Kapitel 6. Lineare Algebra in R. Vorlesung Programmieren in statistischer Software: R Sommersemester 2009

Größe: px
Ab Seite anzeigen:

Download "Kapitel 6. Lineare Algebra in R. Vorlesung Programmieren in statistischer Software: R Sommersemester 2009"

Transkript

1 Vorlesung Programmieren in statistischer Software: R Sommersemester 2009 Kapitel 6,,,, weitere nützliche Funktionen Christian Foliengestaltung von Martin Dörr

2 Inhalt dieses Abschnitts 1 in R 2 3 Beispiel zur 4 5 Funktionen Beispiele

3 Voraussetzung: die Matrix A ist reell, symmetrisch und positiv definit In der Statistik arbeiten wir häufig mit solchen Matrizen, z.b. im linearen Modell mit der Produktsummenmatrix X X, wenn X die Designmatrix der Kovariablen ist. Die erlaubt die Berechnung einer Matrix-Wurzel. in R Beispiel zur

4 : siehe Jede symmetrische positiv definite Matrix A R n n (positiv definit bedeutet, dass x Ax > 0 x R n 1, x 0) kann eindeutig in der Form A = LDL geschrieben werden. Dabei ist L eine untere Dreiecksmatrix (und L eine obere Dreiecksmatrix), deren Diagonalelemente alle gleich 1 sind und D eine Diagonalmatrix mit positiven Einträgen. Mit der Matrix-"Wurzel"von D und dem Matrix-Faktor G, definiert durch und D = D 1/2 D 1/2 G = LD 1/2, wird die Cholesky-Zerlegung äquivalent auch formuliert als A = GG. Liegt eine Berechnung der Cholesky-Zerlegung vor, so lässt sich das Gleichungssystem Ax = b effizient durch Vorwärts- und Rückwärtseinsetzen lösen: Durch Vorwärtseinsetzen Lösung des linearen Gleichungssystems Gy = b Durch anschließendes Rückwärtseinsetzen Lösung des linearen Gleichungssystems G x = y. Es werden nur etwa halbsoviele Operationen gebraucht wie beim Gauss-Jordan-Verfahren (LR-Zerlegung). in R Beispiel zur

5 in R In R die Funktion chol(a) die obere Dreiecksmatrix R zurück, d.h. es gilt R R = A Beispiel: A <- matrix(nrow=2, ncol=2, data=c(1,0.5,0.5,1) ) R <- chol(a) print(r) [1,] [2,] und B <- t(r) %*% R print(b) wieder die Originalmatrix A: [1,] [2,] in R Beispiel zur

6 In R wird die Funktion chol2inv zur Verfügung gestellt, die eine bereits mit chol() zerlegte Matrix für die Inversion verwendet. Beispiel: Ainv <- chol2inv(r) print(ainv) print(a %*% Ainv) print(ainv %*% A) > print(ainv) [1,] [2,] > print(a %*% Ainv) [1,] e+00 0 [2,] e-16 1 > print(ainv %*% A) [1,] e-16 [2,] e+00 Man sieht, dass hier schon die Numerik am Computer zuschlägt, d.h. das Produkt aus A und A 1 ergibt nicht exakt die Einheitsmatrix. in R Beispiel zur

7 mittels Ist X ein p 1 (Spalten-)Vektor von unabhängigen und standard Zufallsvariablen, d.h. cov(x) = I p mit I p Einheitsmatrix der Dimension p, und C eine p p Kovarianzmatrix mit C = R R (um die R-Version zu verwenden), dann gilt für den Vektor Y = R X: er ist p-dimensional multivariat normalverteilt mit Kovarianzmatrix Alternativ: cov(y) = cov(r X) = R cov(x)r = R R = C. cov(y ) = cov(x R) = R cov(x )R = R R = C Ist X eine n p Matrix von unabhängigen und standard Zufallsvariablen, so gilt: Y = XR mit Y Matrix mit n Zeilen und p Spalten, wobei jede Zeile einen Vektor aus einer p-dimensionalen multivariaten Normalverteilung mit Kovarianzmatrix C enthält. in R Beispiel zur

8 Beispiel zur set.seed(1789) C <- matrix(nrow=2, ncol=2, data=c(2,1,1,2) ) R <- chol(c) n < p <- 2 X <- matrix(nrow=n, ncol=p, data=rnorm(n*p) ) Y <- X %*% R print(cov(x)) print( cov(y) ) > print(cov(x)) [1,] [2,] > print( cov(y) ) [1,] [2,] in R Beispiel zur

9 Implementation im R Paket mvtnorm Funktion: rmvnorm(n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)), method="chol") Andere Zerlegungen (eigen und svd) stehen ebenfalls zur Verfügung Für Simulationen benötigt man oft korrelierte Variablen. Verwendet man für das Argument sigma direkt eine Korrelationsmatrix, so erhält man korrelierte Variablen mit diesen paarweisen Korrelationen. Achtung: es ist, bei größeren Dimensionen, oft sinnvoll zu überprüfen, ob man wirklich eine korrekte Korrelationsmatrix gewählt hat (die Korrelationen können nicht beliebig sein!) Beispiel: # Äqui-Korrelationsmatrix set.seed(1789) C <- matrix(nrow=5, ncol=5, data=0.5) diag(c) <- 1 X <- rmvnorm(n=1000, sigma=c ) print(cor(x)) > print(cor(x)) [,3] [,4] [,5] [1,] [2,] [3,] [4,] [5,] in R Beispiel zur

10 der Voraussetzung: eine beliebige Matrix A R n p (kann sogar Matrix komplexer Zahlen sein, wir beschränken uns auf reelle Zahlen) : jede Matrix A mit Rang r läßt sich zerlegen als A = UDV Dabei gilt: U (n r) und V (r p) sind orthogonale Matrizen, d.h. U U = I r, V V = I r. D (r r) ist eine Matrix mit den Singulärwerten auf der Diagonalen. In der Standardeinstellung arbeitet R mit r = min(n, p). in R Beispiel zur

11 # SVD A <- matrix(nrow=2, ncol=3, data=c(1,2,3,4,5,6)) print(a) svda <- svd(a) print(svda) print(svda$u %*% diag(svda$d) %*% t(svda$v) ) > # SVD > A <- matrix(nrow=2, ncol=3, data=c(1,2,3,4,5,6)) > print(a) [,3] [1,] [2,] > svda <- svd(a) > print(svda) $d [1] $u [1,] [2,] $v [1,] [2,] [3,] > print(svda$u %*% diag(svda$d) %*% t(svda$v) ) [,3] [1,] [2,] in R Beispiel zur

12 # SVD A <- matrix(nrow=3, ncol=2, data=c(1,2,3,4,5,6)) print(a) svda <- svd(a) print(svda) print(svda$u %*% diag(svda$d) %*% t(svda$v) ) > # SVD > A <- matrix(nrow=3, ncol=2, data=c(1,2,3,4,5,6)) > print(a) [1,] 1 4 [2,] 2 5 [3,] 3 6 > svda <- svd(a) > print(svda) $d [1] $u [1,] [2,] [3,] $v [1,] [2,] > print(svda$u %*% diag(svda$d) %*% t(svda$v) ) [1,] 1 4 [2,] 2 5 [3,] 3 6 in R Beispiel zur

13 : Rangabfall # SVD: A mit Rang kleiner min(n,p) A <- matrix(nrow=3, ncol=2, data=c(1,2,3,2,4,6)) print(a) svda <- svd(a) print(svda) print(svda$u %*% diag(svda$d) %*% t(svda$v) ) > # SVD: A mit Rang kleiner min(n,p) > A <- matrix(nrow=3, ncol=2, data=c(1,2,3,2,4,6)) > print(a) [1,] 1 2 [2,] 2 4 [3,] 3 6 > svda <- svd(a) > print(svda) $d [1] e e-16 $u [1,] [2,] [3,] $v [1,] [2,] > print(svda$u %*% diag(svda$d) %*% t(svda$v) ) [1,] 1 2 [2,] 2 4 [3,] 3 6 in R Beispiel zur

14 : Rangabfall, die Zweite A <- matrix(nrow=3, ncol=2, data=c(1,2,3,2,4,6)) print(a) svda <- svd(a, nu=1, nv=1) print(svda) print(svda$u %*% diag(svda$d[1], nrow=1) %*% t(svda$v) ) > # SVD: A mit Rang kleiner min(n,p) > A <- matrix(nrow=3, ncol=2, data=c(1,2,3,2,4,6)) > print(a) [1,] 1 2 [2,] 2 4 [3,] 3 6 > svda <- svd(a, nu=1, nv=1) > print(svda) $d [1] e e-16 $u [,1] [1,] [2,] [3,] $v [,1] [1,] [2,] > print(svda$u %*% diag(svda$d[1], nrow=1) %*% t(svda$v) ) [1,] 1 2 [2,] 2 4 [3,] 3 6 in R Beispiel zur

15 Eigenvektoren Ausgangspunkt ist eine quadratische Matrix A R p p Die Eigenwerte λ i und Eigenvektoren γ i erfüllen die Bedingung Aγ i = λ i γ i, Die Eigenwerte können komplexe Zahlen sein i = 1,..., p In der Statistik interessieren wir uns speziell für die sogenannte von symmetrischen und quadratischen Matrizen in R Beispiel zur

16 Ausgangspunkt ist eine symmetrische, quadratische Matrix A R p p Die Eigenwerte einer symmetrischen Matrix sind reell Jede symmetrische Matrix A R p p kann dargestellt werden als A = ΓΛΓ, Λ: Diagonalmatrix der Eigenwerte Γ: orthogonale Matrix der standardisierten Eigenvektoren (z.b. Γ Γ = I) Folgerungen u.a.: Γ AΓ = Λ Ist A positiv definit, sind alle Eigenwerte größer 0 Ist A positiv (semi-)definit, sind alle Eigenwerte größer oder gleich 0 Rang von A entspricht der Anzahl Eigenwerte, die ungleich 0 sind Es lassen sich Potenzen bilden, wenn alle Eigenwerte positiv sind. Z.B. gilt A 1/2 = ΓΛ 1/2 Γ Damit läßt sich also auch eine Matrixwurzel definieren. Statistische Anwendung z.b. in der Hauptkomponentenanalyse (PCA), Dimensionsreduktion in R Beispiel zur

17 Beispiel: einer Korrelationsmatrix # einer Korrelationsmatrix C <- matrix(nrow=3, ncol=3, data=0.5) C[1,2] =C[2,1] <- 0.7 C[2,3] = C[3,2] <- 0.9 diag(c) <- 1 print(c) [,3] [1,] [2,] [3,] Eigenwertzerlegung: sz <- eigen(c) # Matrix der Eigenvektoren Gamma <- sz$vectors # Diagonalmatrix der Eigenwerte Lambda <- diag( sz$values ) # Test, ob sich wieder C ergibt test <- Gamma %*% Lambda %*% t(gamma) print(test) > print(test) [,3] [1,] [2,] [3,] in R Beispiel zur

18 einer Korrelationsmatrix: Fortsetzung # Matrixwurzel von C wurzelc <- Gamma %*% Lambda^{0.5} %*% t(gamma) print(wurzelc) [,3] [1,] [2,] [3,] > print(wurzelc %*% wurzelc) [,3] [1,] [2,] [3,] in R Beispiel zur

19 Test, ob eine Korrelationsmatrix vorliegt C <- matrix(nrow=3, ncol=3, data=0.5) C[1,2] =C[2,1] <- 0.7 C[2,3] = C[3,2] < diag(c) <- 1 print(c) sz <- eigen(c) print(sz) > print(sz) $values [1] $vectors [,3] [1,] [2,] [3,] Damit ist C keine Korrelationsmatrix (ein Eigenwert ist kleiner 0)! in R Beispiel zur

20 Nur exemplarisch: (Überbestimmtes) Geichungssystem lautet x 1 + x 2 + x 3 = 6 2x 1 + x 2 x 3 = 1 4x 1 x 2 + 2x 3 = 8 x 1 + x 2 + 2x 3 = 7 Allgemein: Ax = b von A (Q orthogonal, d.h. Q Q = I, R obere Dreiecksmatrix) : QRx = b bzw. Rx = Q b Lösen dieses Gleichungssystems durch Rückwärtseinsetzen. in R Beispiel zur

21 Gleichungssysteme in R # (Überbestimmtes) Gleichungssystem lösen A <- matrix(nrow=4, ncol=3, data=c(1,2,4,-1, 1,1,-1,1, 1,-1,2,2) ) b <- matrix(nrow=4, ncol=1, data=c(6,1,8,7) ) # Achtung: solve geht nicht, # denn es erwartet ein quadratisches A loesung <- qr.solve(a,b) print(loesung) > print(loesung) [,1] [1,] 1 [2,] 2 [3,] 3 ansehen: qra <- qr(a) print(qr.q(qra)) print(qr.r(qra)) > print(qr.q(qra)) [,3] [1,] [2,] [3,] [4,] > print(qr.r(qra)) [,3] [1,] [2,] [3,] in R Beispiel zur

22 Gleichungssysteme: Beispiel 2 (Überbestimmtes) Geichungssystem lautet und hat keine Lösung! x 1 + x 2 + x 3 = 6 2x 1 + x 2 x 3 = 0 4x 1 x 2 + 2x 3 = 8 x 1 + x 2 + 2x 3 = 7 in R Beispiel zur

23 Gleichungssysteme in R # (Überbestimmtes) Gleichungssystem ohne Lösung A <- matrix(nrow=4, ncol=3, data=c(1,2,4,-1, 1,1,-1,1, 1,-1,2,2) ) b <- matrix(nrow=4, ncol=1, data=c(6,0,8,7) ) # Achtung: solve geht nicht, # denn es erwartet ein quadratisches A loesung <- qr.solve(a,b) print(loesung) > print(loesung) [,1] [1,] [2,] [3,] Dies entspricht der KQ-Lösung: kq <- lm( b ~ 0 + A ) print(kq) > print(kq) Call: lm(formula = b ~ 0 + A) Coefficients: A1 A2 A in R Beispiel zur

24 Funktionen Kondition einer Matrix: Quotient aus größtem und kleinstem Eigenwert Äussere Produkte von Vektoren Kronecker Produkt in R Beispiel zur

25 Funktionen, Beispiele Matrix mit schlechter Kondition # kappa X <- matrix(nrow=3, ncol=3, data=0.9999) diag(x)<- 1 print(x) cond <- kappa(x, exact=true) print(cond) ev <- eigen(x)$values print(ev[1] / ev[3]) > print(x) [,3] [1,] [2,] [3,] > cond <- kappa(x, exact=true) > print(cond) [1] > ev <- eigen(x)$values > print(ev[1] / ev[3]) [1] in R Beispiel zur

26 Funktionen, Beispiele Äusseres Produkt zweier Vektoren x und y (im Beispiel: y = x) x <- 1:5 print(outer(x,x)) print(outer(x,x,fun="+")) > print(outer(x,x)) [,3] [,4] [,5] [1,] [2,] [3,] [4,] [5,] > print(outer(x,x,fun="+")) [,3] [,4] [,5] [1,] [2,] [3,] [4,] [5,] in R Beispiel zur

27 Funktionen, Beispiele Kronecker Produkt zweier Matrizen (hier: Erzeugung einer blockdiagonalen Matrix) A <- matrix(nrow=2,ncol=2, data=c(1,2,3,4), byrow=t) B <- diag(1,3) print(a) print(b) print( kronecker(b,a) ) > print(a) [1,] 1 2 [2,] 3 4 > print(b) [,3] [1,] [2,] [3,] > print( kronecker(b,a) ) [,3] [,4] [,5] [,6] [1,] [2,] [3,] [4,] [5,] [6,] in R Beispiel zur

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung 4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya Matrizen: Grundbegriffe -E Ma Lubov Vassilevskaya Lineares Gleichungssystem Abb. : Der Schnittpunkt P der beiden Geraden ist die graphische Lösung des linearen Gleichungssystem g : y = x, g 2 : y = 3 x,

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

Lineare Algebra mit dem Statistikprogramm R

Lineare Algebra mit dem Statistikprogramm R SEITE 1 Lineare Algebra mit dem Statistikprogramm R 1. Verwendung von Variablen Variablen werden in R definiert, indem man einem Variablennamen einen Wert zuweist. Bei Variablennamen wird zwischen Groß

Mehr

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011 Choleskyzerlegung Julia Hoeboer 13 Mai 2011 Inhalt: LDM T Zerlegung LDL T Zerlegung Cholesky Zerlegung Person Berechnung Gaxpy Algorithmus Effektivität LDM T Zerlegung LDM T Zerlegung lässt sich aus LR

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Lineare Algebra, Prüfung mit Lösungen

Lineare Algebra, Prüfung mit Lösungen Lineare Algebra, Prüfung mit Lösungen M. Gruber.Januar, 8:{:, R. (), R. (), R. (); Codes IB8, IC8, IF8. . ( Punkte) Gegeben sei das Gleichungssystem Ax = b mit A = a) Geben Sie eine Basis des Nullraums

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Singulärwert-Zerlegung

Singulärwert-Zerlegung Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ. Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y

Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ. Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ Z j = a 1j Y 1 + a 2j Y 2 +... + a mj Y m = a t j Y a t j = (a 1j, a 2j,..., a mj ) Z 1, Z 2,...,Z m unkorreliert Varianzen

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Singulärwertzerlegung

Singulärwertzerlegung LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: 13.12.2010 HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Numerik I. Aufgaben und Lösungen

Numerik I. Aufgaben und Lösungen Universität zu Köln SS 2009 Mathematisches Institut Prof Dr C Tischendorf Dr M Selva, mselva@mathuni-koelnde Numerik I Musterlösung Übungsblatt 4, Kondition (5 Punkte) Aufgaben Lösungen (4 Punkte) Zeigen

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Universität Hamburg SS 2005 Proseminar Numerik Leitung: Prof. W. Hofmann Vortrag von Markus Stürzekarn zum Thema: Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Gegeben sei ein lineares

Mehr

Anwendungen des Eigenwertproblems

Anwendungen des Eigenwertproblems Anwendungen des Eigenwertproblems Lineare Differentialgleichungssysteme 1. Ordnung Lineare Differentialgleichungssysteme 2. Ordnung Verhalten der Lösung von linearen autonomen DGLS Hauptachsentransformation

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2 2

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2018 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. In dieser Aufgabe wollen wir die Parameter einer gewissen Modellfunktion aus ein paar gemessenen Werten bestimmen. Das Modell

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

9. Vorlesung Lineare Algebra, SVD und LSI

9. Vorlesung Lineare Algebra, SVD und LSI 9. Vorlesung Lineare Algebra, SVD und LSI Grundlagen lineare Algebra Vektornorm, Matrixnorm Eigenvektoren und Werte Lineare Unabhängigkeit, Orthogonale Matrizen SVD, Singulärwerte und Matrixzerlegung LSI:Latent

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

Inverse der Verwandtschaftsmatrix

Inverse der Verwandtschaftsmatrix Qualitas AG Inverse der Verwandtschaftsmatrix Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 November 5, 2015 2 / 26 Inverse einer Matrix Definition Gegeben eine quadratische Matrix A

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof Dr Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Determinanten: Vorüberlegung Permutationen und Inversionen

Mehr