Bachelorarbeit: Ein diskretes Modell für Finanzmärkte

Größe: px
Ab Seite anzeigen:

Download "Bachelorarbeit: Ein diskretes Modell für Finanzmärkte"

Transkript

1 Bachelorarbeit: Ein diskretes Modell für Finanzmärkte Die Finanzmathematik ist momentan eine der wichtigsten Anwendungender. Hier soll ein grundlegendes Modell erörtert werden, das auf der Entwicklung von Wertpapieren zu zwei aufeinander folgenden Zeiten beruht. Wichtige Stichworte hierzu sind etwa die Nutzenfunktion, Effizienz von Handelsstrategien, Arbitrage oder die Vollständigkeit des Marktes. In diesem einfachen Modell lässt sich beispielsweise zeigen, dass es genau dann ein Gleichgewichts-Preismaß gibt, wenn es keine Arbitragemöglichkeiten gibt. M. U. Dothan. Prices in Financial Markets, Oxford University Press, 1990, p. 3 48

2 Bachelorarbeit: Die Preisbildung in Finanzmärkten Betrachtet man, wie Preise in Finanzmärkten zustande kommen, gibt es zwei Möglichkeiten. Entweder man nimmt an, dass nie risikolos Geld gewonnen werden kann (d.h. es gibt keine Arbitrage) oder man geht von Nutzenfunktionen der Händler aus, die maximiert werden sollen (Capital Asset Pricing Model). In dieser Arbeit sollen diese beiden Ansätze gegenüber gestellt werden. Steven E. Shreve. Stochastic Calculus for Finance I. The Binomial Asset Pricing Model. Springer, 2004, p

3 Bachelorarbeit: Varianten des Sekretärinnen-Problems Das Sekretärinnen-Problem ist folgendes: auf die Stelle einer Sekretärin bewerben sich n Kandidaten, die zum Bewerbungsgespräch eingeladen werden. Ziel ist es, den besten Sekretär zu finden. Die Schwierigkeit besteht darin, dass man direkt nach dem Gespräch zu entscheiden hat, ob der Sekretär eingestellt werden soll oder nicht. Dieses Problem ist heute in verschiedenen Erweiterungen bekannt. Insbesondere wird etwa der Fall betrachtet, dass die Menge der Sekretäre nicht total geordnet ist, sondern nur partiell. J. P. Gilbert and F. Mosteller. Recognizing the Maximum of a Sequence. Journal of the American Statistical Association, 61, 35 73, R. Freij and J. Wästlund. Partially ordered secretaries. Electronic Communications in Probability, 15, , 2010.

4 Bachelorarbeit: Die Konvergenzrate im zentralen Grenzwertsatz Bei Grenzwertsätzen kann man neben der eigentlichen Konvergenzaussage ebenfalls die Frage nach der Konvergenzgeschwindigkeit stellen. Für den zentralen Grenzwertsatz wurde das von Berry und Esseen gemacht: sind X 1,X 2,... unabhängig und identisch verteilt mit E[X 1 ] = 0,E[X 2 1 ] =: σ 2,E[ X 1 ] 3 =: ρ <, so gibt eine Konstante C, so dass [ 1 ] P σ 2 n (X X n ) y Φ(y) C ρ σ 3 n, wobei Φ die Verteilungsfunktion der Standardnormalverteilung ist. Man weiß, dass C 3 sein muss. Weiterentwicklungen dieser Schranke betreffen unter anderem, die Konstante C noch von n abhängig zu machen. W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 1965, XVI.5 Chen, P.-N. Asymptotic Refinement of the Berry-Esseen Constant. 2002

5 Bachelorarbeit: Perkolation Gegeben sei das Gitter Z 2. Jede Kante ist unabhängig von jeder anderen mit Wahrscheinlichkeit p aktiv und mit 1 p inaktiv. Die mit aktiven Kanten verbundenen Gitterpunkte bilden Zusammenhangskomponenten, die Cluster genannt werden. Nun kann man einfache Fragen stellen, etwa: Wie groß ist die Wahrscheinlichkeit, dass es ein unendlich großes Cluster gibt? Natürlich hängt die Antwort auf diese Frage von p ab und es zeigt sich, dass es ein p c (0,1) gibt, so dass die Antwort nein ist für p < p c und ja für p > p c. A. Klenke. Wahrscheinlichkeitstheorie. Springer, p , G. Grimmett. Percolation, Springer, 1999

6 Bachelorarbeit: Das Gesetz des iterierten Logarithmus Folgende Aussage erweitert den zentralen Grenzwertsatz für unabhängige, identisch verteilte Zufallsvariablen X 1,X 2,... mit E[X 1 ] = 0,E[X 2 1 ] = 1: lim sup n X X n 1. 2nloglogn Diese Aussage ist als Gesetz des iterierten Logarithmus bekannt. Auch in neuerer Zeit wird dieses Gesetz noch weiter entwickelt, etwa für negativ assoziierte Zufallsvariablen. Guang-Hui Cai and Hang Wu. Law of iterated logarithm for NA sequences with non-identical distributions. Proc. Indian Acad. Sci. (Math. Sci.) Vol. 117, No. 2, pp , 2007 V. Petrov. Limit theorems of probability theory sequences of independent random variables. Oxford Science Publications, 1995

7 Bachelorarbeit: Der small-world -Effekt in zufälligen Graphen Bei einem Experiment von Stanley Milgram in den 60er Jahren sollten Pakete zwischen zwei Personen (i) und (ii) verschickt werden, die sich nicht kannten. Die Ausgangsperson konnte jeweils eine Person ihres Bekanntenkreises (iii) wählen, von der sie dachte, dass (iii) möglicherweise (ii), oder zumindest einen Bekannten von (ii), kennt. Dabei kam heraus, dass fast alle Pakete mit höchstens 6 Stationen beim Empfänger ankamen (falls sie überhaupt ankamen). Dieser Effekte wird heute small-world-effekt genannt, und etwa durch zufällige Graphen modelliert. Diese können einige der beobachteten Phänomene erklären. Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In STOC 00: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages , New York, NY, USA, ACM. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of smallworld networks. Nature, 393, , 1998

8 Bachelorarbeit: Kingman s Malkästen und austauschbare Partitionen Eine Partition von N ist ein Mengensystem π von disjunkten Teilmengen (Partitionselementen) von N, so dass A π A = N. Eine zufällige Partition Π heißt austauschbar, wenn sich die Verteilung unter Vertauschung der Zahlen nicht ändert. Kingmam hat gezeigt, dass sich solche austauschbaren Partitionen einfach durch einen Malkasten (paintbox) darstellen lassen: Man stelle sich hierzu einen Kasten verschiedener Farben vor, und jede natürliche Zahl wird unabhängig mit einer Farbe angemalt. Zahlen derselben Farbe stellen dann die Partitionselemente dar. N. Berestycki. Recent progress in coalescent theory. Ensaios Matematicos, Volume 16, 1 13, 2009 A. Klenke. Wahrscheinlichkeitstheorie. Springer, p , 2006.

Das Small World Phenomenon. Aus http://www.tell6.com

Das Small World Phenomenon. Aus http://www.tell6.com Das Small World Phenomenon Aus http://www.tell6.com Das Experiment Durchgeführt von Stanley Milgram im Jahr 1969 [7] 296 Briefe an zufällig ausgewählte Personen in Nebraska und Boston Briefe sollten an

Mehr

Motivation Kenngrößen von Graphen Modelle. Small Worlds. in Vorlesung Semantische Suche in P2P-Netzwerken. Florian Holz

Motivation Kenngrößen von Graphen Modelle. Small Worlds. in Vorlesung Semantische Suche in P2P-Netzwerken. Florian Holz Small Worlds in Vorlesung Florian Holz 14.06.2005 in Vorlesung Small Worlds Florian Holz bekannte Arten der Vernetzung zur Zusammenarbeit (Graphen) regelmäßige, z.b. parallele Hardwarestrukturen vollständige

Mehr

Networks, Dynamics, and the Small-World Phenomenon

Networks, Dynamics, and the Small-World Phenomenon Seminar aus Data und Web Mining Mining Social and Other Networks Sommersemester 2007 Networks, Dynamics, and the Small-World Phenomenon, Eine kleine Welt? Ein Erlebnis das wahrscheinlich fast jedem schon

Mehr

Finanzmarktökonometrie:

Finanzmarktökonometrie: Dr. Walter Sanddorf-Köhle Statistik und Ökonometrie Rechts- und Wirtschaftswissenschaftliche Fakultät UNIVERSITÄT DES SAARLANDES Statistik und Ökonometrie Sommersemester 2013 Finanzmarktökonometrie: Einführung

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Generierung von sozialen Netzwerken. Steffen Brauer WiSe 2011/12 HAW Hamburg

Generierung von sozialen Netzwerken. Steffen Brauer WiSe 2011/12 HAW Hamburg Generierung von sozialen Netzwerken Steffen Brauer WiSe 2011/12 HAW Hamburg Agenda Motivation Soziale Netzwerke Modelle Metriken Forschungsumfeld Ausblick 2 Motivation Wo gibt es Netzwerke? Computernetzwerke

Mehr

Zeitschriftenliste der Fachbibliothek für Geodäsie und Mathematik

Zeitschriftenliste der Fachbibliothek für Geodäsie und Mathematik Zeitschriftenliste der Fachbibliothek für Geodäsie und Mathematik Abteilung Mathematik Stand: März 2013 Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg Signatur Bestand ZI 16.401 1.1922-70.2000

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Zuverlässige Informationsbereitstellung in energiebewussten ubiquitären Systemen (ZeuS)

Zuverlässige Informationsbereitstellung in energiebewussten ubiquitären Systemen (ZeuS) Zuverlässige Informationsbereitstellung in energiebewussten ubiquitären Systemen () Vergleich von Ansätzen zur Netzwerkanalyse in drahtlosen Sensornetzen Joachim Wilke,, Markus Bestehorn, Zinaida Benenson,

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

Random Graph Theory and P2P

Random Graph Theory and P2P Graph Theory and PP GI Arbeitsgespräch 00 September th 00, Darmstadt {Schollmeier}@lkn.ei.tum.de Impacts of PP.00E+.80E+ on PP Traffic per week in byte.60e+.0e+.0e+.00e+ 8.00E+0 6.00E+0.00E+0.00E+0 0.00E+00

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum

Mehr

Six Degrees of Separation Besondere Strukturen in Transportnetzwerken

Six Degrees of Separation Besondere Strukturen in Transportnetzwerken Six Degrees of Separation Besondere Strukturen in Transportnetzwerken Bachelor- und Masterseminar im SoSe 14 Jun.-Prof. Dr. Anne Lange DB Schenker Stiftungsjuniorprofessur Fachgebiet Multimodalität und

Mehr

Netzwerke. Marcus Kaiser International University Bremen

Netzwerke. Marcus Kaiser International University Bremen Netzwerke Marcus Kaiser International University Bremen Netzwerke Network Science Einzelne Bausteine 2 Welche Netzwerke gibt es? 3 Woraus bestehen Netzwerke? Gerichtete Kante Knoten 42 Ungerichtete Kante

Mehr

Diskrete Modellierung

Diskrete Modellierung Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Klassische Risikomodelle

Klassische Risikomodelle Klassische Risikomodelle Kathrin Sachernegg 15. Jänner 2008 1 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffserklärung.................................. 3 2 Individuelles Risikomodell 3 2.1 Geschlossenes

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

Inhalt. Inhalte der Vorlesung (vorläufig) Dr. Dominic Battré Complex and Distributed IT Systems. Napster. Eigenschaften von Gnutella

Inhalt. Inhalte der Vorlesung (vorläufig) Dr. Dominic Battré Complex and Distributed IT Systems. Napster. Eigenschaften von Gnutella Vorlesung P2P Netzwerke 2: Unstrukturierte Netze Dr. Dominic Battré Complex and Distributed IT Systems dominic.battre@tu berlin.de berlin de Inhalt Napster Erstes "P2P" Netzwerk Kein wirkliches P2P Enormes

Mehr

Six Degrees of Seperation

Six Degrees of Seperation Six Degrees of Seperation ~ Experiment Stanley Milgram (1967) Frage: Wie weit sind Menschen voneinander entfernt? Aufbau: Zufällig ausgewählte Menschen geben einen Brief nur über Bekannte an eine andere

Mehr

Seminar SS 09 Amdahl`s Law and Cloud-Computing

Seminar SS 09 Amdahl`s Law and Cloud-Computing Seminar SS 09 Amdahl`s Law and Cloud-Computing Prof. G. Bengel Fakultät für Informatik SEMB 7IBW 8IB Raum HO609 Mo 9:45-11:15 1. Teil: Amdahl sches Gesetz 1. Vortrag Das Gesetz von Amdahl und Gustafson

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Diese Tabelle bietet einen Überblick über die Kurse, die im Rahmen des ERASMUS Austausches in Bonn bereits angerechnet wurden. (Stand: Februar 2016).

Diese Tabelle bietet einen Überblick über die Kurse, die im Rahmen des ERASMUS Austausches in Bonn bereits angerechnet wurden. (Stand: Februar 2016). Diese Tabelle bietet einen Überblick über die Kurse, die im Rahmen des ERASMUS Austausches in Bonn bereits angerechnet wurden. (Stand: Februar 2016). Achtung: Die Tatsache, dass diese Kurse bereits angerechnet

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Seminar Algorithmische Spieltheorie WS 2007/08. Martin Sauerhoff

Seminar Algorithmische Spieltheorie WS 2007/08. Martin Sauerhoff Seminar Algorithmische Spieltheorie WS 2007/08 Martin Sauerhoff Worum geht es? Internet/WWW: Interaktion zwischen Parteien ( Spielern ), die private, egoistische Interessen verfolgen; Erreichen von globalen

Mehr

Inhaltsverzeichnis. TEIL A Sichere Investitionen... 23

Inhaltsverzeichnis. TEIL A Sichere Investitionen... 23 1 Einführung... 1 1.1 Investitionsarten.... 1 Finanzinvestitionen... 1 Realinvestitionen... 5 1.2 VollkommeneFinanzmärkte... 6 Keine profitable Arbitrage... 7 Homogene Einschätzungen.... 10 FriktionsloseFinanzmärkte...

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Abschlussklausur des Kurses Portfoliomanagement

Abschlussklausur des Kurses Portfoliomanagement Universität Hohenheim Wintersemester 2010/2011 Lehrstuhl für Bankwirtschaft und Finanzdienstleistungen Kurs Portfoliomanagement Seite 1 von 3 19.01.2011 Abschlussklausur des Kurses Portfoliomanagement

Mehr

Inhalt. Literatur. Dr. Felix Heine Complex and Distributed IT-Systems

Inhalt. Literatur. Dr. Felix Heine Complex and Distributed IT-Systems Vorlesung P2P Netzwerke 2: Unstrukturierte Netze Dr. Felix Heine Complex and Distributed IT-Systems felix.heine@tu-berlin.de Inhalt Napster Erstes "P2P" Netzwerk Kein wirkliches P2P Enormes Medienecho

Mehr

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut Martingal-Maße Manuel Müller 29.04.2016 Mathematisches Institut Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Seite 2 Martingal-Maße 29.04.2016 Inhaltsverzeichnis

Mehr

12. Vorlesung Spieltheorie in der Nachrichtentechnik

12. Vorlesung Spieltheorie in der Nachrichtentechnik 12. Vorlesung Spieltheorie in der Nachrichtentechnik Vorlesung: Eduard Jorswieck Übung: Rami Mochaourab Sommersemester 2010 Evolutionäre Spieltheorie Hines (1987): Game theory s greatest success to date

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Finanzmathematik... was ist das?

Finanzmathematik... was ist das? Finanzmathematik... was ist das? The core of the subject matter of mathematical finance concerns questions of pricing of financial derivatives such as options and hedging covering oneself against all eventualities.

Mehr

Small Worlds und Communities

Small Worlds und Communities Small Worlds und Communities 1. Der Begriff Small World 1. Grundbegriffe 2. Clusteringkoeffizient 3. Zufällige vs reguläre Grafen 4. Modelle von SW Grafen 5. Beispiele 2. Communities 1. Algorithmisierung

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Sicherheit in Ad-Hoc-Netzwerken

Sicherheit in Ad-Hoc-Netzwerken Sicherheit in Ad-Hoc-Netzwerken Seminarvortrag gehalten von David Wagner am 9.April 2002 Ad-Hoc-Netzwerke Mobile Geräte (Knoten) mit Funkschnittstellen Keine feste Infrastruktur Selbstorganisierend Geräte

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Einige Tipps zur Präsentation von Referaten mit PowerPoint sowie zur Anfertigung schriftlicher Arbeiten

Einige Tipps zur Präsentation von Referaten mit PowerPoint sowie zur Anfertigung schriftlicher Arbeiten Einige Tipps zur Präsentation von Referaten mit PowerPoint sowie zur Anfertigung schriftlicher Arbeiten Markus Knauff Institut für Kognitionsforschung Übersicht (1) Motivation und Einleitung Gestaltung

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de)

Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de) Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de) Aufgabe 1 Betrachten Sie die Cashflows der Abbildung 1 (Auf- und Abwärtsbewegungen finden mit gleicher Wahrscheinlichkeit statt). 1 Nehmen Sie an, dass

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Generierung und Simulation von großen Inter-Domain Topologien

Generierung und Simulation von großen Inter-Domain Topologien Generierung und Simulation von großen Inter-Domain Topologien Thomas Schwabe TU München, Lehrstuhl für Kommunikationsnetze thomas.schwabe@tum.de Agenda Motivation Inter-Domain Routing Eigenschaften der

Mehr

Karl Menger Selecta Mathematica Volume 1

Karl Menger Selecta Mathematica Volume 1 Karl Menger Selecta Mathematica Volume 1 Bert Schweizer, Abe Sklar, Karl Sigmund, Peter Gruber, Edmund Hlawka, Ludwig Reich, Leopold Schmetterer (eds.) SpringerWienNewYork Schweizer, B.: Introduction 1

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 3. Netzwerkgrundlagen Inhalte Six Degrees of Separation Zufallsgraphen Skalenfreie Netze Dynamik 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Motivation Graphentheorie

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Kooperationsprojekt NAWI-GRAZ

Kooperationsprojekt NAWI-GRAZ Kooperationsprojekt NAWI-GRAZ MASTERSTUDIUM MATHEMATICS Matrikel-Nr. Name, Vorname(n) Kennzeichnung des Studiums B 0 6 6 3 9 4 Abgabe nur mit aktuellem Studienblatt möglich! Auflagen: JA, NEIN Auflagen

Mehr

Ein Kurzaufsatz von Prof. Dr. Ottmar Schneck, www.ottmar-schneck.de

Ein Kurzaufsatz von Prof. Dr. Ottmar Schneck, www.ottmar-schneck.de Die Bewertung von Aktien mit Hilfe der Ein Kurzaufsatz von Prof. Dr. Ottmar Schneck, www.ottmar-schneck.de In letzter Zeit scheint es, als könne man der alten Weisheit, dass man über alles reden darf,

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Grundprinzipien der Bayes-Statistik

Grundprinzipien der Bayes-Statistik Grundprinzipien der Bayes-Statistik Karl-Rudolf Koch Zusammenfassung: In drei wesentlichen Punkten unterscheidet sich die Bayes-Statistik von der traditionellen Statistik. Zunächst beruht die Bayes-Statistik

Mehr

Sozio- Technische Systeme

Sozio- Technische Systeme Soziotechnische Informationssysteme 3. Netzwerkgrundlagen Inhalte Six Degrees of Separation Zufallsgraphen Skalenfreie Netze Softwareaspekte 1 Motivation Graphentheorie Alter Bekannter in der Informatik

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

SoSe 2004 Mareen Hofmann, Sonja Lange

SoSe 2004 Mareen Hofmann, Sonja Lange Einführung in die Finanzmathematik Grundlagen SoSe 2004 Mareen Hofmann, Sonja Lange Inhaltsverzeichnis 1 Einleitung 2 2 Finanzmärkte und Instrumente 2 2.1 Finanzmärkte............................. 2 2.2

Mehr

Security of Online Social Networks

Security of Online Social Networks Security of Online Social Networks Social Network Analysis Lehrstuhl IT-Sicherheitsmanagment Universität Siegen May 31, 2012 Lehrstuhl IT-Sicherheitsmanagment 1/25 Overview Lesson 06 Fundamental Graphs

Mehr

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Einführung Auf binären Klassifikatoren beruhende Methoden One-Against-All One-Against-One DAGSVM Methoden die alle Daten zugleich betrachten

Mehr

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN von HANS-JüRG BüTTLER In der vorliegenden Notiz werden zuerst Kennziffern des Wechselkurses, die für die lognormale Verteilung

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3.

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3. Gliederung Lokalitätsprinzip Nebenläufigkeit und Fairness Seminar Model lchecking WS 08/09 Interleaving Halbordnung. Fairness Jan Engelsberg engelsbe@informatik.hu berlin.de Was ist Nebenläufigkeit? In

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

Mit welcher Strategie hast Du am Glücksrad Erfolg?

Mit welcher Strategie hast Du am Glücksrad Erfolg? Mit welcher Strategie hast Du am Glücksrad Erfolg? Kinderuni, Workshop an der TU Wien 24. Juli 2009, 10:30 11:30 Uhr Univ.-Prof. Dr. Uwe Schmock Forschungsgruppe Finanz- und Versicherungsmathematik Institut

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 4. Zufallsgrösse X Literatur Kapitel 4 * Storrer: Kapitel (37.2)-(37.8), (38.2)-(38.3), (38.5), (40.2)-(40.5) * Stahel: Kapitel 4, 5 und 6 (ohne

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Welche Style-Indices treiben die Fondsperformance?

Welche Style-Indices treiben die Fondsperformance? Welche Style-Indices treiben die Fondsperformance? Ergebnisse für das Stoxx-Universum Elisabeth Stocker und Niklas Wagner Universität Passau Rüdiger Sälzle FondsConsult Research AG FondsConsult Investmentkonferenz

Mehr

Physik und Chemie der Minerale

Physik und Chemie der Minerale Physik und Chemie der Minerale Phasendiagramme Mehrere Komponenten Segregation, konstitutionelle Unterkühlung Keimbildung Kinetik des Kristallwachstums Kristallzüchtung Literaturauswahl D.T.J Hurle (Hrsg.):

Mehr

Binomialmodell für Optionen

Binomialmodell für Optionen Jörg Lemm Vorlesung Finanzmathematik, WS 06/07 Universität Münster 16.11.2006, 23.11.2006, 30.11.2006 Definition Optionen Der Käufer (Geschäftspartner in der Long-Position) einer (europäischen) Kaufoption

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin

Kapitel 1 Einführung. Angewandte Ökonometrie WS 2012/13. Nikolaus Hautsch Humboldt-Universität zu Berlin Kapitel 1 Einführung Angewandte Ökonometrie WS 2012/13 Nikolaus Hautsch Humboldt-Universität zu Berlin 1. Allgemeine Informationen 2 17 1. Allgemeine Informationen Vorlesung: Mo 12-14, SPA1, 23 Vorlesung

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Dr. C.J. Luchsinger 2 Zufallsgrössen Literatur Kapitel 2 * Statistik in Cartoons: Kapitel 4 * Krengel: 3.1 und 3.2 in 3 und (Honours Program) 10 sowie 11.1, 11.2 und 11.3 in

Mehr

von Dirk Jandura 615 Seiten, Uhlenbruch Verlag, 2000 EUR 59,- inkl. MwSt. und Versand ISBN 3-933207-10-X

von Dirk Jandura 615 Seiten, Uhlenbruch Verlag, 2000 EUR 59,- inkl. MwSt. und Versand ISBN 3-933207-10-X Reihe Financial Research, Band 2: INTEGRATION INTERNATIONALER FINANZMÄRKTE Definition, Messkonzepte, empirische Analyse von Dirk Jandura 615 Seiten, Uhlenbruch Verlag, 2000 EUR 59,- inkl. MwSt. und Versand

Mehr

PR Statistische Genetik und Bioinformatik

PR Statistische Genetik und Bioinformatik PR Statistische Genetik und Bioinformatik Johanna Bertl Institut für Statistik und OR, Universität Wien Oskar-Morgenstern-Platz 1/6.344, 1090 Wien, Tel.: 01-4277-38617 johanna.bertl@univie.ac.at, homepage.univie.ac.at/johanna.bertl

Mehr

Informationsprivatheit versus Gesundheits-Apps: Aktueller Status der mobile-health Apps bei Google und Apple

Informationsprivatheit versus Gesundheits-Apps: Aktueller Status der mobile-health Apps bei Google und Apple Informationsprivatheit versus Gesundheits-Apps: Aktueller Status der mobile-health Apps bei Google und Apple Herbsttagung von KVB und BTA: World Wide Med vernetzte Praxen 21. Oktober 2015, Sebastian Dünnebeil

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Trennende Markov Ketten

Trennende Markov Ketten Trennende Markov Ketten (in Zusammenarbeit mit A. Martinsson) Timo Hirscher Chalmers Tekniska Högskola Seminarvortrag KIT 8. Mai 206 Übersicht Der Seminarvortrag ist wie folgt gegliedert: Einleitung Denitionen

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Sylvie Roelly Lehrstuhl für Wahrscheinlichkeitstheorie, Institut für Mathematik der Universität Potsdam Lehrertag, Postdam,

Mehr

Corporate Finance WS. Gliederung

Corporate Finance WS. Gliederung Corporate Finance Gliederung 1 Wiederholung zum Thema Renditeberechnungen 2 Wiederholung betriebswirtschaftlicher Grundlagen 3 Wiederholung statistischer Grundlagen 4 Grundlegende statistische Konzepte

Mehr

Informationsveranstaltung Master Wiwi. Major: Finance. Prof. Dr. Marcel Prokopczuk, CFA Institut für Finanzmarkttheorie

Informationsveranstaltung Master Wiwi. Major: Finance. Prof. Dr. Marcel Prokopczuk, CFA Institut für Finanzmarkttheorie Informationsveranstaltung Master Wiwi Major: Finance Prof. Dr. Marcel Prokopczuk, CFA Institut für Finanzmarkttheorie Beteiligte Institute am Major Finance Institut für Banken und Finanzierung Institut

Mehr

Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen. Vorlesung an der TU München Wintersemester 2012/13

Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen. Vorlesung an der TU München Wintersemester 2012/13 Hydrodynamik in der Astrophysik: Grundlagen, numerische Verfahren und Anwendungen Vorlesung an der TU München Wintersemester 2012/13 PD Dr. Ewald Müller Max-Planck-Institut für Astrophysik Karl-Schwarzschild-Straße

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr