Vergleichsarbeiten Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen

Größe: px
Ab Seite anzeigen:

Download "Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen"

Transkript

1 Vergleichsrbeiten. Jhrgngsstufe (VERA-) eutsch TESTHEFT I Lesen

2 ANLEITUNG In diesem Test wirst du einige Leseufgben berbeiten. Es gibt verschiedene Arten von Aufgben. Für einige Frgen werden dir mehrere Antwortmöglichkeiten ngeboten. Wähle die richtige Antwort us und mche ein Kreuz in ds Kästchen vor dieser Antwort. Bei diesen Frgen ist immer nur eine Antwort richtig! Beispiel zeigt dir, wie diese Frgen ussehen. Beispiel : So kreuzt mn n. Wie viele Tge ht die Woche? 5 X s Kästchen neben der ist ngekreuzt, weil eine Woche Tge ht. Wenn du deine Antwort uf eine Frge ändern möchtest, mle ds Kästchen mit der ersten Antwort gnz us und mche ein Kreuz in ds richtige Kästchen. Beispiel : So verbessert mn seine Antwort. Wie viele Tge ht die Woche? 5 X I

3 Bei mnchen Frgen sollst du entscheiden, ob eine Aussge richtig oder flsch ist. Mche bei diesen Aufgben in jeder Zeile ein Kreuz. Beispiel : richtig flsch s Jhr ht Monte. Es gibt 4 verschiedene Jhreszeiten. Bei mnchen Aufgben musst du deine Antwort uf einen Strich schreiben. Beispiel 4: Wie viele Stunden ht der Tg? Antwort: 4 Bei einigen Frgen sollst du deine Antwort in die freien Zeilen schreiben. Beispiel 5 zeigt dir eine dieser Frgen. Beispiel 5: Wrum freut sich der Junge im Text so sehr? In nderen Aufgben musst du etws in die richtige Reihenfolge bringen. Hierfür schreibst du Zhlen uf die Striche. Beispiel 6: Nummeriere die Wochentge in der richtigen Reihenfolge. 4 Mittwoch onnerstg Montg ienstg Versuche, möglichst lle Frgen zu bentworten. Wenn du eine bestimmte Frge nicht bentworten knnst, gehe zur nächsten Frge weiter. II

4 Aufgbe

5

6 Ws hben Kirsten Milhhn und Annlis Loscco mit der Entstehung des Textes Ist hier noch ein Zimmer frei? zu tun? 8.9 9

7 . 4

8 er ufmerksme Beobchter Ein kschisches Volksmärchen Einml km einem Mnn ein Kmel us seiner Herde bhnden. Als er uszog, um es zu suchen, holte er in der Steppe einen Reiter ein. Sie begrüßten einnder und steckten sich ihre Pfeifchen n. Ich hb ein Kmel verloren, klgte der Mnn. Hst du es nicht gesehen? Ist dein Kmel uf dem linken Auge blind, und fehlen ihm die Vorderzähne? Jj!, rief der Mnn froh. Wo ist es denn? Ich weiß nicht, wo dein Kmel ist, ich sh nur gestern seine Spuren. er Besitzer des Kmels ber glubte dem Reiter nicht, sondern beschuldigte ihn, es gestohlen zu hben, und führte ihn vor den Richter. er fremde Mnn sgte zum Richter: Ich knn noch mehr über ds Kmel sgen und hbe es doch nicht gesehen. Nun, so sprich! Auf der einen Seite trug es ein Fässchen mit Honig, uf der nderen einen prllen Sck Weizen. Jj, er ist der ieb!, rief der Besitzer des Kmels. Aufgbe Sogr der Richter glubte ds jetzt, doch frgte er den Angeklgten lieber noch einml: Hst du ds Kmel gesehen? 5

9 Nein. Woher ber weißt du ds lles? Nun, dss ds Kmel uf dem linken Auge blind ist, sh ich drn, dss nur rechts von seinem Weg Grs bgefressen wr. - Und woher weißt du, dss es keine Vorderzähne ht? Beim Grsen blieben in der Mitte immer einige Büschel der schmckhften isteln stehen. So - und nun sg uns noch, woher du weißt, dss ds Kmel Honig und Weizen trug? Gnz einfch - uf der einen Seite des Weges sßen die Fliegen uf den Honigtropfen, und uf der nderen hüpften die Sptzen und suchten Weizenkörner. J, wenn ds so wr, dnn gluben wir dir!, riefen der Richter und der Kmelbesitzer, und sie gben sich zufrieden

10 s Kmel... stimmt ist uf dem rechten Auge blind. trägt ein Fässchen mit Honig. lässt kein Büschel der schmckhften isteln stehen. ht keine Bckenzähne mehr. ist dem Reiter unterwegs begegnet. stimmt nicht 8

11 Hier ist etws durcheinnder gerten. Nummeriere die Ereignisse in der richtigen Reihenfolge. er Mnn beschuldigt den Reiter gestohlen zu hben. er Richter befrgt den Angeklgten noch einml. er Kmelbesitzer klgt einem Reiter sein Leid. er Richter und der Besitzer geben sich zufrieden. Ein Kmel ist us der Herde bhnden gekommen.. s Märchen endet mit und sie gben sich zufrieden. Stefn meint, ds bedeutet: Ende gut, lles gut. Stimmst du ihm zu? Begründe. 8

12

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen Vergleichsrbeiten. Jhrgngsstufe (VERA-) eutsch TESTHEFT I Lesen Nme: Klsse: ANLEITUNG In diesem Test wirst du einige Leseufgben berbeiten. Es gibt verschiedene Arten von Aufgben. Für einige Frgen werden

Mehr

Prüfungsteil Mündliche Kommunikation (MK)

Prüfungsteil Mündliche Kommunikation (MK) Prüfungsteil Mündliche Kommuniktion (MK) Die mündliche Prüfung besteht us zwei Teilen. Im ersten Teil sollst du ein Gespräch führen, im zweiten Teil hältst du einen Vortrg und musst dnch Frgen dzu bentworten.

Mehr

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia.

im Beruf Gespräche führen: Über Gepflogenheiten (Versammlungen, Feste und Geschenke) am Arbeitsplatz sprechen pressmaster/fotolia. 1 Sehen Sie die Fotos n und ergänzen Sie: Welches Wort psst? c pressmster/fotoli.com dp/c Jochen Lüke d e der Betriesusflug die Besprechung die Betriesversmmlung die Aschiedsfeier (von den Auszuildenden)

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung.

Lesen. Fit in Deutsch.2. circa 30 Minuten. Dieser Test hat drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel aus der Zeitung. Fit in Deutsh.2 Üungsstz 01 Kndidtenlätter ir 30 Minuten Dieser Test ht drei Teile. In diesem Prüfungsteil findest du Anzeigen, Briefe und Artikel us der Zeitung. Zu jedem Text git es Aufgen. Shreie m

Mehr

In der Stadt unterwegs

In der Stadt unterwegs 11 In der Stdt unterwegs 1 2 6 7 8 FOLGE 11: GUSTAV HEINEMANN CD 2 01 1 Sehen Sie die Fotos n. Ws meinen Sie? b Wen sucht Niko? Wrum ht Niko Blumen dbei? 2 Ws ist richtig? Niko nimmt... Ich glube, Niko

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

1. Ausgabe Juni 06 Gratismagazin für Kinder und Erwachsene mit extra vielen Buchstaben!

1. Ausgabe Juni 06 Gratismagazin für Kinder und Erwachsene mit extra vielen Buchstaben! 021 541110 1. Ausgbe Juni 06 Grtismgzin für Kinder und Erwchsene mit extr vielen Buchstben! Liebe Eltern, liebe Grosseltern, können Sie sich noch n die Geschichten erinnern, die Sie ls Kind gelesen hben?

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

a Gute Abschlussnoten aus der Sekundarschule (Sek.-Stufe 1) a Selbstständigkeit und hohe Lernbereitschaft a Lehrdauer (Jahre): 4

a Gute Abschlussnoten aus der Sekundarschule (Sek.-Stufe 1) a Selbstständigkeit und hohe Lernbereitschaft a Lehrdauer (Jahre): 4 DU HAST TALENT MACH WAS DRAUS. POLYGRAF/IN QUICK FACTS Exktheit und Suberkeit Gutes ästhetisches Gespür Stilsicheres Deutsch Gute Abschlussnoten us der Sekundrschule (Sek.-Stufe 1) Ausgeprägte Auffssungsgbe

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

Dreiecke als Bausteine

Dreiecke als Bausteine e ls usteine Jedes Viereck lässt sich in zwei e zerlegen. Wirklich jedes? Konstruktion eines s bei drei beknnten Seiten bmessen einer Strecke mit dem Geodreieck. Zirkelschlg um einen Punkt mit der zweiten

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Flächenberechnung - Umfng und Fläche von Rechteck und Qudrt Ds komplette Mteril finden Sie hier: Downlod bei School-Scout.de Inhltsverzeichnis

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

Es schneit sehr stark. Deshalb haben alle Züge Verspätung.

Es schneit sehr stark. Deshalb haben alle Züge Verspätung. 11 Grmmtik 1 Sehen Sie ds Bild n und ergänzen Sie. Der Briefträger geht... den Gehweg... entlng. Wolfi fährt mit seinem Fhrrd... Briefträger... c Die Ktze läuft...... Strße. d Fru Löl geht...... E Reinigung.

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. )

1 Aktivität 1 Sehen ohne Ton (Track 1 bis Und eine Schokolade. ) Shritte 1/2 interntionl Hinweise für die Kursleiter Film 3:»Die Josuhe«Mteril zu Film 3 Die Josuhe : Film 3,. 05:00 Min. Zustzmteril: Mein Beruf,. 01:30 Min., 5 kurze Sttements zum Them 5 Areitslätter

Mehr

Mathematik (Capo 2) Ich sing euch heut ein Lied über die Mathematik,

Mathematik (Capo 2) Ich sing euch heut ein Lied über die Mathematik, 1 Mthemtik (Cpo 2) e Ich sing euch heut ein Lied über die Mthemtik, e denn die Mthemtik ist ds schönste ws es gibt. e Müsst ich ohne Mthe leben, würde ich mich übergeben, e e eine Primzhl will ich sein,

Mehr

Wer bei Dir sich birgt

Wer bei Dir sich birgt Wer bei Dir sich birgt (Johnnes Hrtl 2009) E Wer bei Dir sich birgt steht fest uf einem Berg cis denn Du bist seine Burg sein fester Turm. E Meine ugen richten sich uf Dich llein cis denn Du bist meine

Mehr

MAX количество баллов за всю работу-100

MAX количество баллов за всю работу-100 XII Всероссийская олимпиада школьников по немецкому языку 2014-2015 РАЙОННЫЙ ЭТАП 06.12.2014 LÖSUNGEN 9. 11. Klsse Zweite Runde MAX количество баллов за всю работу-100 I. Teil: HÖRVERSTEHEN Aufgbe 1 (

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34

Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Inhlt Shritte plus 5 Lektion 1...4 Lektion 2...9 Lektion 3...14 Lektion 4...19 Lektion 5...24 Lektion 6...29 Lektion 7...34 Shritte plus 6 Lektion 8...39 Lektion 9...44 Lektion 10...49 Lektion 11...54

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Kunst und Wissenschaft

Kunst und Wissenschaft Kunst und Wissenschft Auf welchen Bildern ist Wissen drgestellt, uf welchen Kunst? Welche Bilder pssen zu keinem von beiden? Ordnet zu und begründet eure Entscheidungen. LEKTION 103 A A1 Musik Musikunterricht

Mehr

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10

Schriftliche Überprüfung Mathematik. Gymnasien, Klasse 10 Schriftliche Überprüfung Mthemtik, Klsse 0 Schuljhr 009/00 6. Februr 00 Unterlgen für die Lehrerinnen und Lehrer Diese Unterlgen enthlten: I II III Allgemeine Hinweise zur Arbeit Aufgben Erwrtungshorizonte,

Mehr

Sehen Sie das Bild an. Welche Medien benutzt die junge Frau im Zug? Was kann sie damit alles machen?

Sehen Sie das Bild an. Welche Medien benutzt die junge Frau im Zug? Was kann sie damit alles machen? medien 1 Mediennutzung AB 4 / U 2 Sehen Sie ds Bild n. Welche Medien benutzt die junge Fru im Zug? Ws knn sie dmit lles mchen? b Welche Medien benutzte mn vor circ 20 Jhren für diese Aktivitäten? Smmeln

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

Sehen Sie gemeinsam die kurze Sequenz an. Die TN spekulieren: Was für ein Problem hat Emma wohl?

Sehen Sie gemeinsam die kurze Sequenz an. Die TN spekulieren: Was für ein Problem hat Emma wohl? Schritte 1/2 Hinweise für die Kursleiter Mteril zu Film 5 Wie lnge noch? : Film 5, c. 05:00 Min. Zustzmteril: Deutschlnd, Österreich, Schweiz eine Fotoreise, c. 06:55 Min. 3 Arbeitsblätter für den Unterricht

Mehr

Differentialgleichungen Gewöhnliche Differentialgleichungen

Differentialgleichungen Gewöhnliche Differentialgleichungen Differentilgleichungen Gewöhnliche Differentilgleichungen ( n) + + +... ++ Eplizite Form: (Gleichung lässt sich nch höchster Ableitung uflösen Implizite Form: + 0 Lösung: Durch eine Funktion Lösungsweg:

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN

Der beste Umzug, den wir je hatten. Privatumzüge Überseeumzüge Senioenumzüge Kunsttransporte Lagerung ERWIN WEDMANN Der beste Umzug, den wir je htten. Privtumzüge Überseeumzüge Senioenumzüge Kunsttrnsporte Lgerung ERWIN WEDMANN Erwin Wedmnn Euromovers erfolgreiche Koopertion seit über 20 Jhren Heute zählt die EUROMOVERS

Mehr

7Zu Hause. 1 Stadtleben oder Landluft? Einheit 7

7Zu Hause. 1 Stadtleben oder Landluft? Einheit 7 7Zu Huse Stdtleben oder Lndluft? Stdt oder Lnd? Sehen Sie sich die Fotos n und smmeln Sie: Ws gehört für Sie zum Leben in der Stdt und ws zum Leben uf dem Lnd? Stdt die U-Bhn Lnd die Tiere einhundertzwölf

Mehr

START DEUTSCH 1. Übungssatz 02. Goethe-Institut 2008. ISBN 3-936753-31-8 Übungsheft ISBN 3-936753-32-6 Tonkassette ISBN 3-936753-33-4 CD

START DEUTSCH 1. Übungssatz 02. Goethe-Institut 2008. ISBN 3-936753-31-8 Übungsheft ISBN 3-936753-32-6 Tonkassette ISBN 3-936753-33-4 CD in puncto Bonn 04_08_08 SD1_Ü02_04 START DEUTSCH 1 Goethe-Institut 2008 ISBN 3-936753-31-8 Üungsheft ISBN 3-936753-32-6 Tonkssette ISBN 3-936753-33-4 CD Inhlt Vorwort 3 Kndidtenlätter Hören 5 Lesen, Schreien

Mehr

Technik im Alltag. 2 Ordnen Sie zu. 3 Sehen Sie die Fotos 1 4 an. Was passiert im Homeservice? Was meinen Sie? achtzehn 18 LEKTION 9

Technik im Alltag. 2 Ordnen Sie zu. 3 Sehen Sie die Fotos 1 4 an. Was passiert im Homeservice? Was meinen Sie? achtzehn 18 LEKTION 9 9 Technik im Alltg 5 6 FOLGE 9: COMPUTER SIND DOOF Ws ist ein Druckertreier? Kreuzen Sie n. eine Softwre, die dfür sorgt, dss Computer und Drucker zusmmen funktionieren ein spezielles Kel, mit dem mn den

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Gedanken stoppen und entschleunigen

Gedanken stoppen und entschleunigen 32 AGOGIK 2/10 Bertie Frei, Luigi Chiodo Gednken stoppen und entschleunigen Individuelles Coching Burn-out-Prävention Probleme knn mn nie mit derselben Denkweise lösen, durch die sie entstnden sind. Albert

Mehr

Lektion 2: Du und ich

Lektion 2: Du und ich Lektion 2: Du und ich Lernziele Stellung nehmen Über sttistische Angben sprechen Vergleiche formulieren Einen Forumsbeitrg schreiben Argumente gegenüberstellen Ein Interview mchen 2 d(r)/wo(r) + Präposition

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Sicherheitssysteme Digitale Videoüberwachung

Sicherheitssysteme Digitale Videoüberwachung Sicherheitssysteme Digitle Videoüberwchung PM11 M11_A- 6-4- 1 Sie hben lles unter Kontrolle. Für Objekte ller Größen Viele Unternehmen benötigen mehr ls nur eine punktuelle Videoüberwchung. Kom- Lösungen.

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 3 Grundschulen und Förderschulen Schuljahr 03/04 Fach Mathematik Name: ANWEISUNGEN Es gibt verschiedene Arten von Aufgaben in diesem Mathematiktest. Bei einigen Aufgaben

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

16 A. Was für eine Idee! A1 Verrückte Rekorde. a Ordne die Wortgruppen den Fotos zu. Welche Wörter kannst du auf den Fotos zeigen?

16 A. Was für eine Idee! A1 Verrückte Rekorde. a Ordne die Wortgruppen den Fotos zu. Welche Wörter kannst du auf den Fotos zeigen? 16 A Ws für eine Idee! A1 Verrückte Rekorde Ordne die Wortgruppen den Fotos zu. Welche Wörter knnst du uf den Fotos zeigen? 1 prktisch, Hre, Friseur 2 singen, Sänger, Rockkonzert 3 wiegen, Tonne (= 1000

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

14 E N D L I C H E AU T O M AT E N erstes beispiel: ein getränkeautomat

14 E N D L I C H E AU T O M AT E N erstes beispiel: ein getränkeautomat 14 E N D L I H E AU T O M AT E N 14.1 erstes beispiel: ein getränkeutomt Als erstes Beispiel betrchten wir den folgenden primitiven Getränkeutomten (siehe Abbildung 14.1). Mn knn nur 1-Euro-Stücke einwerfen

Mehr

Expedition zum ANFANG

Expedition zum ANFANG Mirim Küllmer-Vogt, Fbin Vogt Expedition zum ANFANG In 40 Tgen durch ds Mrkusevngelium Begleitheft für Kleingruppen 2013 by C & P Verlgsgesellschft mbh Glshütten Gestltung und Produktion: Johnnes Kunkel

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder

DAS Einzige Konto, Mitten im Leben. monsterhetz.at. *) Näheres im Folder DAS Einzige Konto, ds uch uf dein HANDY ODER DEINEN LAPTOP AUFPASST. Versichert Hndy oder Lptop 1 Jhr grtis!* Mitten im Leben. monsterhetz.t *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN

Mehr

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart

Aussichten A1. Einstufungstest. Autorin: Sanja Mazuranic Redaktion: Renate Weber Layout: Claudia Stumpfe Satz: Regina Krawatzki, Stuttgart Aussihten A1 Autorin: Snj Mzurni Rektion: Rente Weer Lyout: Clui Stumpfe Stz: Regin Krwtzki, Stuttgrt Ernst Klett Sprhen GmH, Stuttgrt 2010 www.klett.e Alle Rehte vorehlten. Aussihten A1 Aussihten A1 Aufgenltt

Mehr

Glück im Alltag. 1 Sehen Sie die Fotos an. 2 Sehen Sie die Fotos an und hören Sie. acht 8 LEKTION 1 FOLGE 1: SCHUTZENGEL

Glück im Alltag. 1 Sehen Sie die Fotos an. 2 Sehen Sie die Fotos an und hören Sie. acht 8 LEKTION 1 FOLGE 1: SCHUTZENGEL 1 Glück im Alltg 1 2 5 6 FOLGE 1: SCHUTZENGEL CD 1 2-9 1 Sehen Sie die Fotos n. Foto 1: Ws ist ein Homeservice? Dort knn mn estellen. Die kommen und Foto 2: Wrum ht Nsseer wohl einen Schutzengel im Auto?

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

DAS JUGENDKONTO, das NICHT NUR AUF

DAS JUGENDKONTO, das NICHT NUR AUF DAS JUGENDKONTO, ds NICHT NUR AUF dein GELD AUFPASST. Hndy oder Lptop 1 Jhr grtis Versichern!* Mitten im Leben. *) Näheres im Folder FÜR ALLE VON 14-19, DIE MITTEN IM LEBEN STEHEN! Mit 14 Lebensjhren mcht

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

http://www.tfh-wildau.de/gerking/arbeiten.html 2005

http://www.tfh-wildau.de/gerking/arbeiten.html 2005 Hllo Ilse, gut nch Huse gekommen? Ich htte Glück, die U-Bhnnschlüsse wren gut. http://www.tfh-wildu.de/gerking/arbeiten.html 5 Sonntgs hbe ich mich dnn erstml mit der Frge beschäftigt, ob Mthemtik und

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte

Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Bsp 6.1: Slutsky Zerlegung für Kreuzpreiseffekte Wie wirkt sich eine reiserhöhung für Gut uf die konsumierte Menge n us: Bzw.: d (,, ) h (,, V ) 2 V 0,5 0,5 Für die Unkompensierte Nchfrgefunktion gilt:

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

Themenbereich: Kongruenzsätze Seite 1 von 6

Themenbereich: Kongruenzsätze Seite 1 von 6 Themenereich: Kongruenzsätze Seite 1 von 6 Lernziele: - Kenntnis der genuen Formulierung der Kongruenzsätze - Kenntnis der edeutung der Kongruenzsätze - Fähigkeit, die Kongruenzssätze gezielt zur egründung

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

123 Familienausgleichskasse

123 Familienausgleichskasse 1 Fmilienzulgen: Anmeldung für Arbeitnehmende eines nicht beitrgspflichtigen Arbeitgebers (Anobg) Antrgstellerin / Antrgsteller Abrechnungsnummer (xxx.xxx) 123 Fmilienusgleichsksse Sozilversicherungsnstlt

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

2.5 Lösungen zu den Unterrichtsmaterialien

2.5 Lösungen zu den Unterrichtsmaterialien Brunhilde Mrqurdt-Mu und Regin Rojek 2.5 Lösungen zu den Unterrichtsmterilien Mteril 1: An den Vorstellungen der Kinder nknüpfen Aufgbe 1 Wie würdest du jemnden, der noch nie einen Regenwurm gesehen ht,

Mehr