Hinweise für Schüler

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hinweise für Schüler"

Transkript

1 Abitur 2006 Mathematik LK Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig zu bearbeiten. Von den drei Wahlaufgaben W1, W2 und W3 sind zwei auszuwählen und zu lösen. Die Arbeitszeit beträgt 300 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl. Hilfsmittel: das an der Schule eingeführte Tafelwerk, der an der Schule zugelassene Taschenrechner ohne CAS, Zeichengeräte, Wörterbuch zur deutschen Rechtschreibung Hinweis: Sonstiges: Die Lösungen sind in einer sprachlich korrekten, mathematisch exakten und äußerlich einwandfreien Form darzustellen. In der Niederschrift müssen die Lösungswege nachvollziehbar sein. Entwürfe können ergänzend zur Bewertung nur herangezogen werden, wenn sie zusammenhängend konzipiert sind und die Reinschrift etwa Dreiviertel des zu erreichenden Gesamtumfanges beinhaltet. Maximal zwei Bewertungseinheiten können zusätzlich vergeben werden bei guter Notation und Darstellung, eleganter, kreativer und rationeller Lösung, vollständiger Lösung einer dritten Wahlaufgabe. Maximal zwei Bewertungseinheiten können bei mehrfachen Verstößen gegen mathematische Korrektheit und äußere Form abgezogen werden.

2 Abitur 2006 Mathematik LK Seite 3 P1 Analytische Geometrie (11 BE) Gegeben ist ein gerades Prisma ABCDEFGH mit dem Parallelogramm ABCD als Grundfläche (siehe Abbildung). 1.1 Ersetzen Sie die Leerstellen so durch einen der Buchstaben A, B, C, D, E, F, G oder H, dass jeweils eine wahre Aussage entsteht. BE + FG = C F = AF 1.2 Gegeben sind folgende Eckpunkte des Körpers ABCDEFGH. A(0 0 0) B(1 4 0) C( ) D( 2 6 0) E(0 0 5) F(1 4 5) G( ) H( 2 6 5) Ermitteln Sie eine Koordinatengleichung der Ebene ε BDHF. Berechnen Sie die Größe des Schnittwinkels α zwischen der Geraden g CE und dieser Ebene Die yz-ebene zerlegt den Körper ABCDEFGH in zwei Teilkörper. Berechnen Sie den Inhalt der Schnittfläche. P2 Analysis (16 BE) 2.1 Für jede positive reelle Zahl t ist die Funktion k t durch die Gleichung gegeben. k t (x) = t x t x mit x R Berechnen Sie die Stelle x t > 0, an der der Anstieg des Graphen von k t genau 9 t beträgt Der Graph von k t besitzt im 1. Quadranten eines kartesischen Koordinatensystems einen lokalen Extrempunkt E t. Berechnen Sie die Koordinaten dieses Extrempunktes und weisen Sie die Art des Extremums nach. Ermitteln Sie den Anstieg der Geraden durch den Punkt E t und den Koordinatenursprung Für einen bestimmten Wert von t schließen der Graph von k t und die x-achse eine Fläche im 1. Quadranten mit dem Inhalt A = 72 FE vollständig ein. Berechnen Sie diesen Wert von t.

3 Abitur 2006 Mathematik LK Seite Gegeben ist die Funktionenschar f a,b durch die Gleichung f a,b (x) = a x 3 + b x mit x R, a, b R, a 0, b Die Abbildung zeigt den Graphen einer speziellen Funktion dieser Schar. Begründen Sie, dass für die Parameter a und b dieser Funktion folgende Aussagen gelten: a > 0 und b < 0. y x Jede Funktion f a,b ist 1. Ableitungsfunktion von Funktionen g a,b. Geben Sie für g a,b eine mögliche Gleichung an Jede Funktion f a,b mit a > 0 und b < 0 ist Stammfunktion von Funktionen h a,b. Untersuchen Sie die Graphen von h a,b hinsichtlich ihres Krümmungsverhaltens. P3 Stochastik (11 BE) Der Betreiber einer Glücksspielhalle bietet folgendes Spiel an. Aus der dargestellten Urne werden auf gut Glück Kugeln gezogen. Der Auszahlungsbetrag ergibt sich als Summe der aufgedruckten Beträge in Cent. 3.1 Betrachtet wird zunächst das Spiel Zweimaliges Ziehen aus der Urne ohne Zurücklegen. Die Zufallsvariable X ist der Auszahlungsbetrag nach einem Spiel Ermitteln Sie mit Hilfe eines Baumdiagramms alle möglichen Werte von X. Stellen Sie die Wahrscheinlichkeitsverteilung von X in einem geeigneten Diagramm dar Der Betreiber verlangt vor jedem Spiel einen Einsatz. Berechnen Sie den Mindesteinsatz pro Spiel, damit der Betreiber auf lange Sicht keinen Verlust erzielt. 3.2 In einem weiteren Spiel wird aus der dargestellten Urne zehnmal eine Kugel mit Zurücklegen gezogen. Es ist jeweils von Interesse, ob die 50-Cent-Kugel gezogen wird Ermitteln Sie die Wahrscheinlichkeit, dabei höchstens zweimal 50 Cent zu erzielen Berechnen Sie die Anzahl der Ziehungen, die erforderlich sind, um mit mindestens 95%-iger Wahrscheinlichkeit wenigstens einmal eine Kugel mit dem Aufdruck 50 zu erhalten.

4 Abitur 2006 Mathematik LK Seite 5 W1 Analysis (21 BE) Gegeben ist eine Schar von Funktionen f k durch die Gleichung 2 ( x k) mit x R, k R und 5 + k x 5 k. fk (x) = 25 + G k ist der zu f k gehörige Graph (siehe Abbildung für k = 0, k = 5, k = 7). y 6 G 5 G 0 4 G x 1.1 Die Tangente t 7 an G 7 im Punkt T(11 f 7 (11)) bildet mit den Koordinatenachsen ein Dreieck. Berechnen Sie den Flächeninhalt dieses Dreiecks. 1.2 Die Graphen G 0 und G 7 sowie die x-achse begrenzen für 2 x 5 eine Fläche vollständig. Berechnen Sie das Volumen des Körpers, der durch Rotation dieser Fläche um die x-achse entsteht. 1.3 Die Punkte P(u f 0 (u)), Q( u f 0 ( u)) und der Koordinatenursprung O bilden für jeden Wert von u (u R, 0 < u < 5) ein Dreieck. Unter den Dreiecken dieser Art gibt es genau eines mit maximalem Flächeninhalt. Berechnen Sie den zugehörigen Wert von u. 1.4 Ein Graph G k (k > 9) berührt die Gerade g mit der Gleichung g(x) = x + 9. Berechnen Sie den entsprechenden Wert für k.

5 Abitur 2006 Mathematik LK Seite 6 W2 Analytische Geometrie (21 BE) Die Abbildung zeigt die Darstellung eines Einfamilienbungalows in einem kartesischen Koordinatensystem (Maße in Metern). Der Bungalow besteht aus einem quaderförmigen Bau von 16 m Länge, 10 m Breite und 3 m Höhe und einem aufgesetzten symmetrischen Dach. Das Dach setzt sich zusammen aus zwei kongruenten, gleichschenkligen Dreiecksflächen und zwei ebenfalls kongruenten gleichschenkligen Trapezflächen. U U Abbildung nicht maßstäblich 2.1 Ermitteln Sie je eine Koordinatengleichung für die Dachebene ε 1, die das Dreieck EFI enthält, sowie für die Dachebene ε 2, die das Trapez FGJI enthält. Für den Ausbau des Dachraumes wird u. a. der stumpfe Winkel zwischen den Dachebenen ε 1 und ε 2 benötigt. Berechnen Sie die Größe dieses Winkels. 2.2 Für den Bungalow soll ein Schornstein mit quadratischer Grundfläche gebaut werden. Die Punkte P(4 6 0) und R(3,5 6,5 0) sind Eckpunkte dieser Grundfläche Berechnen Sie die Höhe über der Grundfläche, in der die Schornsteinkante QU die Dachfläche durchstößt Der Punkt T in der Höhe von 6 m soll vom Punkt M( ) aus sichtbar sein. Prüfen Sie rechnerisch, ob diese Sichtbarkeit durch die Dachfläche EFI gestört wird Ermitteln Sie, wie hoch der Schornstein maximal gebaut werden darf, damit bei 53 r Sonnenlichteinfall mit dem Richtungsvektor u= 0 der Schatten des 11 Schornsteins nur auf die Dachfläche FGJI fällt.

6 Abitur 2006 Mathematik LK Seite 7 W3 Analytische Geometrie und Analysis (21 BE) y Ein Schiff P wird nacheinander zu bestimmten Zeiten in den Punkten P 1 (14 13) und P 2 (12 11) geortet. Zu den gleichen Ortungszeiten wird die Position eines zweiten Schiffes Q in den Punkten Q 1 (12 2) und Q 2 (11 1) festgestellt. Beide Schiffe bewegen sich geradlinig mit konstanter Geschwindigkeit. Alle Koordinatenangaben erfolgen in sm (sm - Seemeilen, GSG - gefährliches Seegebiet). L GSG B R Q P x Abbildung nicht maßstäblich 3.1 Vom Punkt L(0 1) aus überstreicht der Lichtstrahl eines Leuchtfeuers mit einer Sichtweite von 10 sm einen Viertelkreis (siehe Abbildung). Im Punkt R erblickt der Kapitän des Schiffes P erstmalig dieses Leuchtfeuer Berechnen Sie die Größe des Winkels zwischen RL und der Bewegungsrichtung des Schiffes Berechnen Sie den Abstand der Schiffsroute des Schiffes P zum Leuchtfeuer L. 3.2 Bei gleichzeitiger Ortung der Schiffe P und Q sind die Schiffspositionen durch die Punkte P r (14 2r 13 2r) und Q r (12 r 2 + r) mit r R und r > 0 gegeben. Für den Abstand der beiden Schiffe voneinander gilt: d (r) = P r Q Berechnen Sie den Ort von P, wenn der Abstand der beiden Schiffe P und Q voneinander erstmalig 9 sm beträgt Für genau einen Wert von r ist der Abstand der beiden Schiffe voneinander minimal. Ermitteln Sie diesen Wert für r. Geben Sie den minimalen Abstand an. 3.3 Im Punkt B(x B y B ) befindet sich eine Warnboje. Die Begrenzungen des für die Schifffahrt gefährlichen Seegebietes GSG vor dem Leuchtfeuer L können durch die Graphen der Funktionen f und g mit den Gleichungen f(x) = x 3 + x + 4 g(x) = x + 1 mit x R, 0 x x B und mit x R, 0 x x B und der Geraden mit der Gleichung x = 0 beschrieben werden. Die Graphen von f und g schneiden einander im Punkt B. Bestimmen Sie den Flächeninhalt des gefährlichen Seegebietes. r

Mecklenburg-Vorpommern

Mecklenburg-Vorpommern Mecklenburg-Vorpommern Schriftliche Prüfung 2005 Jahrgangsstufe 10 Gymnasium/Gesamtschule Mathematik Aufgaben Schriftliche Prüfung Mathematik 2005 Jahrgangsstufe 10 Gymnasium/Gesamtschule Seite 2 Aufgabenauswahl:

Mehr

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl.

Hinweise für Schüler. Die Arbeitszeit beträgt 210 Minuten zuzüglich 30 Minuten für die Aufgabenauswahl. Abitur 2005 Mathematik Gk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Hilfsmittel: Hinweise: Sonstiges: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben

Mehr

Beispielarbeit. MATHEMATIK (ohne CAS)

Beispielarbeit. MATHEMATIK (ohne CAS) Abitur 008 Mathematik (ohne CAS) Beispielarbeit Seite 1 Abitur 008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (ohne CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2007 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Zentralabitur 2011 Mathematik mit CAS

Zentralabitur 2011 Mathematik mit CAS Mecklenburg-Vorpommern Zentralabitur 2011 Mathematik mit CAS N Abitur 2011 Mathematik mit CAS N Seite 2 Aufgaben Abitur 2011 Mathematik mit CAS N Seite 3 Hinweise für Schüler Aufgabenwahl: Die Prüfungsarbeit

Mehr

Hinweise für Schüler

Hinweise für Schüler Abitur 2005 Mathematik Lk Seite 2 Hinweise für Schüler Aufgabenauswahl: Bearbeitungszeit: Die Arbeit besteht aus einem Pflichtteil und einem Wahlteil. Die Pflichtaufgaben P1, P2 und P3 sind vollständig

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1998 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten

Mehr

Abitur 2009 Mathematik Seite 1

Abitur 2009 Mathematik Seite 1 Abitur 2009 Mathematik Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner

Mehr

Beispielarbeit. MATHEMATIK (mit CAS)

Beispielarbeit. MATHEMATIK (mit CAS) Abitur 2008 Mathematik (mit CAS) Beispielarbeit Seite 1 Abitur 2008 Mecklenburg-Vorpommern Beispielarbeit MATHEMATIK (mit CAS) Hinweis: Diese Beispielarbeit ist öffentlich und daher nicht als Klausur verwendbar.

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2009 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Abitur 2009 Mathematik Seite 1

Abitur 2009 Mathematik Seite 1 Abitur 009 Mathematik Seite Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk und Taschenrechner

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik

Schriftliche Abiturprüfung Grundkursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

Besondere Leistungsfeststellung Mathematik ERSTTERMIN

Besondere Leistungsfeststellung Mathematik ERSTTERMIN Sächsisches Staatsministerium für Kultus Schuljahr 008/009 Geltungsbereich: Schüler der Klassenstufe 10 an allgemeinbildenden Gymnasien ohne Realschulabschluss Besondere Leistungsfeststellung Mathematik

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Ersttermin -

Schriftliche Abiturprüfung Grundkursfach Mathematik. - Ersttermin - Sächsisches Staatsministerium Geltungsbereich: für Kultus - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg Schuljahr 2002/03 - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Schriftliche Realschulprüfung 1997 Mathematik

Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik Mecklenburg - Vorpommern Realschulprüfung 1997 Arbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden Arbeiten

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Leistungskursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 1998/99 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (ERHÖHTES ANFORDERUNGSNIVEAU) Prüfungsaufgaben

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (ERHÖHTES ANFORDERUNGSNIVEAU) Prüfungsaufgaben () Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten G 1, G 2

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

Mathematik. Hauptschulabschlussprüfung 2011. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten

Mathematik. Hauptschulabschlussprüfung 2011. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Hauptschulabschlussprüfung 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von

Mehr

Orientierungsarbeit Mathematik

Orientierungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: Klassenstufe 8 für Kultus Mittelschule / Förderschule Schuljahr 2007/2008 Orientierungsarbeit Mathematik Hauptschulbildungsgang Klassenstufe 8 Material für

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L 2 und L 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben

Mehr

Abitur 2010 Mathematik Arbeitsblatt Seite 1

Abitur 2010 Mathematik Arbeitsblatt Seite 1 Abitur 2010 Mathematik Arbeitsblatt Seite 1 Name, Vorname:... Aufgabe A0 (beinhaltet die Aufgaben 1 3 des Arbeitsblattes) Arbeitsblatt Dieses Arbeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwerk

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben

SCHRIFTLICHE ABITURPRÜFUNG 2013 MATHEMATIK (GRUNDLEGENDES ANFORDERUNGSNIVEAU) Prüfungsaufgaben () Prüfungsaufgaben Auswahlzeit: Bearbeitungszeit: 30 Minuten 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Entscheiden Sie sich für eine Wahlpflichtaufgabe und kreuzen

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 2004 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 50 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Lösen Sie die Pflichtaufgabe und wählen

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat 33 / Logistikstelle für zentrale Arbeiten August 017 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2006 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 0 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gmnasium, Fachberater Mathematik Gmnasium, CAS-Multiplikatoren Hinweise für Prüfungsteilnehmerinnen

Mehr

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs

Zentrale schriftliche Abiturprüfung Mathematik. Grundkurs LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 2008/09 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

Zentrale Klausur unter Abiturbedingungen Mathematik. Leistungskurs. für Schülerinnen und Schüler

Zentrale Klausur unter Abiturbedingungen Mathematik. Leistungskurs. für Schülerinnen und Schüler Ministerium für Bildung, Jugend und Sport Zentrale Klausur unter Abiturbedingungen 2004 Aufgaben Mathematik für Schülerinnen und Schüler Thema/Inhalt: Hilfsmittel: Bearbeitungszeit: Analytische Geometrie

Mehr

Orientierungsarbeit Mathematik

Orientierungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: Klassenstufe 8 für Kultus Gymnasium Schuljahr 2005/2006 Orientierungsarbeit Mathematik Gymnasium - Klassenstufe 8 Material für Schülerinnen und Schüler Allgemeine

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Länderübergreifende gemeinsame nteile in den Abiturprüfungen der Länder Bayern, Hamburg, Mecklenburg-Vorpommern, Niedersachsen, Schleswig-Holstein und Sachsen Musteraufgaben für das Fach Mathematik Die

Mehr

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.

Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten. Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N -

Schriftliche Abiturprüfung Grundkursfach Mathematik - E R S T T E R M I N - Sächsisches Staatsministerium für Kultus Schuljahr 004/05 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Zentrale schriftliche Abiturprüfung Mathematik

Zentrale schriftliche Abiturprüfung Mathematik LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2012 mit CAS Aufgabenvorschlag Hilfsmittel: Gesamtbearbeitungszeit:

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2011 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2005/2006 Geltungsbereich: für Klassenstufe 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:

Mehr

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK

ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK ABITURPRÜFUNG 2001 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: grafikfähig) Tafelwerk 270 Minuten Taschenrechner (nicht programmierbar, nicht Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen

Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen BOS 12 NT 98 Seite 1 Abschlussprüfung 1998 zum Erwerb der Fachhochschulreife an Berufsoberschulen Mathematik (nichttechnische Ausbildungsrichtungen) (Arbeitszeit für eine A- und eine S-Aufgabe insgesamt

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Mathematik. (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Mathematik. (Grundkurs) Arbeitszeit: 210 Minuten 1 MATHEMATIK (GRUNDKURS) KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2000 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus

Mehr

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 017 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten SCHRIFTLICHE ABITURPRÜFUNG 200 KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 200 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten

Mehr

Realschulabschluss Schuljahr 2005/2006. Mathematik

Realschulabschluss Schuljahr 2005/2006. Mathematik Prüfungstag: Montag, 12. Juni 2006 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2005/2006 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Leistungskurs) Arbeitszeit: 00 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten L 1, L

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 004 Mathematik (Grundkurs) Arbeitszeit: 0 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G, G und G 3 zur Bearbeitung aus. Gewählte

Mehr

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2008 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG 2008 Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2008 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2008 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 80 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite von 6 Pflichtaufgaben Pflichtaufgabe (erreichbare BE: 0) a) Berechnen Sie auf Hundertstel

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 1 14.03.2016 Aufgabe PT WTA WTGS Gesamtpunktzahl (max) 30 15 15 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 3 4 4 3 WT Ana A.1a) b) c) Summe P. (max) 7 5 3 15 WT Geo G.a)

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Nachtermin 1997/98 1. Schriftliche Abiturprüfung. Leistungskursfach Mathematik. - Nachtermin im Schuljahr 1997/98-

Nachtermin 1997/98 1. Schriftliche Abiturprüfung. Leistungskursfach Mathematik. - Nachtermin im Schuljahr 1997/98- Nachtermin 1997/98 1 Schriftliche Abiturprüfung Leistungskursfach Mathematik - Nachtermin im Schuljahr 1997/98- Inhaltsverzeichnis Vorwort... Material für den Prüfungsteilnehmer... Allgemeine Arbeitshinweise...

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung

Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Aufgaben sind zum größten Teil ohne CAS zu lösen. Kontrolle mit CAS ist eine gute Übung Analysis Aufgabe 2 Bestimmen Sie jeweils die Gleichung einer Funktion f mit folgenden Eigenschaften: a) Die Funktion

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (nichttechnische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 008 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 6. Juni 008 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Mathematik (Grundkursniveau) Arbeitszeit: 10 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten Januar 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Aufgaben für das Fach Mathematik

Aufgaben für das Fach Mathematik Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten November 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik 1 Musteraufgaben für Aufgabenpool 1... 4 1.1 Analysis... 4 1. Analytische Geometrie/Lineare Algebra... 6 1..1 Analytische Geometrie... 6 1.. Lineare Algebra... 8

Mehr

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten

SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Wahlpflichtaufgabe

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 004 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 4. Juni 004 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung

a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der

Mehr

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK

Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik 2012 Impressum Das vorliegende Material wurde von einer Arbeitsgruppe mit Vertretern aus den Ländern Bayern, Hamburg, Mecklenburg-Vorpommern, Niedersachsen, Sachsen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

Zentrale Abschlüsse Mathematik HSA

Zentrale Abschlüsse Mathematik HSA Zentrale Abschlüsse Mathematik HSA max. 20 min Vorbereitungszeit zusätzlich Jede Komplexaufgabe steht unter einem zusammenfassenden Thema aus der Umwelt der Schülerinnen und Schüler. Beide Aufgaben haben

Mehr

Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6

Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6 Gymnasium Oberwil / Mathematik 2014 / Grundlagenfach Seite 1 von 6 Aufgabe 1: 14 Punkte Gegeben ist die Funktion f durch die Gleichung 1 3 3 2 f ( x) = x + x. 2 2 a) Berechnen Sie die Nullstellen, die

Mehr

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12

BEISPIEL neue Aufgabenstruktur - erstmalig 2011/12 Sachsen-Anhalt neue Aufgabenstruktur - erstmalig 2011/12 SCHRIFTLICHE ABSCHLUSSPRÜFUNG Pflichtteil 2 und Wahlpflichtteil In diesem Teil der Abschlussprüfung sind die Hilfsmittel Taschenrechner und Tafelwerk

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN-

Schriftliche Abiturprüfung Leistungskursfach Mathematik -ERSTTERMIN- Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/10 Geltungsbereich: - allgemeinbildendes Gymnasium - Abendgymnasium und Kolleg - schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung

Mehr

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS-

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 2) HRP BOS- HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie 3 auswählen. Sie müssen

Mehr

2012/2013 Abitur Sachsen - Grundkurs Mathematik

2012/2013 Abitur Sachsen - Grundkurs Mathematik Schriftliche Abiturprüfung Grundkurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5 Lösungsvorschläge...7

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 006 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag,. Juni 006 Prüfungsdauer: 09:00 1:00 Uhr Hilfsmittel: Elektronischer,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Abitur-Prüfung 2014 mit Lösungen (Baden-Württemberg)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Abitur-Prüfung 2014 mit Lösungen (Baden-Württemberg) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Abitur-Prüfung 201 mit Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung 201 mit

Mehr