartungswert µ.

4 Empirische Wirtschaftsforschung 4 f(x) 3σ 2σ σ µ σ 2σ 3σ 68.27% 95.45% 99.73% Abbildung A.3: Dichtefunktion einer normalverteilten Zufallsvariable und % der Fläche darunter. F(X).5 Abbildung A.4: Verteilungsfunktion einer normalverteilten Zufallsvariable. 2. Die Verteilung ist unbeschränkt und erstreckt sich von bis Das Maximum der Verteilung liegt beim Mittelwert µ und der Wendepunkt bei x = µ±σ. Außerdem gilt: Pr(µ.96σ < x i < µ+.96σ).95 Pr(µ 2.57σ < x i < µ+2.57σ) Die Normalverteilung ist durch die zwei Parameter µ und σ 2 vollständig spezifiziert, wir schreiben X N(µ,σ 2 ). Abbildung A.3 zeigt die Dichtefunktion einer Normalverteilung. Die Verteilungsfunktion einer normalverteilten Zufallsvariable ist in Abbildung A.4 dargestellt. Theorem Wenn X, Y,..., Z normal und unabhängig verteilte Zufallsvariablen und a,b,...,c beliebige Konstanten sind, dann ist die Linearkombination ax+by + +cz auch normalverteilt.

5 Empirische Wirtschaftsforschung 5 Beispiel: Wenn X i N(µ,σ 2 ) mit i =, 2, 3 drei unabhängig verteilte Zufallsvariablen sind, und dann sind Erwartungswert und Varianz der Zufallsvariable W = 2X +X 2 4X 3 E(W) = 2E(X )+E(X 2 ) 4E(X 3 ) = 2µ+µ 4µ = µ var(w) = 2 2 var(x )+ 2 var(x 2 )+4 2 var(x 3 ) = 2σ 2 d.h. W N( µ,2σ 2 ). Oder, wenn X N(µ,σ 2 ) dann ist Y = a+bx N(a+bµ,b 2 σ 2 ), z.b. X N(3,4) und Y = 2X 5 dann ist Y N(,6). Dieses Theorem gestattet eine Standardisierung der Normalverteilungen auf einen Mittelwert von Null und eine Standardabweichung von Eins (z Transformation). z i = (x i µ) σ bzw. Z = (X µ) σ mit Z N(, ), man sagt Z ist standardnormalverteilt. Die Tabelle der Standardnormalverteilung findet sich in jedem Statistiklehrbuch. Wenn X und Y gemeinsam normalverteilt sind, dann sind sie unabhängig wenn und nur wenn cov(x,y) =. Achtung, dies gilt nur für die Normalverteilung! Sind zwei Zufallsvariablen nicht gemeinsam normalverteilt ist cov(x, Y) = in der Regel nicht hinreichend um Unabhängigkeit zu garantieren. Bivariate Normalverteilung: (X,Y) N(µ X,µ Y,σX 2,σ2 Y,ρ), ρ oder in Matrixschreibweise ( ) [( ) ( )] X µx σ 2 N, X σ XY Y µ Y σ XY σy 2 mit der Dichtefunktion f(x,y) = 2πσ x σ y ρ 2 exp { 2( ρ 2 ) [ ] } z 2 X z X z Y +zy 2 mit siehe Abbildung A.5. z X = x µ X σ X, z Y = y µ Y σ Y

6 Empirische Wirtschaftsforschung 6 µ X = µ Y =, σ 2 X = σ2 Y = ; ρ = µ X = µ Y =, σ 2 X = σ2 Y = ; ρ =.7 Abbildung A.5: Bivariate Normalverteilungen

7 Empirische Wirtschaftsforschung 7 Übungsbeispiele:. Zwei Zufallsvariablen X und Y seien bivariat normalverteilt mit X N(2,3), Y N(,2), und Cov(X,Y) =.5. bzw. in Matrixschreibweise ( ) [( ) ( )] X N, Y.5 2 Wie ist dann eine Zufallsvariable V = 2X +3Y verteilt? V ist univariat normalverteilt mit und Also ist V N(7,36). E(V) = E(2X +3Y) = 2E(X)+3E(Y) = = 7 var(v) = var(2x +3Y) = var(2x)+var(3y)+2cov(2x,3y) = 2 2 var(x) +3 2 var(y) cov(X,Y) } {{ } } {{ } } {{ } = = 36 Dies kann einfach simuliert werden, z.b. mit R. Der Befehl mvrnorm aus dem Packet MASS erzeugt Zufallszahlen (Realisationen) aus einer multivariaten Normalverteilung. Der folgende Code demonstriert das obige Resultat anhand von Replikationen. library(mass) mu = c(2,) Sigma <- matrix(c(3,.5,.5,2), nrow=2, ncol=2) set.seed(234567) XY <- mvrnorm(n=, mu, Sigma) V <- 2*XY[,] + 3*XY[,2] mean(v) # -> var(v) # -> Erzeugen Sie in einem Computerprogramm zwei unabhängige Zufallsvariablen X N(2,3), Y N(,2), und cov(x,y) =, d.h. ( ) [( ) ( )] X 2 3 N, Y 2 mit je, Beobachtungen, und erzeugen Sie eine Grafik mit den Histogrammen.

8 Empirische Wirtschaftsforschung 8 Berechnen Sie V = 2X + 3Y und zeigen Sie das Histogramm. Welchen Mittelwert und welche Varianz von V erwarten Sie? Stimmen die erwarteten Werte näherungsweise mit den empirischen Werten überein? Wenn Z N(,) ist X = 2+ 3Z N(2,3), da var(x) = var(2+ 3Z) = 3 2 var(z) = 3. In EViews wird eine standardnormalverteilte Zufallszahl z.b. mit der erzeugt. Der folgende EViews Code legt einen Workfile mit dem Namen TEST für Querschnitts-Beobachtungen (Option u für undated ) an und erzeugt die drei Zufallsvariablen (Befehle series). Die freeze-befehle erzeugen die Grafiken mit den drei einzelnen Histogrammen, die mit dem graph und merge Befehl zu einer Grafik zusammengefaßt und mit dem Befehl show angezeigt werden. wfcreate(wf=test) u series X = 2 + series Y = + series V = 2*X + 3*Y freeze(hx) X.hist freeze(hy) Y.hist freeze(hv) V.hist graph GRAFIK.merge HX HY HV show GRAFIK Series: X Sample Observations Mean Median 2.39 Maximum.7465 Minimum Std. Dev Skewness Kurtosis Jarque-Bera.3678 Probability Series: Y Sample Observations Mean Median.3436 Maximum Minimum Std. Dev Skewness Kurtosis Jarque-Bera.3276 Probability Series: V Sample Observations Mean Median 7.22 Maximum Minimum Std. Dev Skewness Kurtosis Jarque-Bera Probability.5964

9 Empirische Wirtschaftsforschung 9 var(v) = var(2x +3Y) = var(2x)+var(3y)+2cov(2x,3y) = 2 2 var(x) +3 2 var(y) cov(X,Y) } {{ } } {{ } } {{ } 3 2 = 2+8+ = 3 Std.Dev.(V) = var(v) = 3 = A.3 Die Chi Quadrat Verteilung: Die Chi Quadrat oder χ 2 Verteilung geht auf den Astronomen F.R. Helmert (875) zurück. Theorem 2 Sind Z,Z 2,...,Z ν unabhängig standardnormalverteilte Zufallsvariablen (d.h. normalverteilte Zufallsvariable mit Mittelwert und Varianz ), so folgt die Quadratsumme χ 2 = Z 2 +Z Z2 ν einer χ2 Verteilung mit ν Freiheitsgraden. Z i N(,) ν Zi 2 χ 2 ν i= Die χ 2 Verteilung ist nicht symmetrisch und abhängig von der Anzahl der Freiheitsgrade ν. Da sie eine Quadratsumme ist kann eine χ 2 -verteilte Zufallsvariable natürlich nie negativ sein. Erwartungswert und Varianz sind E(χ 2 ) = ν var(χ 2 ) = 2ν Wenn X und X 2 zwei unabhängig χ 2 -verteilte Zufallsvariablen mit ν bzw. ν 2 Freiheitsgraden sind, so ist die Summe X +X 2 auch χ 2 -verteilt mit ν +ν 2 Freiheitsgraden. Diese Verteilung wird v.a. für Tests benötigt, die Varianzen von Zufallsvariablen betreffen. Abbildung A.6 zeigt Dichtefunktionen von χ 2 -verteilten Zufallsvariablen mit unterschiedlichen Freiheitsgraden. Um dies zu verdeutlichen haben wir in EViews das Quadrat von standardnormalverteilten Variablen mit je Beobachtungen erzeugt. Abbildung A.7 zeigt ein Histogramm von Z 2, von 5 i= Z2 i, i= Z2 i und i= Z2 i. Auch wenn Sie das Programm, das Abbildung A.7 erzeugt, im Moment noch nicht verstehen können, so sei es hier doch für eine spätere Referenz wiedergegeben. Erzeugung von Chi2 - verteilten Variablen. wfcreate temp u for!i = to series x{!i}

10 Empirische Wirtschaftsforschung f(χ 2 ).4 ν =.3.2. ν = 3 ν = 5 ν = Abbildung A.6: Dichtefunktionen von χ 2 verteilten Zufallsvariablen mit ν =, 3, 5 und Freiheitsgraden. Chiquadrat Verteilung mit Freiheitsgraden Chiquadrat Verteilung mit 5 Freiheitsgraden Series: SXQ Sample Observations Mean.4459 Median Maximum Minimum 5.88e-6 Std. Dev Skewness Kurtosis Jarque-Bera Probability Series: SX5Q Sample Observations Mean Median Maximum Minimum Std. Dev Skewness Kurtosis Jarque-Bera Probability Chiquadrat Verteilung mit Freiheitsgraden Chiquadrat Verteilung mit Freiheitsgraden Series: SXQ Sample Observations Mean.498 Median Maximum Minimum.6559 Std. Dev Skewness Kurtosis Jarque-Bera Probability Series: SXQ Sample Observations Mean.6243 Median.336 Maximum Minimum Std. Dev Skewness Kurtosis Jarque-Bera Probability Abbildung A.7: Histogramme der Summe von quadrierten standardnormalverteilten Zufallsvariablen.

11 Empirische Wirtschaftsforschung series x{!i}q = x{!i}^2 if!i = then series sxq = xq else!j =!i- series sx{!i}q = x{!i}q + sx{!j}q endif if!i = or!i = 5 or!i = or!i = then freeze(graph{!i}) sx{!i}q.hist graph{!i}.addtext(t) Chiquadrat Verteilung mit!i Freiheitsgraden endif next graph gr.merge graph graph5 graph graph show gr.align(2,3,) A.4 Die t-verteilung: Die t- bzw. Studentverteilung verdankt ihren Namen W.S. Gosset, der deren Ableitung 98 unter dem Pseudonym Student veröffentlichte. Theorem 3 Sei Z eine standardnormalverteilte Zufallsvariable [Z N(, )] und V eine χ 2 -verteilte Zufallsvariable mit ν Freiheitsgraden [V χ 2 (ν)], wobei Z und V unabhängig voneinander verteilt sind, dann ist die Zufallsvariable T t-verteilt mit ν Freiheitsgraden. t = Z (V/ν) t ν Wie aus Abbildung A.8 ersichtlich ist die t Verteilung symmetrisch und flacher als die Standardnormalverteilung. Sie nähert sich mit steigender Zahl von Freiheitsgraden der Standardnormalverteilung an und ist für ν 2 nahezu mit dieser identisch. Weiters ist E(t) = für ν > ν var(t) = für ν > 2 ν 2 Wir werden die t-verteilung v.a. benötigen, wenn die Varianz der Grundgesamtheit nicht bekannt ist, sondern aus der Stichprobe geschätzt werden muss. A.5 Die F-Verteilung: Die F Verteilung werden wir später häufig benötigen, z.b. für Tests, die mehrere Regressionskoeffizienten betreffen, oder um die Gleichheit zweier Varianzen zu testen. Sie ist nach R.A. Fisher benannt.

12 Empirische Wirtschaftsforschung 2 f(x).4 ν > 2 ν = 5.2 ν = Abbildung A.8: Dichtefunktionen für t-verteilte Zufallsvariablen mit ν =, 5 und Freiheitsgraden. Theorem 4 Wenn V und V 2 zwei unabhängig χ 2 -verteilte Zufallsvariablen mit ν bzw. ν 2 Freiheitsgraden sind, dann ist F = V /ν V 2 /ν 2 F ν,ν 2 F-verteilt mit ν Zähler- und ν 2 Nennerfreiheitsgraden. Wie aus Abbildung A.9 ersichtlich ist die F Verteilung schief. Für große ν und ν 2 nähert sie sich einer Normalverteilung an. Man kann zeigen, dass E(F ν,ν 2 ) = ν 2 ν 2 2 für ν 2 > 2 var(f ν,ν 2 ) = 2ν2 2(ν +ν 2 2) ν (ν 2 2) 2 (ν 2 4) für ν 2 > 4 Das Quadrat einer t-verteilten Zufallsvariable mit ν Freiheitsgraden folgt einer F Verteilung mit Zähler- und ν Nennerfreiheitsgraden, d.h. t 2 ν F,ν

13 Empirische Wirtschaftsforschung 3 f(f) F 2,2 F, F 5, F Abbildung A.9: Dichtefunktionen für F-verteilte Zufallsvariablen mit unterschiedlichen Freiheitsgraden.

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0.

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0. Übungsbeispiele. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei { für und f(,) sonst (a) Skizzieren Sie die Dichtefunktion. f(,) (b) Berechnen Sie P(.5,.75) Lösung:.75 Volumen über schraffierter

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Übung 1: Wiederholung Wahrscheinlichkeitstheorie

Übung 1: Wiederholung Wahrscheinlichkeitstheorie Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 1 Stetige Zufallsvariablen 1.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion

Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

Beispiel: Zweidimensionale Normalverteilung I

Beispiel: Zweidimensionale Normalverteilung I 10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert:

+ 2 F2 (u) X 1 F1 (u)) Der Koeffizient der unteren Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: Tail Abhängigkeit Definition 12 Sei (X 1,X 2 ) T ein Zufallsvektor mit Randverteilungen F 1 und F 2. Der Koeffizient der oberen Tail-Abhängigkeit von (X 1,X 2 ) T wird folgendermaßen definiert: λ U (X

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Übung/Tutorate Statistik II: Schließende Statistik SS 2007 . Zufallsvariable und Verteilungsfunktion Aufgabe.1 Wahrscheinlichkeitsfunktion und Verteilungsfunktion Die Zufallsvariable X sei das Ergebnis eines Würfels a. Wie lautet die Wahrscheinlichkeitsfunktion?

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Finanzmathematische Modelle und Simulation

Finanzmathematische Modelle und Simulation Finanzmathematische Modelle und Simulation WS 9/1 Rebecca Henkelmann In meiner Ausarbeitung Grundbegriffe der Stochastik I, geht es darum die folgenden Begriffe für die nächsten Kapitel einzuführen. Auf

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Beziehungen zwischen Verteilungen

Beziehungen zwischen Verteilungen Kapitel 5 Beziehungen zwischen Verteilungen In diesem Kapitel wollen wir Beziehungen zwischen Verteilungen betrachten, die wir z.t. schon bei den einzelnen Verteilungen betrachtet haben. So wissen Sie

Mehr

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests

1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests 1.3 Das Testen von Hypothesen am Beispiel des Einstichproben t-tests Statistische Tests dienen dem Testen von Vermutungen, so genannten Hypothesen, über Eigenschaften der Gesamtheit aller Daten ( Grundgesamtheit

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Grundbegriffe der Stochastik II

Grundbegriffe der Stochastik II Grundbegriffe der Stochastik II Henrik Gebauer 6. Oktober 9 Zusammenfassung Dieser Vortrag dient der Wiederholung zentraler Begriffe der kontinuierlichen Stochastik. Wahrscheinlichkeitsverteilungen Sei

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

1.4 Stichproben aus einer Normalverteilung

1.4 Stichproben aus einer Normalverteilung 1.4 Stichproben aus einer Normalverteilung Die Normalverteilung ist wohl das am stärksten verbreitete Modell. Stichproben daraus führen zu nützlichen Eigenschaften der Statistiken und ergeben bekannte

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

1 of 3 6/14/2012 11:20 AM

1 of 3 6/14/2012 11:20 AM Standardnormalverteilung http://eswf.uni-koeln.de/glossar/zvert.htm 1 of 3 6/14/2012 11:20 AM Die folgende Tabelle zeigt die Verteilungsfunktion der Standardnormalverteilung. Für ausgewählte z-werte ist

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

12 Die Normalverteilung

12 Die Normalverteilung 12 Die Normalverteilung Die Normalverteilung ist eine der wichtigsten Wahrscheinlichkeitsverteilungen in der Praxis, weil aufgrund des sogenannten zentralen Grenzwertsatzes in vielen Situationen angenommen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten von Prof. Dr. Rainer Schlittgen Universität Hamburg 12., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Statistische Daten

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung und Statistik für Biologen 3. Grundlagen aus der Wahrscheinlichkeitstheorie Martin Hutzenthaler & Dirk Metzler http://www.zi.biologie.uni-muenchen.de/evol/statgen.html 27./29.

Mehr

7.2 Moment und Varianz

7.2 Moment und Varianz 7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

1.6 Der Vorzeichentest

1.6 Der Vorzeichentest .6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen

Mehr

Normalverteilung und Dichtefunktionen

Normalverteilung und Dichtefunktionen Normalverteilung und Dichtefunktionen Ac Einführung der Normalverteilung als Approximationsfunktion der Binomialverteilung Da die Binomialverteilung für große n das Aussehen einer Glockenkurve besitzt

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 25. November 2009 Bernd

Mehr

Beispiel 6 (Einige Aufgaben zur Gleichverteilung)

Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Beispiel 6 (Einige Aufgaben zur Gleichverteilung) Aufgabe (Anwendung der Chebyshev-Ungleichung) Sei X eine Zufallsvariable mit E(X) = µ und var(x) = σ a) Schätzen Sie die Wahrscheinlichkeit dafür, daß

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Eine Einführung in R: Dichten und Verteilungsfunktionen

Eine Einführung in R: Dichten und Verteilungsfunktionen Eine Einführung in R: Dichten und Verteilungsfunktionen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion

Dr. Quapp: Statistik für Mathematiker mit SPSS. Lösungs Hinweise 1. Übung Beschreibende Statistik & Verteilungsfunktion Dr. Quapp: Statistik für Mathematiker mit SPSS Lösungs Hinweise. Übung Beschreibende Statistik & Verteilungsfunktion. Die folgende Tabelle enthält die Pulsfrequenz einer Versuchsgruppe von 39 Personen:

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Rechteckverteilung oder stetige Gleichverteilung Eponentialverteilung ormalverteilung Approimationen Chi-Quadrat-Verteilung Studentverteilung Fisherverteilung Bibliografie Bleymüller / Gehlert / Gülicher

Mehr

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme

Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

3 Stetige Zufallsvariablen

3 Stetige Zufallsvariablen 3 Stetige Zufallsvariablen Eine Zufallsvariable heißt stetig, falls zu je zwei Werten a < b auch jeder Zwischenwert im Intervall [a, b] möglich ist Beispiele: X = Alter, X = Körpergröße, X = Temperatur,

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen

Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Wahrscheinlichkeitstheorie Kapitel V - Stetige Verteilungen Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Stetige Verteilungen Definition: Sei

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable

Mehr