Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch,

Größe: px
Ab Seite anzeigen:

Download "Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05"

Transkript

1 Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer Bitte kreuzen Sie in der zweiten Zeile die bearbeiteten Aufgaben an! Aufgabe * Σ bearbeitet Punkte Die Klausur besteht aus 9 Aufgaben und einer Bonusaufgabe. Jede Aufgabe wird mit maximal 10 Punkten bewertet. Die Bearbeitungszeit beträgt 180 Minuten = 3 Stunden. Es sind keinerlei Hilfsmittel zugelassen. Schreiben Sie auf jedes Lösungsblatt Ihren Namen und die Nummer der bearbeiteten Aufgabe. Begründen Sie alle Argumentationsschritte und geben Sie bei Rechnungen Zwischenschritte mit an, die den Rechenweg erkennen lassen. Unbegründete Ergebnisse führen zu Nichtwertung oder Punktabzug.

2 Aufgabe 1 1. Bestimmen Sie explizit alle achten Einheitswurzeln in C. (Das Ergebnis sollte also keine trigonometrischen Funktionen enthalten.). Wählen Sie eine achte Einheitswurzel ρ der Ordnung acht. Berechnen Sie nun Lösung 1 ρ + ρ + ρ 4 + ρ Die achten Einheitswurzeln bilden ein regelmäßiges Achteck auf dem Einheitskreis in der Gaußschen Ebene. Als vierte und insbesondere also auch achte Einheitswurzeln sind 1, i, 1 und i bekannt. Die übrigen vier achten Einheitswurzeln sind die Wurzeln von ±i und liegen auf den Schnittpunkten der beiden Winkelhalbierenden des Achsenkreuzes mit dem Einheitskreis. Elementargeometrisch (Pythagoras) oder trigonometrisch (sin π = cos π = ) bestimmt man diese Punkte zu 1 + i, 1 + i, 1 i und 1 i.. Diese vier achten Einheitswurzeln haben alle die Ordnung acht. Ich wähle ρ := 1+i. Dann gilt ρ + ρ + ρ 4 + ρ 7 = 1 + i + i + ( 1) + 1 i = 1 + i = 1 + i Die anderen Lösungen sind je nach Wahl von ρ (in der obigen Reihenfolge) 1 i, 1 + i bzw. 1 i.

3 Aufgabe Wir betrachten die beiden Polynome f = X 4 + 3X 8, g = X 4 X X 5 4 X Finden Sie alle komplexen Nullstellen von f und g. Wie sehen die Zerlegungen von f und g in komplexe Linearfaktoren aus?. Zerlegen Sie f und g als Elemente von R[X] in irreduzible Faktoren. Hinweise: Berechnen Sie g(1). Für x 3 = px + q lautet die Cardanische Formel: x = u + p 3u, u = q (q ( p ) 3. 3 ) + 3 Lösung 1. Das Polynom f führt auf die biquadratische Gleichung x 4 + 3x 8 = 0 (x + 3 ) = x 4 + 3x = = 11 4 x + 3 = ±11 x = 4 oder x = 7 x = ± oder x = ± 7i Da f ein normiertes Polynom vom Grad vier mit diesen Nullstellen ist, muss also gelten: f = (X )(X + )(X 7i)(X + 7i). Es ist g(1) = 0, d.h. g hat (X 1) als Linearfaktor. Polynomdivision liefert Wir müssen also nun die Gleichung g : (X 1) = X X 7. X X 7 = 0 oder X3 = 9 4 X + 7 lösen. D.h. wir haben p := 9 und q := 7. In die Cardanische Formel eingesetzt 4

4 ergibt sich q (q ( p u = 3 ) = = 3 = = 3 = 3. Also erhalten wir 7 8 ) 3 3 = (7 ) 4 x = u + p 3u = = =. Polynomdivision liefert ( X X 7 ) : (X ) = X + X + 7. ( ) Zu dem quadratischen Polynom X + X + 7 berechnen sich die Nullstellen als 5 X = 1 ± i. Da g ein normiertes Polynom vom Grad vier mit den berechneten Nullstellen ist, folgt ( ) ( ) 5 5 g = (X 1)(X ) X + 1 i X + 1 i.. Um die Zerlegung von f und g in irreduzible Faktoren über den reellen Zahlen zu bekommen, müssen wir in den obigen Darstellungen die Linearfaktoren mit zueinander konjugierten Nullstellen zusammenfassen. Eine Rechnung ist nicht nötig, da die quadratischen Polynome in den Rechnungen schon aufgetaucht sind. Das Ergebnis lautet dann f = (X )(X + )(X + 7), ( g = (X 1)(X ) X + X + 7 ).

5 Aufgabe 3 1. Welche Reste modulo 3 kann das Quadrat einer ganzen Zahl n annehmen? Wie hängt dieser Rest von n ab?. Zeigen Sie, dass die Summe der Quadrate dreier aufeinanderfolgender ganzer Zahlen nie selbst eine Quadratzahl ist. Lösung 3 1. Es gilt n 0 mod 3 n 0 mod 3, n 1 mod 3 n 1 mod 3, n mod 3 n 4 1 mod 3. Eine Quadratzahl n hat also genau dann den Rest 0 modulo 3, wenn n durch 3 teilbar ist. Sonst hat n den Rest 1 modulo 3.. Von drei aufeinanderfolgenden ganzen Zahlen ist genau eine durch drei teilbar. Von ihren Quadraten hat also eines den Rest 0 und zwei den Rest 1 modulo 3. Ihre Summe hat dann den Rest modulo 3, was bei einer Quadratzahl nach 1. nicht vorkommen kann. Dies beweist die Aussage. Eine eher rechnerische Variante lautet: Nennen wir die erste der drei Zahlen n, dann beträgt die Summe der drei Quadrate n + (n + 1) + (n + ) = 3n + 6n + 5 = 3(n + n + 1) + mod 3. Dann geht das Argument genauso weiter wie oben.

6 Aufgabe 4 Bestimmen Sie die Ordnungen aller Elemente in F 13. Welche Elemente sind Erzeuger, welche sind Quadrate in F 13? Lösung 4 Die Gruppe F 13 ist zyklisch und besitzt 1 Elemente. Sie ist also isomorph zu Z/1. Als Erstes müssen wir einen Erzeuger finden. Probieren wir das Element : 1 =, 5 = 6, 9 = 18 = 5, = 4, 6 = 1, 10 = 10, 3 = 8, 7 = 4 = 11, 11 = 0 = 7, 4 = 16 = 3, 8 = = 9, 1 = 14 = 1. Also ist ein Erzeuger von F 13. Das Element 1 ist als neutrales Element das einzige der Ordnung 1. Überhaupt können nur die Teiler von 1, also 1,, 3, 4,6 und 1 als Ordnungen auftreten. Wir suchen nun die Ordnung n eines beliebigen Elements a F 13. a ist von der Form r, 0 r 11. n ist also die kleinste natürliche Zahl n mit 1 = a n = ( r ) n = rn. Da die Ordnung 1 hat, muss rn durch 1 teilbar sein. Wegen der Minimalität von n muss rn dann das kleinste gemeinsame Vielfache von r und 1 sein. Also haben wir: kgv(r, 1) n = r 1r = ggt(1, r)r 1 = ggt(1, r) Damit lassen sich nun alle Ordnungen einfach ausrechnen:, 6, 7 und 11 haben Ordnung 1. Dies sind die Erzeuger von F 13 4 und 10 haben Ordnung 6. 5 und 8 haben Ordnung 4. 3 und 9 haben Ordnung 3. 1 hat Ordnung und 1 hat natürlich Ordnung 1. Alle geraden Potenzen von sind Quadrate in F 13. Dies sind 1, 4, 3, 1, 9 und 10. Da jedes dieser sechs Elemente zwei Quadratwurzeln besitzt (Das Negative einer Wurzel ist auch eine Wurzel.), F 13 aber nur 1 Elemente besitzt, kann es keine weiteren Quadrate als diese geben. Anstelle dieses Argumentes könnte man auch einfach alle zwölf Elemente von F 13 quadrieren und sehen, dass nur diese sechs Quadrate herauskommen.

7 Aufgabe 5 Finden Sie alle Lösungen der simultanen Kongruenz x 3 mod 7, 4x 3 mod 11, 3x 1 mod 4. Lösung 5 Multipizieren wir die drei Äquivalenzen mit den jeweiligen Einheiten 4, 3 bzw. 3, so erhalten wir das äquivalente System x 5 mod 7, x 9 mod 11, x 3 mod 4. Die drei Moduln 7, 11 und 4 sind paarweise teilerfremd. Wir können also den Algorithmus aus der Vorlesung anwenden. Mit den Bezeichnungen aus der Vorlesung gilt m 1 = 7, a 1 = 5, m = 11, a = 9, m 3 = 4, a 3 = 3. Es ist M := m 1 m m 3 = 308 und es gilt mit M i := M/m i M 1 = 44 mod 7, Inverses modulo 7: b 1 := 4, M = 8 6 mod 11, Inverses modulo 11: b :=, M 3 = 77 1 mod 7, Inverses modulo 4: b 1 := 1. Dann gilt mit E 1 := M i b i E1 = 176, E = 56, E3 = 77. Eine Lösung ist dann x = i a i E i = = = mod 308. Alle Lösungen der simultanen Kongruenz sind also die ganzen Zahlen x mit x 75 mod 308 gegeben. Eine kurze Probe, dass 75 wirklich eine Lösung ist, ist unbedingt empfehlenswert.

8 Aufgabe 6 1. Was sagt der chinesische Restsatz über den Ring Z/111Z aus?. Bestimmen Sie ϕ(111). 3. Berechnen Sie mod Was ist das Inverse von [19] in E(Z/111Z)? Lösung 6 1. Die Zahl 111 hat die Primfaktorzerlegung 111 = (Die Teilbarkeit durch 3 erhält man nach der Quersummenregel oder durch Ausprobieren!). Die Primzahlen 3 und 37 sind teilerfremd. Der Chinesische Restsatz besagt nun, dass der natürliche Ringhomomorphismus ein Ringisomorphismus ist. Z/111 Z/3 Z/37, n (n, n). Es gilt ϕ(111) = ϕ(3)ϕ(37) = #E(Z/3)#E(Z/37) = 36 = 7. Denn für Primzahlen p ist Z/p ein Körper und somit jedes von Null verschiedene Element eine Einheit. 3. Es gilt mach dem Satz von Euler = = = 3 mod Der Euklidische Algorithmus für 111 und 19 ergibt 111 : 19 = 5, Rest 16, 16 = , 19 : 16 = 1, Rest 3, 3 = = , 16 : 3 = 5, Rest 1, 1 = = Also ist [-35] das gesuchte Inverse zu [19] ind E(Z/111).

9 Aufgabe 7 Wir betrachten die symmetrische Gruppe S Geben Sie Elemente der Ordnungen 1, 15 und 30 an.. Ist die Menge eine Untergruppe? H := {σ S 10 σ(1) = 1} 3. Zeigen Sie, dass (1, )H(1, ) 1 = {σ S 10 σ() = }. 4. Ist H ein Normalteiler in S 10? 5. Was ist der Index [S 10 : H] von H in S 10? Lösung 7 1. Die folgenden Elemente haben die gesuchten Ordnungen, da diese Zahlen, das kgv der Längen der elementfremden Zykel sind: (1,, 3)(4, 5, 6, 7) hat Ordnung 1, (1,, 3)(4, 5, 6, 7, 8) hat Ordnung 15, (1, )(3, 4, 5)(6, 7, 8, 9, 10) hat Ordnung 30.. Es ist klar, dass das neutrale Element e H ist. Seien σ, τ H, d.h. σ(1) = 1 = τ(1), dann gilt (σ τ)(1) = σ(τ(1)) = σ(1) = 1, σ 1 (1) = σ 1 (σ(1)) = /σ 1 σ)(1) = e(1) = 1. Also sind auch σ τ und σ 1 Elemente von H. Damit ist H eine Untergruppe. 3. Sei H := {σ S 10 σ() = }. (1, )H(1, ) 1 H Sei σ H. Dann gilt (1, )σ(1, ) 1 () = (1, )σ(1, )() = (1, )σ(1) = (1, )(1) =. Also ist (1, )σ(1, ) 1 H. (1, )H(1, ) 1 H Sei τ H, d.h. τ() =. Dann gilt für Die Permutation σ := (1, )τ(1, ): σ(1) = (1, )τ(1, )(1) = (1, )τ() = (1, )() = 1, d.h. σ H. Also ist das Element (1, )σ(1, ) 1 (1, )H(1, ) 1. Nach der Definition von σ gilt aber (1, )σ(1, ) 1 = (1, )(1, )τ(1, )(1, ) = τ. Also ist τ (1, )H(1, ) 1, q.e.d.

10 4. H ist kein Normalteiler in S 10, da H (1, )H(1, ) 1. Denn der Zykel (, 3) liegt in H, aber nicht in in der konjugierten Untergruppe (1, )H(1, ) Die symmetrische Gruppe S 10 hat 10! Elemente. H hat genau 9! Elemente, da jedes Element von H eine Permutation der Zahlen von bis 10 ist, während die 1 festgehalten wird. Nach dem Satz von Lagrange gilt für den Index [S 10 : H] die Gleichung S 10 = [S 10 : H] H. Daraus folgt [S 10 : H] = S 10 H = 10! 9! = 10.

11 Aufgabe 8 Sei G eine beliebige Gruppe, h G ein Element. 1. Zeigen Sie, dass die Konjugationsabbildung ein Gruppenhomomorphismus ist. ϕ : G G, g hgh 1. Ist ϕ ein Isomorphismus? Falls ja, geben Sie den inversen Homomorphismus direkt an. Lösung 8 1. Seien g, g G. Dann gilt ϕ(g)ϕ(g ) = hgh 1 hg h 1 = hgeg h 1 = hgg h 1 = ϕ(gg ) Also ist ϕ ein Gruppenhomomorphismus.. Wir betrachten die Konjugationsabbildung zu h 1 Dann gilt für alle g G ψ : G G, g h 1 gh ψ ϕ(g) = h 1 hgh 1 h = g und ϕ ψ(g) = hh 1 ghh 1 = g Also sind ψ ϕ und ϕ ψ jeweils die Identität auf G. ψ ist also Invers zu ϕ. Insbesondere ist ϕ ein Isomorphismus.

12 Aufgabe 9 1. Warum ist der Ring Q[X]/(X 3 ) ein Körper?. Führen Sie den Euklidischen Algorithmus mit den Polynomen X 3 und X X + 1 durch und bestimmen Sie die Bézoutkoeffizienten. 3. Bestimmen sie das multiplikative Inverse der Restklasse [X X +1] im Körper Q[X]/(X 3 ). Lösung 9 1. Das Polynom X 3 besitzt keine rationalen Nullstellen. (Die einzige reelle Nullstelle 3 ist irrational.) Also kann dieses Polynom keinen rationalen Linearfaktor abspalten und ist deshalb in Q[X] irreduzibel. Aus diesem Grunde ist Q[X]/(X 3 ) ein Körper.. Es gilt (X 3 ) : (X X + 1) = X + 1, Rest -3, (X 3 ) (X + 1)(X X + 1) = 3. Es gilt also ggt(x 3, X X + 1) = 3 mit Bézoutkoeffizienten 1 und X 1. Da der größte gemeinsame Teiler nur bis auf Einheiten eindeutig bestimmt ist, können wir auch sagen, dass 1 der größte gemeinsame Teiler ist. Die Bézoutkoeffizienten müssen dann natürlich durch 3 geteilt werden. Wir erhalten die Gleichung 1 = 1 3 (X3 ) + X + 1 (X X + 1) Aus der letzten Gleichung ergibt sich, dass die Restklasse [ X+1 ] das multiplikative Inverse von [X X + 1] 3 ist.

13 Bonusaufgabe Zeigen Sie für alle n N die Identität n (1 1i ) = 1 i= ( ). n Lösung der Bonusaufgabe Beweis durch vollständige Induktion nach n. Induktionsanfang (n = 1): Es gilt 1 (1 1i ) = 1 = 1 i= ( ). 1 Induktionsschritt (n n + 1): Angenommen, die Formel sei für n erfüllt. Dann gilt n+1 (1 1i ) = i= Damit ist die Formel bewiesen. ( 1 1 (n + 1) ) n (1 1i ) i= ( ) ( IV 1 1 = ) (n + 1) n = 1 ( ) n 1 (n + 1) 1 n(n + 1) = 1 ( ) 1 + n + n n(n + 1) = 1 ( ). n + 1

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium

Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Technische Universität Dortmund Sommersemester 2012 Fakultät für Mathematik 23.07.2012 Klausur zur Algebra und Zahlentheorie für Lehramt Gymnasium Name: Vorname: Matrikelnummer: Studiengang: Wichtige Informationen:

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten

Probeklausur. Algebra SS Bearbeitungszeit: 120 Minuten Prof. Dr. Bernd Siebert Probeklausur Algebra SS 2014 Bearbeitungszeit: 120 Minuten Nachname: Vorname: Matrikelnr: Es dürfen alle Vorlesungsunterlagen inklusive Übungsaufgaben und Lösungen verwendet werden.

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z )

. Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) Aufgabe 57 a) Seien p Primzahl, p 2, k N und [a] p k ( Z/p k Z ). Dann hat die Gleichung [X 2 ] p k = [a] p k in ( Z/p k Z ) genau zwei oder gar keine Lösung. Beweis: Sei [x] p k ( Z/p k Z ) eine Lösung

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen

Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen Prof. Dr. Duco van Straten Blatt 8 - Lösungen Oliver Labs 8. Dezember 2003 Konrad Möhring Lineare Algebra I 8. Übungsblatt - Weihnachtszettel - Lösungen. Skizzieren Sie die folgenden Teilmengen der GAUSSschen

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

1.2. Teilbarkeit und Kongruenz

1.2. Teilbarkeit und Kongruenz 1.2. Teilbarkeit und Kongruenz Aus den Begriffen der Teilbarkeit bzw. Teilers ergeben sich die Begriffe Rest und Restklassen. Natürliche Zahlen, die sich nur durch sich selbst oder die 1 dividieren lassen,

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Einführung in die Zahlentheorie

Einführung in die Zahlentheorie Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Probeklausur zur Algebra I

Probeklausur zur Algebra I Probeklausur zur Algebra I Prof. Dr. S. Bosch/C. Löh Februar 2008 Name: Matrikelnummer: ZIV-Kennung: Vorname: Studiengang: Übungsleiter: Diese Klausur besteht aus 8 Seiten (die ersten beiden Seiten sind

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

Wiederholungsblatt zur Gruppentheorie

Wiederholungsblatt zur Gruppentheorie Wiederholungsblatt zur Gruppentheorie von Christian Elsholtz, TU Clausthal, WS 1999/2000 Um Ihnen zu helfen, die Gruppentheorie zu wiederholen, stelle ich hier einige wichtige Beispiele und einige Lösungen

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer

Algebra I Klausur 2. Ich gestatte die Veröffentlichung meines Klausurergebnisses unter Angabe meiner Matrikelnummer Technische Universität Berlin Wintersemester 2014/2015 Prof. Dr. Martin Henk 17. April 2015 Algebra I Klausur 2 Name: Vorname: Matrikelnummer: Aufgabe: 1 2 3 4 5 6 Σ Note Maximale Punktzahl: 10 6 7 6 6

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

3. Zahlbereiche und algebraische Strukturen

3. Zahlbereiche und algebraische Strukturen technische universität dortmund Dortmund, im November 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung von Kapitel 3 3. Zahlbereiche

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Arbeitsblatt Gleichungen höheren Grades

Arbeitsblatt Gleichungen höheren Grades Mathematik-Service Dr. Fritsch www.math-service.de Tel. 061/776 Arbeitsblatt Gleichungen höheren Grades 1. Lösen Sie folgenden quadratischen Gleichungen mittels quadratischer Ergänzung! (a) x x + = 0 (b)

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie WS 2014/2015 A Muñoz, A Schmitt Aufgabe 1 (7+8 Punkte) a) Bestimmen Sie die Primfaktorzerlegungen der Zahlen 15015 und 12600 und geben Sie damit

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

8. Polynome. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1

8. Polynome. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1 8. Polynome Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1 Polynome über Körpern Definition (Polynome) Sei K ein Körper und X ein Unbekannte/Variable. Ein Ausdruck der Form

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

3-1 Elementare Zahlentheorie

3-1 Elementare Zahlentheorie 3-1 Elementare Zahlentheorie 3. Der Restklassenring Z/n und seine Einheitengruppe 3.0. Erinnerung: Teilen mit Rest, euklidscher Algorithmus, Bézoutsche Gleichung. Sei n eine feste natürliche Zahl. Sei

Mehr

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Klausur zur Vorlesung

Klausur zur Vorlesung Institut für Algebra und Geometrie 06. September 011 Klausur zur Vorlesung Aufgabe 1 (5 Punkte) Sei G eine Gruppe und X G eine beliebige Teilmenge von G. X := X N G a) Zeigen Sie, dass X der kleinste Normalteiler

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Aus dem Schulunterricht ist bekannt, dass die Seitenlängen a, b, c eines rechtwinkligen Dreiecks die Gleichung

Aus dem Schulunterricht ist bekannt, dass die Seitenlängen a, b, c eines rechtwinkligen Dreiecks die Gleichung Aus dem Schulunterricht ist bekannt, dass die Seitenlängen a, b, c eines rechtwinkligen Dreiecks die Gleichung a 2 + b 2 = c 2 erfüllen, wobei c die Seitenlänge der Hypothenuse und a, b die beiden übrigen

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Prof. Dr. Rudolf Scharlau, Stefan Höppner

Prof. Dr. Rudolf Scharlau, Stefan Höppner Aufgabe 13. Bestimme alle Untergruppen der S 4. Welche davon sind isomorph? Hinweis: Unterscheide zwischen zyklischen und nicht zyklischen Untergruppen. Lösung. Die Gruppe S 4 besitzt die folgenden Elemente:

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen

Diskrete Strukturen. Abgabetermin: 20. September 2011, 14 Uhr in die DS Briefkästen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2011 Übungsblatt 5 12. September 2011 Diskrete Strukturen

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

c i α i = t(α) q = 0 q = 0 c q i (αi ) q = (X α qi ) = j=0 Da das Potenzieren mit q ein Ringhomomorphismus ist, ergibt sich l 2

c i α i = t(α) q = 0 q = 0 c q i (αi ) q = (X α qi ) = j=0 Da das Potenzieren mit q ein Ringhomomorphismus ist, ergibt sich l 2 Ergänzend zur Übung vom 8.6.006 anbei eine vollständige Lösung zur Aufgabe 3 vom Übungsblatt 10: Wir werden von folgendem Satz gebrauch machen, welchen wir zunächst beweisen, obwohl ich davon ausgehe,

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

13. Der diskrete Logarithmus

13. Der diskrete Logarithmus 13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Prof. M. Eisermann Algebra SoSe 2010

Prof. M. Eisermann Algebra SoSe 2010 Übungsblatt 4: Teilbarkeitslehre Lassen Sie sich nicht durch die Menge der Aufgaben einschüchtern. Es gibt nur wenig schriftliche Aufgaben und wir halten die Menge der Votieraufgaben überschaubar. Alle

Mehr

Ferienkurs Analysis 1: Übungsblatt 1

Ferienkurs Analysis 1: Übungsblatt 1 Ferienkurs Analysis : Übungsblatt Marta Krawczyk, Andreas Schindewolf, Simon Filser 5.3.00 Aufgaben zur vollständigen Induktion. Verallgemeinerte geometrische Summenformel. Zeigen Sie mittels vollständiger

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel

Zwischenklausur zur Linearen Algebra I HS 2010, Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Zwischenklausur zur Linearen Algebra I HS 2010, 23.10.2010 Universität Mannheim, Prof. Dr. C. Hertling, Ralf Kurbel Name: Emil Mustermann Sitzplatznummer: 2 Die Bearbeitungszeit für diese Klausur beträgt

Mehr

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter:

Die Unlösbarkeit der Gleichung fünften Grades durch Radikale. Teilnehmer: Gruppenleiter: Die Unlösbarkeit der Gleichung fünften Grades durch adikale Teilnehmer: Max Bender Marcus Gawlik Anton Milge Leonard Poetzsch Gabor adtke Miao Zhang Gruppenleiter: Jürg Kramer Andreas-Oberschule Georg-Forster-Oberschule

Mehr

6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen.

6-1 Elementare Zahlentheorie Zahlen, die sich als Summe zweier Quadrate schreiben lassen. 6-1 Elementare Zahlentheorie 6 Summen von Quadraten Wir interessieren uns hier für die Frage, ob sich eine Zahl n als Summe von sagen wir t Quadraten ganzer Zahlen schreiben lässt, oder auch, genauer,

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

10. Die komplexen Zahlen.

10. Die komplexen Zahlen. 10-1 Funktionen 10 Die kompleen Zahlen Dies ist ein Thema, das unberechtigter Weise als schwer gilt! Die Konstruktion der kompleen Zahlen ist viel einfacher zu verstehen ist, als einige der bisherigen

Mehr

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C

Menge der irrationalen Zahlen C = {z z = a + bi; a, b R, i 2 = 1} Menge der komplexen Zahlen R C Somit ergibt sich: N N Z Q R C 1 Komplexe Zahlen 1.1 Übersicht N = {1, 2, 3,... } Menge der natürlichen Zahlen ohne 0 N = {0, 1, 2, 3,... } Menge der natürlichen Zahlen mit 0 N N Z = {..., 2, 1, 0, 1, 2,... } Menge der ganzen Zahlen

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

Konstruktion und Struktur endlicher Körper

Konstruktion und Struktur endlicher Körper Université du Luxembourg Faculté des Sciences, de la Technologie et de la Communication Bachelorarbeit Konstruktion und Struktur endlicher Körper Hoeltgen Laurent Luxemburg den 28. Mai 2008 Betreuer: Prof.

Mehr

Basiswissen Zahlentheorie

Basiswissen Zahlentheorie Kristina Reiss Gerald Schmieder Basiswissen Zahlentheorie Eine Einführung in Zahlen und Zahlbereiche Zweite Auflage Mit 43 Abbildungen ^y Springer Inhaltsverzeichnis 1 Grundlagen und Voraussetzungen 1.1

Mehr

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i 2 Faktorielle Ringe In Folgenden seien alle Ringe stets Integritätsbereiche. Hier nun einige aus der Algebra 1 bekannte Definitionen und Fakten für einen Integritätsbereich A. x A heißt irreduzibel falls

Mehr