Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die"

Transkript

1 Statistik für Kommunikationswissenschaftler Wintersemester 2010/2011 Vorlesung Prof. Dr. Nicole Krämer Übung Nicole Krämer, Cornelia Oberhauser, Monia Mahling Lösung Thema 9 Homepage zur Veranstaltung: Lösung Aufgabe 1 (Regression) Es wurden in einer Befragung zwei metrische Merkmale X und Y erhoben. Betrachten Sie dazu die Stichprobe (x; y) = {(1; 6), (1; 8), (2; 5), (2; 6), (3; 5), (4; 2), (4; 3), (7; 4)}. Als Hilfsgrößen sind gegeben: Mittelwert und Varianz von X: x = 3, s 2 X 4, Mittelwert und Varianz von Y: ȳ = 4, 875, s 2 Y = 3, 55, Kovarianz und Korrelation von X und Y: s XY 2, 57, r XY 0, 683 a) Zeichnen Sie die Werte in ein Streudiagramm ein. Zeichnen Sie in dieses mit Lineal eine Regressionsgerade ein, die Sie für passend halten. y x Dies ist nur eine mögliche Lösung, viele andere Lösungen sind ebenfalls korrekt. b) Berechnen Sie aus der oben stehenden Stichprobe die Parameter a und b für die lineare Regression. b = s XY 2, 57 s 2 = 0, 64 X 4 a = ȳ b x = 4, 875 ( 0, 64) 3 = 4, , 92 6, 8 c) Zeichnen Sie nun die Regressionsgerade mit den Parametern aus Teilaufgabe b) in die Grafik. Haben Sie sich verschätzt bei Ihrer freihand gezeichneten Geraden? Wie konnte das passieren? 2 Punkte zum Zeichnen nötig: Geradengleichung: y = a + b x = 6, 8 0, 64 x Punkt an der Stelle x = 0: y = 6, 8 0, 64 0 = 6, 8 (x i ; y i ) = (0; 6, 8) Punkt an der Stelle x = 8: y = 6, 8 0, 64 8 = 1, 68 (x i ; y i ) = (8; 1, 68) 1

2 y x Falls sich die Geraden unterscheiden, kann es daran liegen, dass Sie Punkt (7; 4) zu wenig beachtet haben. d) Berechnen Sie nun das Bestimmtheitsmaß der Regression. Was fällt auf? Wie kann man den Wert interpretieren? ŷ i = a + b x i = 6, 8 0, 64 x i i x i ŷ i 1 1 6, , , , , , , ,32 s 2 Ŷ = = 1 n n (ŷ i ȳ) 2 8 (ŷ i ȳ) 2 = 1 7 [(6, 16 4, 875) 2 + (6, 16 4, 875) 2 + (5, 52 4, 875) 2 + (5, 52 4, 875) 2 +(4, 88 4, 875) 2 + (4, 24 4, 875) 2 + (4, 24 4, 875) 2 + (2, 32 4, 875) 2] = 1 11, 469 1, 64 7 r 2 = s2 Ŷ s 2 Y = 1, 64 0, 46 3, 55 r 2 XY = ( 0, 683)2 0, 47 ist (bis auf Rundungsfehler) identisch mit r 2. Interpretation: Ungefähr 46% der Streuung von Y werden durch X erklärt. 2

3 Lösung Aufgabe 2 (Regression) Bei sieben zufällig ausgewählten ProfessorInnen wurden die monatlichen Ausgaben für Kosmetikprodukte (K) und Styling-Magazine (S) (jeweils in e) erfragt. Außerdem wurde ihre durchschnittliche Aufenthaltsdauer (A) pro Tag an der Universität erhoben (in Minuten). Die Ergebnisse finden Sie in untenstehender Tabelle. Ausgaben Ausgaben Aufenthaltsdauer an Kosmetika Styling-Magazine der Uni Die Merkmale werden mit folgenden Buchstaben identifiziert. ˆ K: Ausgaben für Kosmetika ˆ S: Ausgaben für Styling-Magazine ˆ A: Aufenthaltsdauer an der Uni Für die Berechnungen sind als Hilfsgrößen gegeben: ˆ die arithmetischen Mittel x K = 38, 6, x S = 10, 1 und x A = 532, 9 ˆ die empirischen Standardabweichungen s K = 23, 6, s S = 9, 6 und s A = 64, 3 ˆ die Kovarianzen s KS = 108, 6, s KA = 1345, 2 und s SA = 262, 1 ˆ die Korrelationen r KS 0, 48, r KA 0, 89 und r SA 0, 42 Sie wollen den Zusammenhang zwischen Ausgaben für Styling-Magazine (S) und Ausgaben für Kosmetika (K) genauer untersuchen. Dabei nehmen Sie an, dass die Ausgaben für Styling-Magazine die Ausgaben für Kosmetika beeinflusst. a1) Stellen Sie die Regressionsgleichung auf. b1) Berechnen Sie die Regressionskoeffizienten. K = a 1 + b 1 S + Fehler b 1 = s KS s 2 = 108, 6 1, 19 S 9, 62 a 1 = x K b 1 x S = 38, 6 1, 19 10, 1 26, 53 c1) Zeichnen Sie die Regressionsgerade in das zugehörige Streudiagramm. Geradengleichung: K i = 26, , 19 S i + Fehler Punkt an der Stelle S i = 0: K i = 26, , 19 0 = 26, 53 (S i ; K i ) = (0; 26, 53) Punkt an der Stelle S i = 30: K i = 26, , = 62, 23 (S i ; K i ) = (30; 62, 23) 3

4 Ausgaben für Kosmetika (K) Ausgaben für Styling Magazine (S) d1) Interpretieren Sie die Regressionskoeffizienten. a 1 = 26, 53 Man erwartet, dass eine Person, die 0 Euro für Styling-Magazine ausgibt, 26,53 Euro für Kosmetika ausgibt. b 1 = 1, 19 Gibt eine Person 1 Euro mehr für Styling-Magazine aus, so erwartet man, dass diese 1,19 Euro mehr für Kosmetika ausgibt. e1) Berechnen Sie das Bestimmtheitsmaß und interpretieren Sie dieses. r 2 = r 2 KS = 0, 482 = 0, 23 Ungefähr 23% der Streuung der Ausgaben für Kosmetika (K) werden durch die Ausgaben für Styling-Magazine (S) erklärt. Sie wollen den Zusammenhang zwischen Aufenthaltsdauer an der Uni (A) und Ausgaben für Kosmetika (K) genauer untersuchen. Dabei nehmen Sie an, dass die Aufenthaltsdauer an der Uni die Ausgaben für Kosmetika beeinflusst. a2) Stellen Sie die Regressionsgleichung auf. b2) Berechnen Sie die Regressionskoeffizienten. K = a 2 + b 2 A + Fehler b 2 = s KA s 2 = 1345, 2 A 64, 3 2 0, 33 a 2 = x K b 2 x A = 38, 6 ( 0, 33) 532, 9 212, 05 c2) Zeichnen Sie die Regressionsgerade in das zugehörige Streudiagramm. Geradengleichung: K i = 212, 05 0, 33 A i + Fehler Punkt an der Stelle A i = 0: K i = 212, 05 0, 33 0 = 212, 05 (A i ; K i ) = (0; 212, 05) 4

5 Ausgaben für Kosmetika (K) Aufenthaltsdauer in der Uni (A) Punkt an der Stelle A i = 700: K i = 212, 05 0, = 18, 95 (A i ; K i ) = (700; 18, 95) d2) Interpretieren Sie die Regressionskoeffizienten. a 2 = 212, 05 nicht sinnvoll interpretierbar (es gibt keinen Professor/keine Professorin, die nie an der Uni ist) b 2 = 0, 33 Ist eine Person 1 Minute länger an der Uni, so erwartet man, dass diese 0,33 Euro weniger für Kosmetika ausgibt. e2) Berechnen Sie das Bestimmtheitsmaß und interpretieren Sie dieses. r 2 = r 2 KA = ( 0, 89)2 = 0, 79 Ungefähr 79% der Streuung der Ausgaben für Kosmetika (K) werden durch die Aufenthaltsdauer an der Uni (A) erklärt. In einem multiplen linearen Regressionsmodell ergeben sich folgende Schätzungen für die Koeffizienten: K i = 198, , 31 S i 0, 31 A i + Fehler f) Interpretieren Sie die einzelnen Koeffizienten. a = 198, 41 nicht sinnvoll interpretierbar b 1 = 0, 31 Gibt eine Person 1 Euro mehr für Styling-Magazine aus, so erwartet man, dass diese 0,31 Euro mehr für Kosmetika ausgibt, wenn sie die gleiche Zeit an der Uni verbringt. b 2 = 0, 31 Bei einer Person, die 1 Minute länger an der Uni ist, erwartet man, dass diese 0,31 Euro weniger für Kosmetika ausgibt, wenn sie die gleichen Ausgaben für Styling-Magazine hat. 5

6 g) Vergleichen Sie die Koeffizienten aus dem multiplen linearen Regressionsmodell mit denen aus den einfachen linearen Regressionsmodellen. Koeffizienten für Styling-Magazine: Einfaches lineares Regressionsmodell: b 1 = 1, 19 Multiples lineares Regressionsmodell: b 1 = 0, 31 Der Koeffizient im einfachen linearen Modell ist deutlich größer. Koeffizienten für Aufenthaltsdauer: Einfaches lineares Regressionsmodell: b 2 = 0, 33 Multiples lineares Regressionsmodell: b 2 = 0, 31 Der Koeffizient im einfachen linearen Modell ist betragsmäßig etwas größer. Lösung Aufgabe 3 (Regression) In der Medienstudie wurden der Body-Mass-Index (BMI), das Alter und die Fernsehgesamtdauer pro Tag in Minuten von 2831 Personen erhoben. Zusätzliche Information zum Body-Mass-Index (für die Lösung nicht relevant): Der Body-Mass-Index gibt an, wie übergewichtig eine Person ist. Umso höher der Wert, desto übergewichtiger die Person. Gesunde Personen weisen in etwa einen BMI zwischen 20 und 27 auf. Die Variablen werden wie folgt bezeichnet: ˆ B: BMI ˆ F: Fernsehgesamtdauer ˆ A: Alter Folgende Hilfsgrößen sind gegeben: ˆ Mittelwert von BMI: 25,89 ˆ Standardabweichung von BMI: 4,60 ˆ Mittelwert von Fernsehgesamtdauer: 169,19 ˆ Standardabweichung von Fernsehgesamtdauer: 126,90 ˆ Kovarianz von BMI und Fernsehgesamtdauer: 65,183 ˆ Korrelation von BMI und Fernsehgesamtdauer: 0,112 a) Stellen Sie eine lineare Regressionsgleichung auf, die den Einfluss der Fernsehdauer auf den BMI beschreibt, und berechnen Sie die Parameter der Regressionsgleichung. Regressionsgleichung: B = a + b F (+ɛ) Berechnung der Parameter: b = s F B = 65,183 0, 004 s 2 126,90 F 2 a = B b F = 25, 89 0, , 19 25, 21 B = 25, , 004 F (+ɛ) 6

7 b) Berechnen Sie das Bestimmtheitsmaß. ( ) 2 ( 2 r 2 = rf 2 B = sf B s F s B = 9,45 126,90 4,60) 0, = 0, 013 c) Interpretieren Sie die Parameter der Regressionsgleichung sowie das Bestimmtheitsmaß. a = 25, 21 Für eine Person, die Null Minuten pro Tag fernsieht, erwartet man, dass diese einen BMI von 25,21 hat. b = 0, 004 Schaut eine Person pro Tag eine Minute länger fern, so erwartet man, dass diese einen um 0,004 höheren BMI hat. r 2 = 0, 013: Ungefähr 1,3% der Streuung des BMI werden durch die Fernsehdauer pro Tag erklärt. d) In einem multiplen Regressionsmodell wurde zusätzlich die Variable Alter als Einflussgröße verwendet. Es ergaben sich folgende Schätzungen für die Parameter des Regressionsmodells: B = 22, , 003 F + 0, 054 A Interpretieren Sie die Parameter des multiplen linearen Regressionsmodells. a = 22, 81 nicht sinnvoll interpretierbar (da keine Person mit 0 Jahren) Theoretische Interpretation: Für eine Person, die Null Minuten pro Tag fernsieht und 0 Jahre alt ist, erwartet man, dass diese einen BMI von 22,81 hat. b 1 = 0, 003 Schaut eine Person 1 Minute pro Tag länger fern, so erwartet man, dass diese einen um 0,003 höheren BMI hat, wenn sie das gleiche Alter hat. b 2 = 0, 054 Für eine Person, die ein Jahr älter ist, erwartet man, dass diese einen um 0,054 höheren BMI hat, wenn sie die gleiche Zeit fernsieht. e) Wie ist der Unterschied im Parameterschätzer für die Fernsehdauer in den beiden Modellen zu erklären? Im multiplen Regressionsmodell ist die Variable Alter miteinbezogen. Der geschätzte Effekt ist somit als Effekt bei festgehaltenem Alter zu interpretieren und unterscheidet sich deshalb von dem geschätzen Effekt ohne Berücksichtigung des Alter. Lösung Aufgabe 4 (Einfaktorielle Varianzanalyse) In der Jugendstudie wurden 1200 Jugendliche nach der Anzahl an Stunden gefragt, die diese durchschnittlich wöchentlich fernsehen. Im Folgenden soll untersucht werden, ob die mittlere wöchentliche Fernsehzeit vom Alter abhängt. Dazu wurden drei Altersklassen definiert (Gruppe 1: 12 bis 14 Jahre, Gruppe 2: 15 bis 18 Jahre, Gruppe 3: 19 bis 21 Jahre). Es soll zum Signifikanzniveau α = 0, 05 getestet werden, ob sich die mittlere Fernsehzeit in den drei Altersklassen unterscheidet. a) Formulieren Sie die Nullhypothese und die Alternativhypothese. Nullhypothese: µ 1 = µ 2 = µ 3 Alternativhypothese: mindestens zwei Mittelwerte unterscheiden sich 7

8 b) Für alle drei Gruppen ist die Gruppengröße, der Mittelwert und die Standardabweichung der durchschnittlichen wöchentlichen Fernsehzeit gegeben: Gruppe Gruppengröße Mittelwert Standardabweichung Gruppe 1: 12 bis 14 Jahre ,15 6,58 Gruppe 2: 15 bis 18 Jahre ,08 6,56 Gruppe 3: 19 bis 21 Jahre ,49 6,79 Gesamt ,62 6,67 Berechnen Sie die Terme der Quadratsummenzerlegung: SSB (Sum of Squares Between), SSW (Sum of Squares Within), SST (Sum of Squares Total) Sum of Squares Total (SST) = σ X = Var(X) = I n i (X ij X) 2 j=1 1 n (X i n 1 X) 2 = 6, 67 1 n 1 Sum of Squares Between (SSB) = SSB = n (X i X) 2 = 6, 67 2 = 44, 49 SST = (n 1) Var(X) = , 49 = 53343, 51 I n i ( X i X) 2 I n i ( X i X) 2 = 360 (16, 15 15, 62) (16, 08 15, 62) (14, 49 15, 62) 2 = 662, 38 Sum of Squares Within (SSW) = c) Berechnen Sie die Teststatistik. I n i (X ij X i ) 2 j=1 SSW = SST SSB = 53343, , 38 = 52681, 13 T = SSB/(I 1) SSW/(n I) = 662, 38/(3 1) = 7, , 13/(1200 3) d) Wie lautet Ihre Testentscheidung? (F 0.95 (2, 1197) = 3, ) H 0 kann abgelehnt werden, da die Teststatistik T = 7, 53 größer als das zugehörige Quantil der F -Verteilung ist. Somit unterscheiden sich mindestens zwei der drei Gruppenmittelwerte signifikant voneinander. 8

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154

Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154 Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13

Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression. Dipl.-Ing. Robin Ristl Wintersemester 2012/13 Vorlesung Wirtschaftsstatistik 2 (FK 040637) Multiple lineare Regression Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Grundidee: Eine abhängige Variable soll als Linearkombination mehrerer unabhängiger

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung

Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung Übung Formale Methoden der Ökonomik: Einführung in die empirische Wirtschaftsforschung BACHELOR FT 2013 (HSU) Übung Emp. WiFo FT 2013 1 / 1 Maßzahlen für den Zusammenhang zwischen Merkmalen Kontingenztabelle:

Mehr

Einführung in die Induktive Statistik: Varianzanalyse

Einführung in die Induktive Statistik: Varianzanalyse Einführung in die Induktive Statistik: Varianzanalyse Jörg Drechsler LMU München Wintersemester 2011/2012 Varianzanalyse bisher: Vergleich der Erwartungswerte für zwei normalverteilte Variablen durch t-test

Mehr

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 1. Aufgabe: Für 25 der größten Flughäfen wurde die Anzahl der abgefertigten Passagiere in den Jahren 2009 und 2012 erfasst. Aus den Daten (Anzahl

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs tatistik für Wirtschaftswissenschaften Lösungen UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Brückenkurs tatistik für Wirtschaftswissenschaften: Lösungen

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

Klausur zu Statistik II

Klausur zu Statistik II Goethe-Universität Frankfurt Prof. Dr. Uwe Hassler FB Wirtschaftswissenschaften Sommersemester 2005 Klausur zu Statistik II Version B Bitte tragen Sie hier und auf den Lösungsblättern (oben links) Ihre

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. mit dem R Commander. A Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst mit dem R Commander A Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Korrelation, Regression und Signifikanz

Korrelation, Regression und Signifikanz Professur Forschungsmethodik und Evaluation in der Psychologie Übung Methodenlehre I, und Daten einlesen in SPSS Datei Textdaten lesen... https://d3njjcbhbojbot.cloudfront.net/api/utilities/v1/imageproxy/https://d15cw65ipcts

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

TEIL 13: DIE LINEARE REGRESSION

TEIL 13: DIE LINEARE REGRESSION TEIL 13: DIE LINEARE REGRESSION Dozent: Dawid Bekalarczyk GLIEDERUNG Dozent: Dawid Bekalarczyk Lineare Regression Grundlagen Prognosen / Schätzungen Verbindung zwischen Prognose und Zusammenhang zwischen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Das lineare Regressionsmodell Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg

Statistik I. Übungklausur. Prof. Dr. H. Toutenburg Statistik I Übungklausur Prof. Dr. H. Toutenburg Hinweis: Die Zeitangaben sollen Ihnen aufzeigen wieviel Zeit Ihnen für eine Aufgabe von gewissem Umfang eingeräumt wird. Die Punktzahlen für die einzelnen

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

Mittelwertvergleiche, Teil I: Zwei Gruppen

Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Herzlich willkommen zur Vorlesung Mittelwertvergleiche, Teil I: Zwei Gruppen FB W. Ludwig-Mayerhofer Statistik II Mittelwertvergleiche Mittelwertvergleiche:

Mehr

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143

Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143 Lineare Korrelation Statistik für SozialwissenschaftlerInnen II p.143 Produkt-Moment-Korrelation Der Produkt-Moment-Korrelationskoffizient r von Pearson ist ein Zusammenhangsmaß für metrische Variablen

Mehr

Name Vorname Matrikelnummer Unterschrift

Name Vorname Matrikelnummer Unterschrift Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden Klausur Statistik II (Sozialwissenschaft, Nach- und Wiederholer) am 26.10.2007 Gruppe

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Vergleich von Gruppen I

Vergleich von Gruppen I Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Methodik der multiplen linearen Regression

Methodik der multiplen linearen Regression Methodik der multiplen linearen Regression Sibel Aydemir Statistisches Amt, Direktorium Landeshauptstadt München Name, Stadt Regressionsanalyse: Schritt für Schritt Schritt 1 Schritt 2 Schritt 3 Schritt

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik.

STATISTIK II. Hans-Otfried Müller Institut für Mathematische Stochastik. STATISTIK II Hans-Otfried Müller Institut für Mathematische Stochastik http://www.math.tu-dresden.de/sto/mueller 1 Ausgewählte Verfahren der multivariaten Datenanalyse und Statistik Werden bei einer Analyse

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14

Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Statistik I. Prof. Dr. H. Toutenburg

Statistik I. Prof. Dr. H. Toutenburg Statistik I Lösungen Prof. Dr. H. Toutenburg Aufgabe 1 Die erreichten Punktzahlen in einer Statistik-Klausur von 22 zufällig ausgewählten Studierenden der Statistik an den Universitäten München und Dortmund

Mehr

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x.

Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 1 x. Aufgabe 1. (5 Punkte) Es sei x 1. Zeigen Sie mittles vollständiger Induktion, dass dann für jede natürliche Zahl n 0 gilt: n x k = 1 xn+1 k=0 1 x. Aufgabe 2. (7 Punkte) Bestimmen Sie das folgende Integral

Mehr

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II

Statistik II. Lineare Regressionsrechnung. Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II Statistik II Lineare Regressionsrechnung Wiederholung Skript 2.8 und Ergänzungen (Schira: Kapitel 4) Statistik II - 09.06.2006 1 Mit der Kovarianz und dem Korrelationskoeffizienten können wir den statistischen

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Mathematik III - Statistik für MT(Master)

Mathematik III - Statistik für MT(Master) 3. Regressionsanalyse Fachbereich Grundlagenwissenschaften Prof. Dr. Viola Weiß Wintersemester 0/03 Mathematik III - Statistik für MTMaster 3. Empirische Regressionsgerade Optimalitätskriterium: Die Summe

Mehr

Epidemiologie / Biometrie

Epidemiologie / Biometrie Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert hochstrat@web.de

Mehr

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1

Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Grundproblem Generell sind wir nur selten in der Geographie in der Lage, Daten über die Grundgesamtheit zur Verfügung zu haben.

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

T-Test für den Zweistichprobenfall

T-Test für den Zweistichprobenfall T-Test für den Zweistichprobenfall t-test (unbekannte, gleiche Varianzen) Test auf Lageunterschied zweier normalverteilter Grundgesamtheiten mit unbekannten, aber gleichen Varianzen durch Vergleich der

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

6. Übung Statistische Tests Teil 1 (t-tests)

6. Übung Statistische Tests Teil 1 (t-tests) Querschnittsbereich 1: Epidemiologie, Medizinische iometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 6. Übung Statistische Tests Teil 1 (t-tests)

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr

Modul G.1 WS 07/08: Statistik

Modul G.1 WS 07/08: Statistik Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen

Mehr

Der Korrelationskoezient nach Pearson

Der Korrelationskoezient nach Pearson Der Korrelationskoezient nach Pearson 1 Motivation In der Statistik werden wir uns häug mit empirisch erfassten Daten beschäftigen. Um diese auszuwerten, ist es oftmals notwendig einen Zusammenhang zwischen

Mehr

Prüfungsliteratur: Rudolf & Müller S

Prüfungsliteratur: Rudolf & Müller S 1 Beispiele zur univariaten Varianzanalyse Einfaktorielle Varianzanalyse (Wiederholung!) 3 Allgemeines lineares Modell 4 Zweifaktorielle Varianzanalyse 5 Multivariate Varianzanalyse 6 Varianzanalyse mit

Mehr

Übungsaufgaben zu Kapitel 2 und 3

Übungsaufgaben zu Kapitel 2 und 3 Übungsaufgaben zu Kapitel 2 und 3 Aufgabe 1 Wann ist eine Teilerhebung sinnvoller als eine Vollerhebung? Nennen Sie mindestens drei Gründe. Aufgabe 2 Welches Verfahren soll angewendet werden, um eine Teilerhebung

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004)

Übungsklausur zur Vorlesung Statistik I (WiSe 2003/2004) Universität Siegen, FB 1 Prof. W. Ludwig-Mayerhofer/ Dipl.Soz. Uta Liebeskind Übungsklausur zur Vorlesung "Statistik I" (WiSe 2003/2004) 1. Bitte vermerken Sie hinter dem jeweiligen Merkmal das Skalenniveau.

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften t-test Varianzanalyse (ANOVA) Übersicht Vergleich von Mittelwerten 2 Gruppen: t-test einfaktorielle ANOVA > 2 Gruppen: einfaktorielle ANOVA Seeigel und

Mehr

Übung 3 im Fach "Biometrie / Q1"

Übung 3 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr