Bachelorarbeit: Ein diskretes Modell für Finanzmärkte

Größe: px
Ab Seite anzeigen:

Download "Bachelorarbeit: Ein diskretes Modell für Finanzmärkte"

Transkript

1 Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Die Finanzmathematik ist momentan eine der wichtigsten Anwendungender. Hier soll ein grundlegendes Modell erörtert werden, das auf der Entwicklung von Wertpapieren zu zwei aufeinander folgenden Zeiten beruht. Wichtige Stichworte hierzu sind etwa die Nutzenfunktion, Effizienz von Handelsstrategien, Arbitrage oder die Vollständigkeit des Marktes. In diesem einfachen Modell lässt sich beispielsweise zeigen, dass es genau dann ein Gleichgewichts-Preismaß gibt, wenn es keine Arbitragemöglichkeiten gibt. M. U. Dothan. Prices in Financial Markets, Oxford University Press, 1990, p. 3 48

2 Bachelorarbeit: Die Preisbildung in Finanzmärkten Betrachtet man, wie Preise in Finanzmärkten zustande kommen, gibt es zwei Möglichkeiten. Entweder man nimmt an, dass nie risikolos Geld gewonnen werden kann (d.h. es gibt keine Arbitrage) oder man geht von Nutzenfunktionen der Händler aus, die maximiert werden sollen (Capital Asset Pricing Model). In dieser Arbeit sollen diese beiden Ansätze gegenüber gestellt werden. Steven E. Shreve. Stochastic Calculus for Finance I. The Binomial Asset Pricing Model. Springer, 2004, p

3 Bachelorarbeit: Varianten des Sekretärinnen-Problems Das Sekretärinnen-Problem ist folgendes: auf die Stelle einer Sekretärin bewerben sich n Kandidaten, die zum Bewerbungsgespräch eingeladen werden. Ziel ist es, den besten Sekretär zu finden. Die Schwierigkeit besteht darin, dass man direkt nach dem Gespräch zu entscheiden hat, ob der Sekretär eingestellt werden soll oder nicht. Dieses Problem ist heute in verschiedenen Erweiterungen bekannt. Insbesondere wird etwa der Fall betrachtet, dass die Menge der Sekretäre nicht total geordnet ist, sondern nur partiell. J. P. Gilbert and F. Mosteller. Recognizing the Maximum of a Sequence. Journal of the American Statistical Association, 61, 35 73, R. Freij and J. Wästlund. Partially ordered secretaries. Electronic Communications in Probability, 15, , 2010.

4 Bachelorarbeit: Die Konvergenzrate im zentralen Grenzwertsatz Bei Grenzwertsätzen kann man neben der eigentlichen Konvergenzaussage ebenfalls die Frage nach der Konvergenzgeschwindigkeit stellen. Für den zentralen Grenzwertsatz wurde das von Berry und Esseen gemacht: sind X 1,X 2,... unabhängig und identisch verteilt mit E[X 1 ] = 0,E[X 2 1 ] =: σ 2,E[ X 1 ] 3 =: ρ <, so gibt eine Konstante C, so dass [ 1 ] P σ 2 n (X X n ) y Φ(y) C ρ σ 3 n, wobei Φ die Verteilungsfunktion der Standardnormalverteilung ist. Man weiß, dass C 3 sein muss. Weiterentwicklungen dieser Schranke betreffen unter anderem, die Konstante C noch von n abhängig zu machen. W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 1965, XVI.5 Chen, P.-N. Asymptotic Refinement of the Berry-Esseen Constant. 2002

5 Bachelorarbeit: Perkolation Gegeben sei das Gitter Z 2. Jede Kante ist unabhängig von jeder anderen mit Wahrscheinlichkeit p aktiv und mit 1 p inaktiv. Die mit aktiven Kanten verbundenen Gitterpunkte bilden Zusammenhangskomponenten, die Cluster genannt werden. Nun kann man einfache Fragen stellen, etwa: Wie groß ist die Wahrscheinlichkeit, dass es ein unendlich großes Cluster gibt? Natürlich hängt die Antwort auf diese Frage von p ab und es zeigt sich, dass es ein p c (0,1) gibt, so dass die Antwort nein ist für p < p c und ja für p > p c. A. Klenke. Wahrscheinlichkeitstheorie. Springer, p , G. Grimmett. Percolation, Springer, 1999

6 Bachelorarbeit: Das Gesetz des iterierten Logarithmus Folgende Aussage erweitert den zentralen Grenzwertsatz für unabhängige, identisch verteilte Zufallsvariablen X 1,X 2,... mit E[X 1 ] = 0,E[X 2 1 ] = 1: lim sup n X X n 1. 2nloglogn Diese Aussage ist als Gesetz des iterierten Logarithmus bekannt. Auch in neuerer Zeit wird dieses Gesetz noch weiter entwickelt, etwa für negativ assoziierte Zufallsvariablen. Guang-Hui Cai and Hang Wu. Law of iterated logarithm for NA sequences with non-identical distributions. Proc. Indian Acad. Sci. (Math. Sci.) Vol. 117, No. 2, pp , 2007 V. Petrov. Limit theorems of probability theory sequences of independent random variables. Oxford Science Publications, 1995

7 Bachelorarbeit: Der small-world -Effekt in zufälligen Graphen Bei einem Experiment von Stanley Milgram in den 60er Jahren sollten Pakete zwischen zwei Personen (i) und (ii) verschickt werden, die sich nicht kannten. Die Ausgangsperson konnte jeweils eine Person ihres Bekanntenkreises (iii) wählen, von der sie dachte, dass (iii) möglicherweise (ii), oder zumindest einen Bekannten von (ii), kennt. Dabei kam heraus, dass fast alle Pakete mit höchstens 6 Stationen beim Empfänger ankamen (falls sie überhaupt ankamen). Dieser Effekte wird heute small-world-effekt genannt, und etwa durch zufällige Graphen modelliert. Diese können einige der beobachteten Phänomene erklären. Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In STOC 00: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages , New York, NY, USA, ACM. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of smallworld networks. Nature, 393, , 1998

8 Bachelorarbeit: Kingman s Malkästen und austauschbare Partitionen Eine Partition von N ist ein Mengensystem π von disjunkten Teilmengen (Partitionselementen) von N, so dass A π A = N. Eine zufällige Partition Π heißt austauschbar, wenn sich die Verteilung unter Vertauschung der Zahlen nicht ändert. Kingmam hat gezeigt, dass sich solche austauschbaren Partitionen einfach durch einen Malkasten (paintbox) darstellen lassen: Man stelle sich hierzu einen Kasten verschiedener Farben vor, und jede natürliche Zahl wird unabhängig mit einer Farbe angemalt. Zahlen derselben Farbe stellen dann die Partitionselemente dar. N. Berestycki. Recent progress in coalescent theory. Ensaios Matematicos, Volume 16, 1 13, 2009 A. Klenke. Wahrscheinlichkeitstheorie. Springer, p , 2006.

Finanzmarktökonometrie:

Finanzmarktökonometrie: Dr. Walter Sanddorf-Köhle Statistik und Ökonometrie Rechts- und Wirtschaftswissenschaftliche Fakultät UNIVERSITÄT DES SAARLANDES Statistik und Ökonometrie Sommersemester 2013 Finanzmarktökonometrie: Einführung

Mehr

Generierung von sozialen Netzwerken. Steffen Brauer WiSe 2011/12 HAW Hamburg

Generierung von sozialen Netzwerken. Steffen Brauer WiSe 2011/12 HAW Hamburg Generierung von sozialen Netzwerken Steffen Brauer WiSe 2011/12 HAW Hamburg Agenda Motivation Soziale Netzwerke Modelle Metriken Forschungsumfeld Ausblick 2 Motivation Wo gibt es Netzwerke? Computernetzwerke

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Random Graph Theory and P2P

Random Graph Theory and P2P Graph Theory and PP GI Arbeitsgespräch 00 September th 00, Darmstadt {Schollmeier}@lkn.ei.tum.de Impacts of PP.00E+.80E+ on PP Traffic per week in byte.60e+.0e+.0e+.00e+ 8.00E+0 6.00E+0.00E+0.00E+0 0.00E+00

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 3. Netzwerkgrundlagen Inhalte Six Degrees of Separation Zufallsgraphen Skalenfreie Netze Dynamik 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Motivation Graphentheorie

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

Seminar SS 09 Amdahl`s Law and Cloud-Computing

Seminar SS 09 Amdahl`s Law and Cloud-Computing Seminar SS 09 Amdahl`s Law and Cloud-Computing Prof. G. Bengel Fakultät für Informatik SEMB 7IBW 8IB Raum HO609 Mo 9:45-11:15 1. Teil: Amdahl sches Gesetz 1. Vortrag Das Gesetz von Amdahl und Gustafson

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Mit welcher Strategie hast Du am Glücksrad Erfolg?

Mit welcher Strategie hast Du am Glücksrad Erfolg? Mit welcher Strategie hast Du am Glücksrad Erfolg? Kinderuni, Workshop an der TU Wien 24. Juli 2009, 10:30 11:30 Uhr Univ.-Prof. Dr. Uwe Schmock Forschungsgruppe Finanz- und Versicherungsmathematik Institut

Mehr

Master-Seminar Derivate

Master-Seminar Derivate Master-Seminar Derivate Prof. Dr. Alexander Szimayer Lehrstuhl für Derivate Wintersemester 2012/13 Prof. Dr. Alexander Szimayer (UHH) Master-Seminar Derivate Wintersemester 2012/13 1 / 14 Organisatorisches

Mehr

Quelle. Thematische Verteilungen. Worum geht es? Wiederholung. Link-Analyse: HITS. Link-Analyse: PageRank. Link-Analyse: PageRank. Link-Analyse: HITS

Quelle. Thematische Verteilungen. Worum geht es? Wiederholung. Link-Analyse: HITS. Link-Analyse: PageRank. Link-Analyse: PageRank. Link-Analyse: HITS Hauptseminar Web Information Retrieval Quelle Thematische Verteilungen 07.05.2003 Daniel Harbig Chakrabati, Soumen; Joshi, Mukul; Punera, Kunal; Pennock, David (2002): The Structure of Broad Topics on

Mehr

Zuverlässige Informationsbereitstellung in energiebewussten ubiquitären Systemen (ZeuS)

Zuverlässige Informationsbereitstellung in energiebewussten ubiquitären Systemen (ZeuS) Zuverlässige Informationsbereitstellung in energiebewussten ubiquitären Systemen () Vergleich von Ansätzen zur Netzwerkanalyse in drahtlosen Sensornetzen Joachim Wilke,, Markus Bestehorn, Zinaida Benenson,

Mehr

Finanzmathematik... was ist das?

Finanzmathematik... was ist das? Finanzmathematik... was ist das? The core of the subject matter of mathematical finance concerns questions of pricing of financial derivatives such as options and hedging covering oneself against all eventualities.

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel

Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel Seminarbeitrag Diskrete Stochastik der Finanzmärkte. Einführung und Anwendungsbeispiel Sven Wiesinger 8. Juni 2004 1. Einleitung Historisches. Bei dem Versuch, eine Theorie der Spekulation zu entwickeln,

Mehr

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum

Mehr

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN von HANS-JüRG BüTTLER In der vorliegenden Notiz werden zuerst Kennziffern des Wechselkurses, die für die lognormale Verteilung

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Sicherheit in Ad-Hoc-Netzwerken

Sicherheit in Ad-Hoc-Netzwerken Sicherheit in Ad-Hoc-Netzwerken Seminarvortrag gehalten von David Wagner am 9.April 2002 Ad-Hoc-Netzwerke Mobile Geräte (Knoten) mit Funkschnittstellen Keine feste Infrastruktur Selbstorganisierend Geräte

Mehr

Seminar: Warum wir falsch liegen und trotzdem weiter machen!

Seminar: Warum wir falsch liegen und trotzdem weiter machen! Seminar: Warum wir falsch liegen und trotzdem weiter machen! 22. April 2010 Aktuelle in Banken und Versicherungen Allgemeines Alle Vorträge beinhalten aktuell angewandte Theorien und Methoden und sind

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

SoSe 2004 Mareen Hofmann, Sonja Lange

SoSe 2004 Mareen Hofmann, Sonja Lange Einführung in die Finanzmathematik Grundlagen SoSe 2004 Mareen Hofmann, Sonja Lange Inhaltsverzeichnis 1 Einleitung 2 2 Finanzmärkte und Instrumente 2 2.1 Finanzmärkte............................. 2 2.2

Mehr

Ringvorlesung Forschungsschwerpunkte

Ringvorlesung Forschungsschwerpunkte Ringvorlesung Forschungsschwerpunkte Prof. Dr. Thorsten Poddig Universität Bremen Agenda Vorstellung des Lehrstuhls für Finanzwirtschaft Eigene Forschungsfelder Industrieprojekte Veröffentlichungen Entscheidungstheorie

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Vorlesung Stochastische Finanzmathematik Einführung

Vorlesung Stochastische Finanzmathematik Einführung Vorlesung Stochastische Finanzmathematik Einführung Pascal Heider Institut für Numerische Mathematik 30. März 2011 Einleitung Frage: Ist der Kurs einer Aktie absicherbar? Beispiel: Sie besitzen eine Daimler

Mehr

Binomialmodell für Optionen

Binomialmodell für Optionen Jörg Lemm Vorlesung Finanzmathematik, WS 06/07 Universität Münster 16.11.2006, 23.11.2006, 30.11.2006 Definition Optionen Der Käufer (Geschäftspartner in der Long-Position) einer (europäischen) Kaufoption

Mehr

Risikobasiertes statistisches Testen

Risikobasiertes statistisches Testen Fabian Zimmermann Robert Eschbach Johannes Kloos Thomas Bauer Ziele von Risikobasiertem Testen Testen von Safety-kritischen Produkten Garantieren, dass das Produktrisiko geringer ist als das tolerierbare

Mehr

Scheduling von VLBI- Beobachtungen zu Satelliten mit VieVS

Scheduling von VLBI- Beobachtungen zu Satelliten mit VieVS Geodätische Woche, Berlin, 7. 10. 9. 10. 2014 Session 5: GGOS (Global Geodetic Observation System) Scheduling von VLBI- Beobachtungen zu Satelliten mit VieVS Andreas Hellerschmied 1, J. Böhm 1, L. Plank

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Master of Science Business Administration

Master of Science Business Administration Master of Science Business Administration Marketing Abbildung der Studiengangstrukturen PO 2015 Bitte beachten Sie, dass es sich hierbei um vorläufige Übersichten der Studienstruktur handelt, die das WiSo-Studienberatungszentrum

Mehr

Bachelorarbeitsthemen des Lehrstuhls Statistik

Bachelorarbeitsthemen des Lehrstuhls Statistik Bachelorarbeitsthemen des Lehrstuhls Statistik Beachten Sie die Bewerbungsmodalitäten zur Bachelorarbeit am Lehrstuhl Statistik unter http://wwqvs.file3.wcms.tu-dresden.de/bachelor/b-arbeit/bewerbungsmodalitaeten.pdf.

Mehr

Physik und Chemie der Minerale

Physik und Chemie der Minerale Physik und Chemie der Minerale Phasendiagramme Mehrere Komponenten Segregation, konstitutionelle Unterkühlung Keimbildung Kinetik des Kristallwachstums Kristallzüchtung Literaturauswahl D.T.J Hurle (Hrsg.):

Mehr

Master of Science Business Administration

Master of Science Business Administration Master of Science Business Administration Abbildung der Studiengangstrukturen PO 2015 Bitte beachten Sie, dass es sich hierbei um vorläufige Übersichten der Studienstruktur handelt, die das WiSo-Studienberatungszentrum

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Bachelor (BSc) Mathematik

Bachelor (BSc) Mathematik BACHELOR-MASTER-KONZEPT FÜR MATHEMATISCHE STUDIENGÄNGE an der Technischen Universität München (TUM) FPO 2007 www-sb.ma.tum.de/study/studplan/ www-sb.ma.tum.de/docs/fpo/ 1. Übersicht Zum Wintersemester

Mehr

Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen. Vorlesung an der TU München Wintersemester 2012/13

Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen. Vorlesung an der TU München Wintersemester 2012/13 Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen Vorlesung an der TU München Wintersemester 2012/13 PD Dr. Ewald Müller Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Straße

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Welche Style-Indices treiben die Fondsperformance?

Welche Style-Indices treiben die Fondsperformance? Welche Style-Indices treiben die Fondsperformance? Ergebnisse für das Stoxx-Universum Elisabeth Stocker und Niklas Wagner Universität Passau Rüdiger Sälzle FondsConsult Research AG FondsConsult Investmentkonferenz

Mehr

Gesellschaft für Informatik e.v. (GI) Institute of Electrical and Electronics Engineers (IEEE)

Gesellschaft für Informatik e.v. (GI) Institute of Electrical and Electronics Engineers (IEEE) Dr. Markus Debusmann Kontakt: E-mail: debusmann@informatik.fh-wiesbaden.de Mitgliedschaften: Gesellschaft für Informatik e.v. (GI) Institute of Electrical and Electronics Engineers (IEEE) Beteiligung an

Mehr

Bachelor of Science. Business Administration

Bachelor of Science. Business Administration Bachelor of Science Business Administration Media and Technology Abbildung der Studiengangstrukturen PO 2015 Bitte beachten Sie, dass es sich hierbei um vorläufige Übersichten der Studienstruktur handelt,

Mehr

Business Computing and Operations Research (RAIBCOR)

Business Computing and Operations Research (RAIBCOR) Recent Advances in Business Computing and Operations Research (RAIBCOR) SS 2015 Prof. Dr. Stefan Bock Wirtschaftsinformatik und Operations Research Schumpeter Schoolof of Business and Economics 17. April

Mehr

Quantitative Research in der Praxis. Hans Bühler GLOBAL QUANTITATIVE RESEARCH Berlin, 3. Juli 2002

Quantitative Research in der Praxis. Hans Bühler GLOBAL QUANTITATIVE RESEARCH Berlin, 3. Juli 2002 Quantitative Research in der Praxis Hans Bühler GLOBAL QUANTITATIVE RESEARCH Berlin, 3. Juli 2002 Quantitative Research in der Praxis Vorstellung der Gruppe Aufgaben und Interaktion innerhalb von Global

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Ein Kurzaufsatz von Prof. Dr. Ottmar Schneck, www.ottmar-schneck.de

Ein Kurzaufsatz von Prof. Dr. Ottmar Schneck, www.ottmar-schneck.de Die Bewertung von Aktien mit Hilfe der Ein Kurzaufsatz von Prof. Dr. Ottmar Schneck, www.ottmar-schneck.de In letzter Zeit scheint es, als könne man der alten Weisheit, dass man über alles reden darf,

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

An Introduction to Monetary Theory. Rudolf Peto

An Introduction to Monetary Theory. Rudolf Peto An Introduction to Monetary Theory Rudolf Peto 0 Copyright 2013 by Prof. Rudolf Peto, Bielefeld (Germany), www.peto-online.net 1 2 Preface This book is mainly a translation of the theoretical part of my

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer)

Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Einführung in die Finanzmathematik: Diskrete Modelle Skriptum zur Vorlesung (Teile Kainhofer) Reinhold Kainhofer FAM, TU Wien Mai 2007 Inhaltsverzeichnis 1 Das Ein-Perioden-Modell 1 1.1 Definitionen............................................

Mehr

Why you should care. by Thomas Krimmer. Thomas Krimmer @ACS Slide 1

Why you should care. by Thomas Krimmer. Thomas Krimmer @ACS Slide 1 Why you should care. by Thomas Krimmer Thomas Krimmer @ACS Slide 1 CAS Publication Record Abstracts (Millions) 1.5 papers per minute Source: CAS helpdesk, Statistical Summary 1907-2007, 02/10/2009 Thomas

Mehr

Oliver Hinz. Vorlesung Electronic Markets (Bachelor) Wintersemester 2014/2015

Oliver Hinz. Vorlesung Electronic Markets (Bachelor) Wintersemester 2014/2015 Oliver Hinz Vorlesung Electronic Markets (Bachelor) Wintersemester 2014/2015 Prof. Dr. Oliver Hinz, Professur für Wirtschaftsinformatik, Fachgebiet Electronic Markets, TU Darmstadt, Hochschulstraße 1,

Mehr

Recent Advances in Business Computing and Operations Research (RAIBCOR)

Recent Advances in Business Computing and Operations Research (RAIBCOR) Recent Advances in Business Computing and Operations Research (RAIBCOR) Prof. Dr. Stefan Bock Wirtschaftsinformatik und Operations Research Schumpeter School of Business and Economics 25. April 2014 Business

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Homework II. November 2010. Universität Basel Wirtschaftswissenschaftliches Zentrum WWZ. P.Weber@unibas.ch

Homework II. November 2010. Universität Basel Wirtschaftswissenschaftliches Zentrum WWZ. P.Weber@unibas.ch Homework II November 2010 Universität Basel Wirtschaftswissenschaftliches Zentrum WWZ P.Weber@unibas.ch Exercise 1 Explain the no-arbitrage and the risk-neutral valuation approaches to valuing a European

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

Experiment vs. Beobachtungsstudie. Randomisiertes, kontrolliertes Experiment

Experiment vs. Beobachtungsstudie. Randomisiertes, kontrolliertes Experiment Experiment vs. Beobachtungsstudie Randomisiertes, kontrolliertes Experiment Ursache und Wirkung Opfer durch Ertrinken 2 Ursache und Wirkung Opfer durch Ertrinken Eisverkauf 3 Ursache und Wirkung Opfer

Mehr

Business Computing and Operations Research (RAIBCOR)

Business Computing and Operations Research (RAIBCOR) Recent Advances in Business Computing and Operations Research (RAIBCOR) WS 2014 / 2015 Prof. Dr. Stefan Bock Wirtschaftsinformatik und Operations Research Schumpeter Schoolof of Business and Economics

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Oliver Kuß*; Dorothee Twardella**; Maria Blettner***; Thomas L. Diepgen**

Oliver Kuß*; Dorothee Twardella**; Maria Blettner***; Thomas L. Diepgen** Effektschätzung in Cluster-Randomized Trials mit binärer Zielgröße: Eine Sensitivitätsanalyse mit numerischer Integration, MCMC und NPMLE am Beispiel der DHP Oliver Kuß*; Dorothee Twardella**; Maria Blettner***;

Mehr

A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets

A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets Das Kapitel 14 aus Richard H. Thalers Advances in Behavioral Finance Volume II basiert auf der leicht überarbeiteten

Mehr

Optimale Strategien beim Spiel Rot und Schwarz

Optimale Strategien beim Spiel Rot und Schwarz Fachbereich 6-Mathematik Seminar Spieltheorie und Glücksspiele Sommersemester 09 Optimale Strategien beim Spiel Rot und Schwarz Verfasser Tatiana Wandraj 29. August 2009 Betreuer Prof. Dr. Alfred Müller

Mehr

3. Das Auslastungsspiel

3. Das Auslastungsspiel Literatur: 3. Das Auslastungsspiel R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, pp. 65 67. 1973. D. S. Johnson, Chr. H. Papadimitriou,

Mehr

Recent Advances in Business Computing and Operations Research (RAIBCOR)

Recent Advances in Business Computing and Operations Research (RAIBCOR) Recent Advances in Business Computing and Operations Research (RAIBCOR) WS 2015/16 Prof. Dr. Stefan Bock Wirtschaftsinformatik und Operations Research Schumpeter School of Business and Economics 30. Oktober

Mehr

Survival Analysis (Modul: Lebensdaueranalyse)

Survival Analysis (Modul: Lebensdaueranalyse) Survival Analysis (Modul: Lebensdaueranalyse) ROLAND RAU Universität Rostock, Sommersemester 2015 12. Mai 2015 c Roland Rau Survival Analysis 1 / 24 Hausaufgabe 1 Schreiben Sie die Log-Likelihood Gleichung

Mehr

1. Einleitung. 1 Die Autoren wurden durch die DFG im Projekt Nr. 255712 gefördert

1. Einleitung. 1 Die Autoren wurden durch die DFG im Projekt Nr. 255712 gefördert 1 A.1. Vernetzung virtueller Gemeinschaften mit P2P- Technologien Hans Friedrich Witschel (Universität Leipzig), Herwig Unger (Universität Rostock) witschel@informatik.uni-leipzig.de, hunger@informatik.uni-rostock.de

Mehr

Department of Department of Department of. Technology and Operations Management. Department of Managerial Economics

Department of Department of Department of. Technology and Operations Management. Department of Managerial Economics Die organisatorische Verteilung Struktur nach der Studiengängen Mercator School of Department of Department of Department of Accounting and Finance Technology and Operations and Marketing Accounting and

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

Prof. Dr.Thorsten Hens Swiss Banking Institute University of Zurich. Absolute Return Aus Sicht der Modernen Finanzmarktforschung

Prof. Dr.Thorsten Hens Swiss Banking Institute University of Zurich. Absolute Return Aus Sicht der Modernen Finanzmarktforschung Prof. Dr.Thorsten Hens Swiss Banking Institute University of Zurich Absolute Return Aus Sicht der Modernen Finanzmarktforschung Agenda 1. Die Gretchenfrage 2. Entwicklung des Absolute Return a. Das Zeitalter

Mehr

Recent Advances in Business Computing and Operations Research (RAIBCOR)

Recent Advances in Business Computing and Operations Research (RAIBCOR) Recent Advances in Business Computing and Operations Research (RAIBCOR) Prof. Dr. Stefan Bock Wirtschaftsinformatik und Operations Research Schumpeter School of Business and Economics 21. Oktober 2011

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Extract of the Annotations used for Econ 5080 at the University of Utah, with study questions, akmk.pdf.

Extract of the Annotations used for Econ 5080 at the University of Utah, with study questions, akmk.pdf. 1 The zip archives available at http://www.econ.utah.edu/ ~ ehrbar/l2co.zip or http: //marx.econ.utah.edu/das-kapital/ec5080.zip compiled August 26, 2010 have the following content. (they differ in their

Mehr

Dienstgüte in Mobilen Ad Hoc Netzen

Dienstgüte in Mobilen Ad Hoc Netzen Dienstgüte in Mobilen Ad Hoc Netzen KM-/VS-Seminar Wintersemester 2002/2003 Betreuer: Oliver Wellnitz 1 Was ist Dienstgüte? Einleitung The collective effect of service performance which determine the degree

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Proseminar. Spieltheorie. Sommersemester 2015

Proseminar. Spieltheorie. Sommersemester 2015 Proseminar Spieltheorie Sommersemester 2015 Informationen bei: Prof. Dr. Martin Möhle Eberhard Karls Universität Tübingen Mathematisches Institut Tel.: 07071/29-78581 Vortragsübersicht Teil I: Allgemeine

Mehr

Inhaltsverzeichnis Kapitel 0 - Einführung und Grundlagen 11 Kapitel 1 - Renditen auf Finanzmärkten 37 Kapitel 2 - Risiko auf Finanzmärkten 61

Inhaltsverzeichnis Kapitel 0 - Einführung und Grundlagen 11 Kapitel 1 - Renditen auf Finanzmärkten 37 Kapitel 2 - Risiko auf Finanzmärkten 61 Inhaltsverzeichnis Kapitel 0 - Einführung und Grundlagen 11 0.1 Gegenstandsbereich der Finance als wissenschaftliche Disziplin 0.2 Kernthemen der Finance 0.3 Entwicklungsmerkmale der Finanzmärkte - 0.4

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Prof. Dr. Andreas Pfingsten

Prof. Dr. Andreas Pfingsten Finance Center Münster Prof. Dr. Nicole Branger Prof. Dr. Nadja Guenster Prof. Dr. Thomas Langer Jun.-Prof. Dr. Judith C. Schneider Jun.-Prof. Dr. Weiqi Zhang 1 Prof. Dr. Nicole Branger Pricing and Hedging

Mehr

Clustering mit dem K-Means-Algorithmus (Ein Experiment)

Clustering mit dem K-Means-Algorithmus (Ein Experiment) Clustering mit dem K-Means- (Ein Experiment) Andreas Runk 7. März 2013 Index 1 2 3 4 5 Andreas Runk Clustering mit dem K-Means- 2/40 Ziele: des K-Means Finde/erstelle geeignetes Testcorpus möglichst gute

Mehr

Das St. Petersburg Paradox

Das St. Petersburg Paradox Das St. Petersburg Paradox Johannes Dewender 28. Juni 2006 Inhaltsverzeichnis 1 Das Spiel 2 2 Das Paradox 3 3 Lösungsvorschläge 4 3.1 Erwartungsnutzen............................... 4 3.2 Risikoaversion..................................

Mehr

von Peter Zimmermann 462 Seiten, Uhlenbruch Verlag, 1997 EUR 98,- inkl. MwSt. und Versand ISBN 3-9804400-6-0

von Peter Zimmermann 462 Seiten, Uhlenbruch Verlag, 1997 EUR 98,- inkl. MwSt. und Versand ISBN 3-9804400-6-0 Reihe Portfoliomanagement, Band 7: SCHÄTZUNG UND PROGNOSE VON BETAWERTEN Eine Untersuchung am deutschen Aktienmarkt von Peter Zimmermann 462 Seiten, Uhlenbruch Verlag, 1997 EUR 98,- inkl. MwSt. und Versand

Mehr

University of Reading Henley Business School

University of Reading Henley Business School University of Reading Henley Business School Lage: Unmittelbare Nähe zu London World Class (in Real Estate) University of Reading Henley Business School World LeadingReal Estate Centre ConsistentlyRankedin

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Die Master-Programme. an der Frankfurt School of Finance & Management

Die Master-Programme. an der Frankfurt School of Finance & Management Die -Programme an der Frankfurt School Finance & Management Akademische Programme Berufsbegleitende Programme Seminare Executive Education Unternehmensprogramme & Services Forschung Internationale Beratung

Mehr

Sportwetten. zur Langen Nacht der Wissenschaften 2008. zur Langen Nacht der Wissenschaften 2008 Sportwetten 05.02.2009 1

Sportwetten. zur Langen Nacht der Wissenschaften 2008. zur Langen Nacht der Wissenschaften 2008 Sportwetten 05.02.2009 1 Sportwetten zur Langen Nacht der Wissenschaften 2008 zur Langen Nacht der Wissenschaften 2008 Sportwetten 05.02.2009 1 Portugal vs. Schweiz Wettbüro A Wettbüro B Ihr Einsatz: 10 Euro! Spielausgang 1 0

Mehr

Portfolio-Optimierung und Capital Asset Pricing

Portfolio-Optimierung und Capital Asset Pricing Portfolio-Optimierung und Capital Asset Pricing Prof. Dr. Nikolaus Hautsch Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin CASE, CFS, QPL Econ Boot Camp, SFB 649, Berlin, 8. Januar

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds)

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds) Abteilung für Finanzmathematik - Bewertung verschiedenster Typen von Derivativen - Analyse Alternativer Investmentstrategien (Hedge Fonds) - Kredit-Risiko-Management und Kredit-Derivate - Monte Carlo-

Mehr

Veröffentlichungen. - Neue MaRisk stärken Compliance und Risikomanagement, Gastkommentar in RisikoManager 02/2013, S. 2.

Veröffentlichungen. - Neue MaRisk stärken Compliance und Risikomanagement, Gastkommentar in RisikoManager 02/2013, S. 2. Prof. Dr. Niels Olaf Angermüller Veröffentlichungen - Länderrisiken unter Basel III Finanzkrise ohne Konsequenzen?, erscheint demnächst in Zeitschrift für das gesamte Kreditwesen (zusammen mit Thomas Ramke).

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 16 Crash Course Optionen: Pricing & Hedging in diskreter Zeit Literatur Kapitel 16 * Uszczapowski: Kapitel 2, 3, 6 * Pliska: Kapitel 1.4 * Lamberton & Lapeyre:

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr