Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen"

Transkript

1 Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe mit k weiblichen Mäusen (f k ) k f k 0 8 l b. c. Berechnen Sie Mittelwert, Modalwert und Varianz für die Anzahl weiblicher Mäuse in einem Wurf. Berechnen Sie die Parameter n, p und q der Binomialverteilung. Berechnen Sie die Einzelwahrscheinlichkeiten der Binomialverteilung. 2. Anzahl ausgefallener Maschinen von 10 Maschinen 10 Maschinen fertigen das gleiche Produkt. Täglich zur gleichen Zeit werden die ausgefallenen Maschinen gezählt. Anzahl ausgefallener Maschinen (k) beobachtete Häufigkeit (f k ) k f k file:///c /wolle/web/aufgaben/aufg05.html (1 von 3) [ :57:10]

2 Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe b. c. d. Berechnen Sie Mittelwert, Modalwert und Varianz für die Anzahl ausgefallener Maschinen. Berechnen Sie den Parameter der Poissonverteilung. Berechnen Sie die Einzelwahrscheinlichkeiten der Poissonverteilung Berechnen Sie die Parameter und die Einzelwahrscheinlichkeiten der Binomialverteilung 3. Körperhöhe von 70 Studenten Höhe (inch) Anzahl Studenten b. c. Berechnen Sie Mittelwert, Modalwert und Varianz der Körperhöhe der Studenten. Berechnen Sie die Wahrscheinlichkeitsdichten für die Körperhöhen unter der Annahme der Normalverteilung. Wieviel Prozent der Studenten haben eine Körperhöhe ab 190 cm,... unter 165 cm bei Annahme der Normalverteilung? ( l Inch = 2,54 cm) file:///c /wolle/web/aufgaben/aufg05.html (2 von 3) [ :57:10]

3 Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe 4. Fichtenpflanzen Bei einer Fichtenpflanzung werden nach 5 Jahren die Pflanzenhöhen gemessen, wobei = 60 cm, = 10 cm und N = Die Pflanzenhöhen folgen einer Normalverteilung.. Welcher Anteil der Population hat eine Pflanzenhöhe über 66 cm? b. Wie groß ist die Wahrscheinlichkeit, zufällig eine Pflanze aus dieser Population auszuwählen, die über 66 cm hoch ist? c. Wieviel Pflanzen in der Population sind höher als 66 cm? d. Welcher Anteil der Population ist kleiner als 66 cm? e. Welcher Anteil der Population ist zwischen 60 und 66 cm hoch? Letzte Änderung: Kontakt: Wolfgang Stümer file:///c /wolle/web/aufgaben/aufg05.html (3 von 3) [ :57:10]

4 Biometrieübung 5 (Spezielle Verteilungen) - Lösung Biometrieübung 5 Spezielle Verteilungen Lösung 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen a) Mittelwert = 1,86 Modalwert = 2 Varianz = 1,04 b) N = 103 n = 4 p = Mittelwert/n = 0,47 q = 1 - p = 0,53 q = Varianz/n/p = 0,56 Problem! Problem: Schätzung von q über die Varianz liefert einen etwas abweichenden Wert: Für q gilt q = 1 - p! c) k f k p k e k 0 8 0,081 8, ,283 29, ,371 38, ,216 22, ,047 4, , k = Anzahl weibl. Mäuse f k = Beobachtete Häufigkeit p k = Einzelwahrscheinlichkeiten e k = Erwartete Häufigkeit file:///c /wolle/web/loesung/loes05.html (1 von 5) [ :57:16]

5 Biometrieübung 5 (Spezielle Verteilungen) - Lösung 2. Anzahl ausgefallener Maschinen von 10 Maschinen a) Mittelwert = 1,8 Modalwert = 1 Varianz = 2,46 b) = 1,8 c) k f k pp k ep k , , , , , , , , , , ,0260 5, ,0078 1, ,0020 0, ,0005 0, ,0001 0, ,0000 0, k = Anzahl ausgefallener Maschinen f k = Beobachtete Ausfallhäufigkeit pp k = Einzelwahrscheinlichkeiten nach Poissonverteilung ep k = Erwartete Ausfallhäufigkeit nach Poissonverteilung d) N = 200 n = 10 p = Mittelwert/n = 0,18 file:///c /wolle/web/loesung/loes05.html (2 von 5) [ :57:16]

6 Biometrieübung 5 (Spezielle Verteilungen) - Lösung q = Varianz/n/p = 1,37 q = 1 - p = 0,82 Problem! Problem: Schätzung von q über die Varianz liefert falschen Wert Für q gilt q = 1 - p! Daraus folgt: Die Ausfallhäufigkeiten folgen nicht der Binomialverteilung! k f k pb k eb k , , , , , , , , , , ,0177 3, ,0032 0, ,0004 0, ,0000 0, ,0000 0, ,0000 0, k = Anzahl ausgefallener Maschinen f k = Beobachtete Ausfallhäufigkeit pb k = Einzelwahrscheinlichkeiten nach Binomialverteilung eb k = Erwartete Ausfallhäufigkeit nach Binomialverteilung 3. Körperhöhe von 70 Studenten a) Mittelwert = 70,17 inch Modalwert = 73 inch Varianz = 10,96 inch² file:///c /wolle/web/loesung/loes05.html (3 von 5) [ :57:16]

7 Biometrieübung 5 (Spezielle Verteilungen) - Lösung b) k f k p k e k 62 0, , , , , , , , , , , , , , , , k = Höhe (in inch) f k = Beobachtete Anzahl Studenten p k = Wahrscheinlichkeitsdichte e k = Erwartete Anzahl Studenten bei Normalverteilung c) aus Tabelle Verteilungsfunktion der normierten Normalverteilung erhält man 0, ,64 % der Studenten haben eine Körpergröße unter 165 cm file:///c /wolle/web/loesung/loes05.html (4 von 5) [ :57:16]

8 Biometrieübung 5 (Spezielle Verteilungen) - Lösung aus Tabelle Verteilungsfunktion der normierten Normalverteilung erhält man 0,91924 da gefragt wieviel Studenten ab 190 cm und nicht bis 190 cm folgt: 1 0,91924 = 0, ,08 % der Studenten haben eine Körpergröße ab 190 cm 4. Fichtenpflanzen a) z = (66 cm - 60 cm) / 10 cm = 0,6 aus Tabelle Verteilungsfunktion der normierten Normalverteilung erhält man 0,72575 da gefragt wieviel Pflanzen über 166 cm und nicht bis 166 cm folgt: 1 0,72575 = 0, ,42 % der Pflanzen sind über 166 cm hoch b) p = 548,5 / 2000 = 0,27425 (siehe Lösung 4c) Die Wahrscheinlichkeit aus der Population eine Pflanze auszuwählen, die höher als 166 cm ist, beträgt 0,27. c) 27,42 % von 2000 Pflanzen sind 548,5 Pflanzen 548 Pflanzen der Population sind höher als 166 cm. d) 72,57 % der Pflanzen sind kleiner als 166 cm (siehe Lösung 4a) e) z = (60 cm - 60 cm) / 10 cm = 0 aus Tabelle Verteilungsfunktion der normierten Normalverteilung erhält man 0,5 Da nach dem Anteil zwischen 60 cm und 66 cm gefragt ist folgt: 0,72575 (für 66 cm) - 0,5 (für 60 cm) = 0, ,57 % der Pflanzen sind zwischen 60 und 66 cm hoch. Letzte Änderung: Kontakt: Wolfgang Stümer file:///c /wolle/web/loesung/loes05.html (5 von 5) [ :57:16]

9 Biometrieübung 5 (Spezielle Verteilungen) - Formeln Biometrieübung 5 Spezielle Verteilungen Formeln Inhalt Binomialverteilung Poisson-Verteilung Normalverteilung Tabelle der Wahrscheinlichkeitsdichte der mormierten Normalverteilung Tabelle der Verteilungsfunktion der normierten Normalverteilung Binomialverteilung Sie ist bei allen Problemen anwendbar, denen die folgende Fragestellung zugrunde liegt: In einer Urne sind schwarze und weiße Kugeln enthalten, zusammen N Stück. Die Wahrscheinlichkeit für das Ziehen einer schwarzen Kugel (Ereignis E) sei p. Aus dieser Urne wird jeweils eine Kugel gezogen und danach wieder zurückgelegt. Gefragt wird nach der Wahrscheinlichkeit dafür, daß in einer Reihe von n Zügen k-mal das Ereignis E eintritt und (n-k)-mal nicht eintritt (Zufallsgröße X). Das Verteilungsgesetz von X ist die angegebene Binomialverteilung. Wahrscheinlichkeitsfunktion Beispiel: Aus einer Urne wird jeweils eine Kugel gezogen und wieder in die Urne gegeben. Die Wahrscheinlichkeit ist p=1/4, eine schwarze Kugel zu ziehen. Je 10 solcher Ziehungen bilden eine Gruppe. Werden die Versuche fortgesetzt, so wird die Anzahl der schwarzen Kugeln in den einzelnen Gruppen file:///c /wolle/web/formeln/form05.html (1 von 4) [ :57:25]

10 Biometrieübung 5 (Spezielle Verteilungen) - Formeln verschieden sein, sie ist eine Zufallsgröße. Mit Hilfe von, wobei k = 0, 1,..., 10 ist, ergibt sich das Verteilungsgesetz: k ,056 0,188 0,282 0,25 0,146 0,058 0,016 0,003 0,001 0,0 0,0 Durch graphische Darstellung gewinnt man einen Eindruck von dem Verteilungsgesetz. Poisson-Verteilung Dieser Verteilung liegt im wesentlichen dasselbe Problem zugrunde wie der Binomialverteilung. Es unterscheidet sich nur darin, daß die Anzahl n der aus der Urne gezogenen Kugeln sehr groß und die Wahrscheinlichkeit p für das Ziehen einer schwarzen Kugel sehr klein ist. Mit anderen Worten: Die Poissonverteilung ist die Grenzverteilung der Binomialverteilung für n und für p 0, wobei zusätzlich angenommen wird, daß das Produkt n * p = λ konstant ist. Diese Verteilung wird also dann angewendet, wenn ein Ereignis sehr selten eintritt. Die Poissonverteilung wird allein durch die Größe λ bestimmt. Wahrscheinlichkeitsfunktion Beispiel: Aus einer Urne wird jeweils eine Kugel gezogen und wieder in die Urne gegeben. Die Wahrscheinlichkeit soll p = 0,01 sein, eine schwarze Kugel zu ziehen. Je 60 solcher Ziehungen bilden eine Gruppe. Werden die Versuche fortgesetzt, so wird die Anzahl der schwarzen Kugeln in den einzelnen Gruppen verschieden sein, sie ist eine Zufallsgröße. Aus, wobei λ = 60 * 0,01 = 0,6 ist und k die Werte 1, 2, 3,..., 60 annehmen kann, ergibt sich das Verteilungsgesetz k ,549 0,329 0,099 0,020 0,003 0, ,000 file:///c /wolle/web/formeln/form05.html (2 von 4) [ :57:25]

11 Biometrieübung 5 (Spezielle Verteilungen) - Formeln Normalverteilung Die Normalverteilung ist eine der wichtigsten Verteilungen der Wahrscheinlichkeitsrechnung. Wird bei der Binomialverteilung die Reihe der Züge n unendlich groß und bleibt die Wahrscheinlichkeit für das Eintreten des betrachteten Ereignisses (p = ½) fest, so gelangt man zur Normalverteilung. Während die Binomialverteilung für ganzzahlige Werte erklärt ist, rücken bei der Normalverteilung die Merkmalswerte unendlich dicht zusammen. Sie beschreibt im Gegensatz zur Binomialverteilung eine stetige Zufallsgröße X. Wahrscheinlichkeitsdichte (Dichtefunktion) der Normalverteilung Wahrscheinlichkeitsdichte (Dichtefunktion) der Standardnormalverteilung N (0;1) in Tabelle zusammengefaßt Verteilungsfunktion der Normalverteilung file:///c /wolle/web/formeln/form05.html (3 von 4) [ :57:25]

12 Biometrieübung 5 (Spezielle Verteilungen) - Formeln Verteilungsfunktion der Standardnormalverteilung N (0;1) in Tabelle zusammengefaßt Transformationsformel (Standardisierung einer normalverteilten Zufallsgröße) Letzte Änderung: Kontakt: Wolfgang Stümer file:///c /wolle/web/formeln/form05.html (4 von 4) [ :57:25]

13 Biometrieübung 5 (Spezielle Verteilungen) - Tabelle Dichtefunktion Biometrieübung 5 Spezielle Verteilungen Tabelle der Wahrscheinlichkeitsdichte (Dichtefunktion) der normierten Normalverteilung x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09-4,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,9 0, , , , , , , , , ,24439 file:///c /wolle/web/formeln/form05_1.html (1 von 3) [ :57:33]

14 Biometrieübung 5 (Spezielle Verteilungen) - Tabelle Dichtefunktion -0,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , ,00337 file:///c /wolle/web/formeln/form05_1.html (2 von 3) [ :57:33]

15 Biometrieübung 5 (Spezielle Verteilungen) - Tabelle Dichtefunktion 3,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , ,00009 zurück Letzte Änderung: Kontakt: Wolfgang Stümer file:///c /wolle/web/formeln/form05_1.html (3 von 3) [ :57:33]

16 Biometrieübung 5 (Spezielle Verteilungen) - Tabelle Verteilungsfunktion Biometrieübung 5 Spezielle Verteilungen Tabelle der Verteilungsfunktion der normierten Normalverteilung (linksseitig) x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09-4,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , , ,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,9 0, , , , , , , , , , ,8 0, , , , , , , , , ,18673 file:///c /wolle/web/formeln/form05_2.html (1 von 3) [ :57:47]

17 Biometrieübung 5 (Spezielle Verteilungen) - Tabelle Verteilungsfunktion -0,7 0, , , , , , , , , , ,6 0, , , , , , , , , , ,5 0, , , , , , , , , , ,4 0, , , , , , , , , , ,3 0, , , , , , , , , , ,2 0, , , , , , , , , , ,1 0, , , , , , , , , , ,0 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , , ,1 0, , , , , , , , , ,99929 file:///c /wolle/web/formeln/form05_2.html (2 von 3) [ :57:47]

18 Biometrieübung 5 (Spezielle Verteilungen) - Tabelle Verteilungsfunktion 3,2 0, , , , , , , , , , ,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , , ,0 0, , , , , , , , , ,99998 zurück Letzte Änderung: Kontakt: Wolfgang Stümer file:///c /wolle/web/formeln/form05_2.html (3 von 3) [ :57:47]

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

4b. Wahrscheinlichkeit und Binomialverteilung

4b. Wahrscheinlichkeit und Binomialverteilung b. Wahrscheinlichkeit und Binomialverteilung Um was geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die Wahrscheinlichkeit? Häfigkeit der Fehlerzahl

Mehr

WAHRSCHEINLICHKEITSLEHRE

WAHRSCHEINLICHKEITSLEHRE Wahrscheinlichkeitstheorie Herbert Paukert 1 WAHRSCHEINLICHKEITSLEHRE Version 2.0 Herbert Paukert Drei Zufallsexperimente [ 02 ] Wahrscheinlichkeitstheorie I [ 05 ] Wahrscheinlichkeitstheorie II [ 12 ]

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit

Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Wirtschaftsstatistik Normalverteilung

Wirtschaftsstatistik Normalverteilung Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 39 14 jutta.arrenberg@fh-koeln.de Wirtschaftsstatistik Normalverteilung Aufgabe 10.1 Die Lebensdauer

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Statistik Übungen WS 2017/18

Statistik Übungen WS 2017/18 Statistik Übungen WS 2017/18 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

21. Wahrscheinlichkeitsrechnung 21.1 Binomialverteilung

21. Wahrscheinlichkeitsrechnung 21.1 Binomialverteilung 21. Wahrscheinlichkeitsrechnung 21.1 Binomialverteilung 21.2 Geometrische Verteilung 6 5 F 6 5 F Die Wahrscheinlichkeit, den Ball in den Basketballkorb zu werfen, sei 0.7. Der Ball wird 5mal geworfen.

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung

Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Beispielaufgaben Binomialverteilung Lösungen

Beispielaufgaben Binomialverteilung Lösungen L. Schmeink 05a_beispielaufgaben_binomialverteilung_lösungen.doc 1 Beispielaufgaben Binomialverteilung Lösungen Übung 1 Der Würfel mit zwei roten (A) und vier weißen Seitenflächen (B) soll fünfmal geworfen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Grundlagen der Mathematik II (LVA U)

Grundlagen der Mathematik II (LVA U) Dr. Marcel Dettling 21.05.2010 Dr. Daniel Haase FS 2010 daniel.haase@math.ethz.ch Grundlagen der Mathematik II (LVA 401-0622-00 U 11 Zur Übungsstunde vom 21.05.2010 Aufgabe 31 (Rechnen mit der Normalverteilung

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

Statistik III. Walter Zucchini Fred Böker Andreas Stadie

Statistik III. Walter Zucchini Fred Böker Andreas Stadie Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Stetige Wahrscheinlichkeitsverteilung

Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische

Mehr

Biometrieübung 3 Kombinatorik

Biometrieübung 3 Kombinatorik Biometrieübung 3 (Kombinatorik) - Aufgabe Biometrieübung 3 Kombinatorik Aufgabe 1. DNA Eine lineare Anordnung von 3 DNA - Nukleotiden wird Triplet genannt. Ein Nukleotid kann eine der 4 möglichen Basen

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)

Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient

Mehr

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003 Polizeidienst-Aufgabe Abiturprüfung Bayern LK 003 a) Bei einem Einstellungstermin für den Polizeidienst waren 0% der Bewerber Frauen, von denen 90% die Aufnahmeprüfung bestanden. Drei Viertel derjenigen,

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 3914 jutta.arrenberg@th-koeln.de QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren)

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Stetige Zufalls-Variable Erweitert man den Begriff der diskreten Zufallsvariable

Mehr

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess

falls rote Kugel im 1. Zug gezogen Die Ziehungen sind daher nicht unabhängig voneinander. Damit liegt kein Bernoulli-Prozess 6.4 Hypergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln sind nicht rot. Wir entnehmen n Kugeln, d.h. Stichproben vom Umfang n.

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2

Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung

Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen. Hypergeometrische Verteilung Poissonverteilung Verteilungen eindimensionaler diskreter Zufallsvariablen Diskrete Verteilungen Hypergeometrische Verteilung Approimationen Typisierung der diskreten theoretischen Verteilungen Bibliografie: Prof. Dr. Kück

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:

Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind: Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält

Mehr

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung

Marcus Hudec. Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Statistik 2 für SoziologInnen 1 Normalverteilung Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006

Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006 3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

j K j d j m j h j f j

j K j d j m j h j f j Für eine stetige Zufallsvariable X in einem Intervall [ a ; b ] kann X jeden beliebigen Wert annehmen. Die Wahrscheinlichkeiten werden in diesem Fall nicht mehr wie bei einer diskreten Zufallsvariable

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Elementarereignis: Stellt ein Einzelergebnis eines Zufallsexperimentes dar, wird oftmals mit E bezeichnet.

Elementarereignis: Stellt ein Einzelergebnis eines Zufallsexperimentes dar, wird oftmals mit E bezeichnet. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Einführung in grundlegende

Mehr

Biometrieübung 11 Kontingenztafeln

Biometrieübung 11 Kontingenztafeln Biometrieübung 11 (Kontingenztafeln) - Aufgabe Biometrieübung 11 Kontingenztafeln Aufgabe 1 2x2-Kontingenztafeln 100 weibliche Patienten sind mit einer konventionellen Therapie behandelt worden 85 Patientinnen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...

Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz... Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung.

Abbildung 1: Dieses Quiz soll Ihnen helfen, die Residuenplots besser zu verstehen. Am Schluss kommen noch vermischte Aufgaben zur Wiederholung. Residuals vs Fitted Normal Q Q Residuals 2 1 0 1 2 16 18 30 Standardized residuals 2 1 0 1 2 18 30 16 5 10 15 20 25 30 Fitted values 2 1 0 1 2 Theoretical Quantiles Abbildung 1: Dieses Quiz soll Ihnen

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Günther Bourier Wahrscheinlichkeitsrechnung und schließende Statistik Praxisorientierte Einführung Mit Aufgaben und Lösungen 3. F überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort Inhaltsverzeichnis

Mehr

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele

KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele KATA LOGO Mathematik Statistik Wahrscheinlichkeitsverteilungen - Beispiele Verteilungen Problemstellung Ergebnisraum Ω Stichprobe (n aus N) mehrfaches Auswählen = wiederholen Formel für P Erwartungswert

Mehr